Min-wise independent families with respect to any linear order

Peter J. Cameron and Pablo Spiga^{*†} School of Mathematical Sciences Queen Mary, University of London Mile End Road London, E1 4NS U.K.

Abstract

A set of permutations \mathscr{S} on a finite linearly ordered set Ω is said to be *k*-min-wise independent, *k*-MWI for short, if $Pr(\min \pi(X) = \pi(x)) = 1/|X|$ for every $X \subseteq \Omega$ such that $|X| \le k$ and for every $x \in X$. (Here $\pi(x)$ and $\pi(X)$ denote the image of the element *x* or subset *X* of Ω under the permutation π , and Pr refers to a probability distribution on \mathscr{S} , which we take to be the uniform distribution.) We are concerned with sets of permutations which are *k*-MWI families for any linear order. Indeed, we characterize such families in a way that does not involve the underlying order. As an application of this result, and using the Classification of Finite Simple Groups, we deduce a complete classification of the *k*-MWI families that are groups, for $k \ge 3$.

1 Introduction

We let $\operatorname{Sym}\Omega$ and $\operatorname{Alt}\Omega$ denote the symmetric group and the alternating group on the set Ω respectively. If k is a natural number then $\operatorname{Sym}(k)$ will denote the

^{*}Supported by a grant from the Istituto Nazionale di Alta Matemati ca, INdAM

[†]Current address: Department of Mathematics, University of Lethbridge, 4401 University Drive, Lethbridge, Alberta, Canada T1K 3M4

symmetric group on the set $\{1, ..., k\}$. We denote by $\pi(x)$ or $\pi(X)$ the image of the element *x* or subset *X* under the permutation π . If *G* is a permutation group on the set Ω and *X* is a subset of Ω then G_X denotes the set stabilizer of *X* in *G*, i.e. $G_X = \{g \in G \mid g(X) = X\}$. If \leq is a linear order in Ω and *X* is a subset of Ω then we shall denote by min $\leq X$ the minimal element of *X* in (Ω, \leq) . Moreover, in the case that $\alpha \leq \beta$ and $\alpha \neq \beta$ we will write $\alpha < \beta$. If σ is a permutation in Ω then it defines a linear order \leq_{σ} , where $\alpha \leq_{\sigma} \beta$ if and only if $\sigma^{-1}(\alpha) \leq \sigma^{-1}(\beta)$. The minimum element of *X* with respect to \leq_{σ} will be denoted by min $\leq_{\sigma}(X)$.

Let \mathscr{S} be a set of permutations of Ω , Pr be a probability distribution on \mathscr{S} and k be a natural number. \mathscr{S} is called a *k-min-wise independent family*, *k-MWI* for short, if

$$\Pr(\min \pi(X) = \pi(x)) = \frac{1}{|X|}$$

for any $X \subseteq \Omega$ such that $|X| \le k$ and for any $x \in X$. This definition was motivated by applications in computer science. In fact such a family is important in algorithms used in practice by software to find duplicate documents, see [3]. Later, such sets were applied in other contexts such as derandomization of algorithms. We say that *G* is a *k*-*MWI group* if *G* is a *k*-MWI family and *G* is a permutation group of Ω .

In this paper we consider exclusively k-MWI families \mathscr{S} for the uniform distribution. In [1] Theorem 3.1, it has been proved that if G is a k-MWI group with respect to some probability distribution Pr then G is k-MWI with respect to the uniform distribution. Therefore dealing with k-MWI groups our assumption is not at all a restriction.

We begin with a definition.

Definition 1 We say that a set of permutations \mathscr{S} is locally *k*-MWI, $k \ge 1$, if for every subset X of size at most $k, \tau \in \mathscr{S}$ and for every $x \in X, y \in \tau(X)$ we have that

$$\frac{\left|\left\{\pi \in \mathscr{S} \mid \pi(X) = \tau(X), \pi(x) = y\right\}\right|}{\left|\left\{\pi \in \mathscr{S} \mid \pi(X) = \tau(X)\right\}\right|} = \frac{1}{|X|}$$

Our main result is the following:

Theorem 1 Let \mathscr{S} be a set of permutations of $\operatorname{Sym}\Omega$ and k be a natural number. \mathscr{S} is a k-MWI family with respect to any linear order and with respect the uniform distribution if and only if \mathscr{S} is locally k-MWI. As a consequence of this theorem we prove a complete classification of the *k*-MWI groups with respect to any linear order in the underlying set Ω , for k > 3.

In the next section we give the proof of Theorem 1. Then we outline the classification of groups with this property, and discuss some further directions.

2 **Proof of Theorem 1**

Let Ω and \mathscr{S} be as in the statement of the theorem. First we prove the forward direction. So suppose that \mathscr{S} is *k*-MWI with respect to any linear ordering of Ω . Without loss of generality we may assume that $\Omega = \{1, ..., n\}$.

Choose $h \le k$. Let $A = \{1, ..., h\}$, $B = \{2, ..., h\}$, and set $\mathscr{F} = \{X \subseteq \Omega \mid |X| = h - 1\}$. Now define a non-simple bipartite graph Γ : the vertex set of Γ is $\Omega \cup \mathscr{F}$; for each $\pi \in \mathscr{S}$, there is an edge joining $\pi(1) \in \Omega$ to $\pi(B) \in \mathscr{F}$.

For $\tau \in \mathscr{S}$, $i \in A$, and $Y \subseteq A$, let us denote by $f_{\tau}(i, Y)$ the number of edges (i, X) of Γ such that $X \cap \tau(A) = Y$, where $i \in \tau(A)$ and $Y \subseteq \tau(A)$.

Fix τ in \mathscr{S} , and pick σ in Sym(*h*) (the subgroup of Sym(*n*) fixing {*h* + 1,...,*n*} pointwise) and $\tau\sigma(i)$ in $\tau(A)$. The number of permutations π in \mathscr{S} having $\pi(1) = \tau\sigma(i)$ as $\leq_{\tau\sigma}$ -minimum of the set $\pi(A)$ is the number of edges $(\tau\sigma(i), \tau\sigma(X))$ in Γ such that $\tau\sigma(i) <_{\tau\sigma} \tau\sigma(X)$. By definition of $\leq_{\tau\sigma}$, this means i < X, and, as $i \in A$, this is equivalent to $i < X \cap A$. Summing, we have

$$|\{\pi \in \mathscr{S} \mid \min_{\leq_{\tau\sigma}} \pi(A) = \pi(1) = \tau\sigma(i)\}| = \sum_{Y \subseteq \{i+1,...,h\}} f_{\tau}(\tau\sigma(i),\tau\sigma(Y)) \leq \tau\sigma(Y) < \tau\sigma($$

Now, \mathscr{S} is a *k*-MWI family with respect to any linear order on Ω . Therefore we have

$$\frac{|\mathscr{S}|}{h} = |\{\pi \in \mathscr{S} \mid \min_{\leq_{\tau\sigma}} \pi(A) = \pi(1)\}|$$
$$= \sum_{i=1}^{h} \sum_{Y \subseteq \{i+1,\dots,h\}} f_{\tau}(\tau\sigma(i),\tau\sigma(Y))$$
$$+ |\{\pi \in \mathscr{S} \mid \min_{\leq_{\tau\sigma}} \pi(A) = \pi(1),\pi(1) \notin \tau(A)\}|.$$
(1)

We claim that the second summand in (1) does not depend on $\sigma \in \text{Sym}(h)$. Indeed, let π be a permutation in \mathscr{S} such that $\min_{\leq \tau\sigma} \pi(A) = \pi(1)$ and $\pi(1) \notin \tau(A)$. We get $\min_{\leq \sigma} \tau^{-1}\pi(A) = \tau^{-1}\pi(1)$ and $\tau^{-1}\pi(1) \notin A$. Now, σ is a permutation stabilizing the set A and acting trivially on $\Omega \setminus A$; therefore we have $\min_{\leq} \tau^{-1}\pi(A) = \tau^{-1}\pi(1)$. This proves our claim. In particular, from equation (1) we have that

$$Q(\sigma) = \sum_{i=1}^{h} \sum_{Y \subseteq \{i+1,\dots,h\}} f_{\tau}(\tau\sigma(i),\tau\sigma(Y))$$
(2)

is a constant that does not depend on the choice of σ in Sym(*h*).

We claim that $f_{\tau}(\tau(i), \tau(Y)) = f_{\tau}(\tau\sigma(i), \tau\sigma(Y))$ for every $\sigma \in \text{Sym}(h)$ such that $\sigma(Y \cup \{i\}) = Y \cup \{i\}$. We prove this by induction on |Y|. Assume |Y| = 1. Let $1 \le i < j \le h$ and σ be a permutation of Sym(h) mapping *i* into h - 1 and *j* into *h*. Using the definition of Γ we get

$$0 = Q(\sigma) - Q((h-1,h)\sigma) = f_{\tau}(\tau(i), \{\tau(j)\}) - f_{\tau}(\tau(j), \{\tau(i)\}).$$

Therefore $f_{\tau}(\tau(i), {\tau(j)}) = f_{\tau}(\tau(j), {\tau(i)})$. Assume the result for |Y| = l - 1and let us prove it for |Y| = l. Let $1 \le i_{l+1} < \cdots < i_2 < i_1 \le h$ and σ be a permutation mapping i_j into h - j + 1. Consider the permutation $\eta = (h - l, \dots, h - 1, h)$. Now, using the inductive hypothesis we have

$$\begin{array}{lll} 0 & = & Q(\sigma) - Q(\eta\sigma) \\ & = & \sum_{i=h-lY \subseteq \{h-l+1,\dots,h\}}^{h} (f_{\tau}(\tau\sigma(i),\tau\sigma(Y)) - f_{\tau}(\tau\eta\sigma(i),\tau\eta\sigma(Y))) \\ & = & f_{\tau}(\tau(i_{l+1}),\tau(\{i_{l},\dots,l_{1}\})) - f_{\tau}(\tau(i_{l}),\tau\{i_{l-1},\dots,i_{1},i_{l+1}\}). \end{array}$$

Similarly, using η^{l-j+1} rather than η , we have

$$f_{\tau}(\tau(i_j), \tau(Y - \{i_j\})) = f_{\tau}(\tau(i_{l+1}), \tau(Y - \{i_{l+1}\}))$$

for every *j*, where $Y = \{i_{l+1}, ..., i_1\}$.

Now we are ready to prove the forward implication in the theorem. By the previous discussion, $f(\tau(1), \tau(B)) = f(\tau\sigma(1), \tau\sigma(B))$ for every $\sigma \in \text{Sym}(h)$. This proves that, for every x in $\tau(A)$, the number of elements in \mathscr{S} such that $\pi(1) = x$ and $\pi(A) = \tau(A)$ equals the number of elements such that $\pi(1) = \tau(1)$ and $\pi(A) = \tau(A)$. Therefore we are done.

For the reverse implication, assume that \mathscr{S} is locally *k*-MWI. Let $h \leq k$ and let *X* be an *h*-set of Ω and $x \in X$. Let us denote by Σ the set $\{\pi(X) \mid \pi \in \mathscr{S}\}$. We have

$$\begin{aligned} |\{\pi \in \mathscr{S} \mid \min \pi(X) = \pi(x)\}| &= \sum_{Y \in \Sigma} |\{\pi \in \mathscr{S} \mid \pi(X) = Y, \min Y = \pi(x)|\} \\ &= \sum_{Y \in \Sigma} \frac{|\{\pi \in \mathscr{S} \mid \pi(X) = Y\}|}{|X|} = \frac{|\mathscr{S}|}{|X|}, \end{aligned}$$

so the theorem has been proved. We note that this direction of the proof was given in [5], Lemma 2, in the case where \mathscr{S} is a group.

3 A consequence of Theorem 1

Corollary 1 Let G be a finite permutation group on the set Ω . Then G is a k-MWI group with respect to any linear order in Ω if and only if for every subset X of Ω of size at most k we have that G_X is transitive on X.

Proof This is immediate from Theorem 1.

We note that if, for every subset *X* of Ω of size *k*, the group G_X is transitive on *X*, then *G* is (k-1)-homogeneous. In fact, let *A* and *B* be (k-1)-sets. Assume that $A \cap B$ is a (k-2)-set. Then *A* and *B* lie in the same *G*-orbit. For if $X = A \cup B$ then $A = X \setminus \{b\}$ and $B = X \setminus \{a\}$, for some $a \in A$ and $b \in B$. Now, *X* is a *k*-set, so by hypothesis, G_X contains an element mapping *a* into *b*, and so, *A* into *B*. With an easy induction on $|A \cap B|$ and with a connectedness argument we get that all (k-1)-sets are in the same orbit.

This remark allow us to get the following classification.

Theorem 2 Let G be a finite permutation group on the set Ω and let k be a positive integer with $k \ge 3$. Then the following conditions are equivalent:

- (a) G is a k-MWI group with respect to any linear order on Ω ;
- (b) G_X is transitive on X for any subset X of Ω with $|X| \leq k$;
- (c) G is one of the groups from Table 1.

Proof (Sketch) Corollary 1 shows that (a) and (b) are equivalent. We have to show that (b) and (c) are equivalent.

Assume that (b) holds. Then *G* is *h*-homogeneous for any h < k (in particular *G* is 2-homogeneous). Now, apart known exceptions, if *G* is a *h*-homogeneous group with degree *n*, for $h \le n/2$, then *G* is *h*-transitive. The list of all possible exceptions can be found in [4]. Thus the proof of Theorem 2 is a case-by-case analysis among the list of 2-transitive groups and the list of groups in [4].

In this analysis, the following remark is useful.

Suppose that G is a t-transitive permutation group on G and that all $G_{\alpha_1,...,\alpha_t}$ -orbits except $\{\alpha_1\},...,\{\alpha_t\}$ have different size. Then G_X is transitive on X for any subset X of Ω with $|X| \le t + 1$. In particular G is (t+1)-MWI.

Using this tool, we can deal with the almost simple groups. For instance, M_{22} is 3-transitive and the stabilizer of four distinct points has orbits of size 1,1,1,3,16. Therefore, M_{22} is 4-MWI with respect to any linear order. Furthermore, M_{22} is not 4-homogeneous, therefore M_{22} can not be 5-MWI with respect to all linear orders.

The analysis of the affine 2-transitive groups requires other remarks. We present and prove the main ingredient of this classification.

Let G be an affine 2-transitive group on V, V an n-dimensional \mathbb{F}_q -vector space, $q = p^m$. If G is a 3-MWI group with respect to any linear order then q = 2,3,4 or q = 8. In particular, if q = 8 then G contains the Galois group of \mathbb{F}_8 .

To prove this, assume that q > 2. By Corollary 1, G_X is transitive on X for any $X \subseteq V$ of size 3. Fix $(e_i)_i$ a basis of V, $a \in \mathbb{F}_q \setminus \{0,1\}$ and $X = \{0, e_1, ae_1\}$. The group G_X is transitive on X if and only if it contains an element $\varphi : \xi \mapsto A\xi^{\sigma} + v$ such that $\varphi(0) = e_1$, $\varphi(e_1) = ae_1$ and $\varphi(ae_1) = 0$. This proves that for all $a \in \mathbb{F}_q \setminus \{0,1\}$ there exists $\sigma \in \operatorname{Aut}(\mathbb{F}_q)$ such that $a^{\sigma+1} - a^{\sigma} + 1 = 0$. In particular any $a \in \mathbb{F}_q \setminus \{0,1\}$ is a root of $X^{p^i+1} - X^{p^i} + 1$ for some i. This yields that the characteristic of \mathbb{F}_q is either 2 or 3.

Assume that $q = 3^m$. The equation $X^{3^i+1} - X^{3^i} + 1$ has at most $3^i + 1$ roots. Therefore summing on all the equations we have $\sum_{i=0}^{m-1} (3^i + 1) \ge 3^m - 2$. This happens if and only if m = 1.

Consider the case $q = 2^m$. Now, let us study the solutions of the equation $X^{2^{m-1}+1} + X^{2^{m-1}} + 1$ in \mathbb{F}_q . We have $0 = X^{2^m} + X = X^{-2}(X^{2^{m-1}+1})^2 + X = X^{-2}(X^{2^m} + 1) + X = X + X^{-1} + X^{-2}$, if and only if $X^3 + X + 1 = 0$. Therefore $X^{2^{m-1}+1} + X + 1$ has at most 3 solutions in \mathbb{F}_q . This yields $\sum_{i=0}^{m-2}(2^i+1) + 3 \ge 2^m - 2$. This happens if and only if q = 2, 4 or q = 8. Now the remaining part is easy to achieve.

Further details of the classification may be obtained from the second author. In Table 1, C denotes the Galois group of \mathbb{F}_8 over \mathbb{F}_2 .

For k = 2, no complete classification exists. The groups which are 2-MWI for every linear order are just those transitive groups for which every pair of points

is interchanged by some group element. These groups are sometimes referred to as *generously transitive*, and have the property that the permutation character is multiplicity-free (so they are examples of *Gelfand pairs*), in which all irreducible constituents are real. See Saxl [6], for example.

4 Concluding remarks

For practical purposes it is often necessary to get a small *k*-MWI family. In other words, for fixed Ω and *k*, the complexity of the algorithms using MWI families is strictly related to the size of the family. So clearly the problem consists in finding a compromise between *k* and the size of the family \mathscr{S} . From Theorem 1 we realize that if the family has to be *k*-MWI with respect to any linear order then the actual size has to be comparatively big. In particular, it is worth noting that if *G* is a *k*-MWI group with respect to any linear order and $k \ge 7$ then *G* has to contain the alternating group Alt(Ω), see Theorem 2. Therefore it is reasonable to look at particular orders of the underlying set. Bargachev [2] has shown that there are 4-MWI groups of degree *n* and size $O(n^2)$. From Table 1 we see that the order of a 4-MWI group with respect to any linear order and degree *n* has to be at least $\Omega(n^3)$.

Next we present a variant of this problem. We say that the family \mathscr{S} is (ε, k) -MWI if

$$\frac{1}{|X|(1+\varepsilon)} \le \Pr(\min \pi(X) = \pi(x)) \le \frac{1}{|X|(1-\varepsilon)}$$

for every subset *X* of Ω of size at most *k* and for every $x \in X$. Here *k* is a positive integer and $\varepsilon \ge 0$. One might hope that for "small" values of ε the variety of families that arise is considerably richer than the previous ones. Also, we remark that a group *G* is (ε, k) -MWI with respect to some probability distribution Pr then *G* is (ε, k) -MWI with respect to the uniform distribution. The proof of this result is exactly the same as Theorem 3.1 in [1].

Also, mimicking Definition 1 one can define a local approximated version: indeed, a set of permutations \mathscr{S} is locally (ε, k) -MWI, $k \ge 1$, if for every subset X of size at most $k, \tau \in \mathscr{S}$ and for every $x \in X, y \in \tau(X)$ we have that

$$\frac{1}{|X|(1+\varepsilon)|} \le \frac{|\{\pi \in \mathscr{S} \mid \pi(X) = \tau(X), \pi(x) = y\}|}{|\{\pi \in \mathscr{S} \mid \pi(X) = \tau(X)\}|} \le \frac{1}{|X|(1-\varepsilon)|}$$

Clearly, if \mathscr{S} is a locally (ε, k) -MWI family then \mathscr{S} is (ε, k) -MWI with respect to any linear order, see the last paragraph of the proof of Theorem 1. A

permutation group G which is locally (ε, k) -MWI for any $\varepsilon < 1$ is k-MWI, by the equivalence of (a) and (b) in Theorem 2.

Finally, we remark that every elementary abelian 2-group *G*, acting regularly, is $(\frac{1}{3},3)$ -MWI with respect to any order. For take a 3-set $X = \{\alpha, \beta, \gamma\}$, and let $\delta \in \Omega$ be the point such that the stabilizer G_Y of $Y = \{\alpha, \beta, \gamma, \delta\}$ has order 4. It is easy to prove that for every $\sigma \in G$ we have

$$|\{\pi \in G_Y \mid \min \sigma \pi(X) = \sigma \pi(\alpha)\}| \in \{1, 2\}.$$

Summing over a transversal of G_Y in G we have that G is $(\frac{1}{3}, 3)$ -MWI with respect to any linear order. The size of G is $n = |\Omega|$; a group which is 3-MWI with respect to any order has size at least n(n-1)/2. On the other hand, this group is not locally $(\varepsilon, 3)$ -MWI for any $\varepsilon < 1$, since the stabiliser of a 3-set acts trivially on it.

References

- V. Bargachev, Some properties of min-wise independent families and Groups of permutations, *Zap. Nauchn. Sen. S.-Peterburg. Otdel. Mat. Inst. Steklov* 316 (2004), 30–41, 224–225.
- [2] V. Bargachev, personal communication.
- [3] A. Z. Broder, M. Charikar, A. M. Frieze and M. Mitzenmacher, Min-wise independent permutations, *J. Comput. Syst. Sci.* **60**, (2000), 630–659.
- [4] J.D.Dixon and B.Mortimer, Permutation Groups, Springer, (1996).
- [5] C. Franchi and M. Vsemirnov, Min-wise independent groups, *European Jour*nal of Combinatorics 24, (2003), 630–659.
- [6] J. Saxl, On multiplicity-free permutation representations, in *Finite Geometries and Designs* (ed. P. J. Cameron, J, W. P. Hirschfeld and D. R. Hughes), pp. 337–353, London Math. Soc. Lecture Notes 49, Cambridge Univ. Press, Cambridge, 1981.

G	Condition	(Ω ,k)
$\mathrm{Alt}\Omega \leq G \leq \mathrm{Sym}\Omega$	$ \Omega \ge 4$	$(\mathbf{\Omega} , \mathbf{\Omega})$
M_{12}		(12,6)
<i>M</i> ₂₄		(24,6)
<i>M</i> ₁₁		(11,5) or $(12,4)$
<i>M</i> ₂₃		(23,5)
$M_{22} \leq G \leq \operatorname{Aut}M_{22}$		(22,4)
$PSL(n,q) \le G \le P\GammaL(n,q)$	$n \ge 3$	$((q^n-1)/(q-1),3)$
$\operatorname{PGL}(2,q) \le G \le \operatorname{P\Gamma L}(2,q)$	q eq 4, 5, 7	(q+1,4)
$\mathrm{PSL}(2,q) \leq G \leq \mathrm{P}\Sigma\mathrm{L}(2,q)$	q eq 4,7	(q+1,3)
$PSL(2,7) \le G \le PGL(2,7)$		(8,4)
PGL(2,5)		(6,6)
PSL(2,11)		(11,3)
Alt(7)		(15,3)
HS		(176,3)
Co ₃		(276,3)
$\operatorname{Sp}(2d,2)$	$d \ge 3$	$(2^{2d-1}+2^{d-1},3)$
$\operatorname{Sp}(2d,2)$	$d \ge 3$	$(2^{2d-1}-2^{d-1},3)$
$PGU(3,q) \le G \le P\Gamma U(3,q)$		$(q^3+1,3)$
$A\Gamma L(1,q)$	q = 3, 8	(q, 3)
$ASL(n,q) \le G \le A\Gamma L(n,q)$	$q = 3, 4; n \ge 2$	$(q^{n},3)$
ASL(n,2)	$n \ge 2$	$(2^{n},4)$
$A\SigmaL(n,8) \leq G \leq A\GammaL(n,8)$	$n \ge 2$	$(8^n, 3)$
$V \rtimes \operatorname{Alt}(6)$		(16,3)
$V \rtimes \operatorname{Alt}(7)$		(16,4)
$V \rtimes \mathrm{PSU}(3,3)$		(64,3)
$V times G_2(q) riangleq G$	q = 2, 4	$(q^6,3)$
$V times (G_2(8) \cdot C) \trianglelefteq G$		(8 ⁶ ,3)
$V times \operatorname{Sp}(2d,q) \trianglelefteq G$	$q = 2, 3, 4; d \ge 3$	$(q^{2d}, 3)$
$V \rtimes (\operatorname{Sp}(2d, 8) \cdot C) \trianglelefteq G$	$d \ge 3$	$(8^{2d},3)$

Table 1: The *k*-MWI groups with respect to any order ($k \ge 3$)