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Abstract

A set of permutations .¥ on a finite linearly ordered set Q is said to be
k-min-wise independent, k-MWI for short, if Pr(min(X) = n(x)) = 1/|X|
for every X C Q such that |X| < k and for every x € X. (Here 7(x) and 7(X)
denote the image of the element x or subset X of € under the permutation
7, and Pr refers to a probability distribution on ., which we take to be the
uniform distribution.) We are concerned with sets of permutations which are
k-MWTI families for any linear order. Indeed, we characterize such families
in a way that does not involve the underlying order. As an application of
this result, and using the Classification of Finite Simple Groups, we deduce
a complete classification of the k-MWI families that are groups, for k > 3.

1 Introduction

We let SymQ and AltQ denote the symmetric group and the alternating group
on the set Q respectively. If k is a natural number then Sym(k) will denote the
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symmetric group on the set {1,...,k}. We denote by 7(x) or 7w(X) the image of
the element x or subset X under the permutation 7. If G is a permutation group on
the set Q and X is a subset of Q then Gx denotes the set stabilizer of X in G, i.e.
Gx ={g€G|g(X)=X}.If <isalinear order in Q and X is a subset of Q then
we shall denote by min< X the minimal element of X in (€, <). Moreover, in the
case that o < 8 and o # B we will write o < . If o is a permutation in Q then
it defines a linear order <4, where @ <4 B if and only if 6! () < 6~!(B). The
minimum element of X with respect to <, will be denoted by min<_(X).

Let . be a set of permutations of Q, Pr be a probability distribution on .%
and k be a natural number. . is called a k-min-wise independent family, k-MWI

for short, if
1

x|

for any X C Q such that |X| < k and for any x € X. This definition was motivated
by applications in computer science. In fact such a family is important in algo-
rithms used in practice by software to find duplicate documents, see [3]. Later,
such sets were applied in other contexts such as derandomization of algorithms.
We say that G is a k-MWI group if G is a k-MWI family and G is a permutation
group of Q.

In this paper we consider exclusively k&-MWI families . for the uniform dis-
tribution. In [1] Theorem 3.1, it has been proved that if G is a k-MWI group with
respect to some probability distribution Pr then G is k-MWI with respect to the
uniform distribution. Therefore dealing with <-MWI groups our assumption is
not at all a restriction.

We begin with a definition.

Pr(minz(X) = m(x))

Definition 1 We say that a set of permutations .% is locally k-MWI, k > 1, if for
every subset X of size at most k, T € .% and for every x € X, y € 7(X) we have

that
{res|nX)=1(X),n(x) =y} 1

{res|zX)=2X)} x|

Our main result is the following:

Theorem 1 Let .7 be a set of permutations of SymQ and k be a natural number.
S is a k-MWI family with respect to any linear order and with respect the uniform
distribution if and only if . is locally k-MWI.



As a consequence of this theorem we prove a complete classification of the
k-MWI groups with respect to any linear order in the underlying set €, for k > 3.

In the next section we give the proof of Theorem 1. Then we outline the
classification of groups with this property, and discuss some further directions.

2 Proof of Theorem 1

Let Q and . be as in the statement of the theorem. First we prove the forward
direction. So suppose that . is k-MWI with respect to any linear ordering of Q.
Without loss of generality we may assume that Q = {1,...,n}.

Choose h <k.LetA={l,...,h},B={2,...,h},andset. 7 ={X CQ||X|=
h—1}. Now define a non-simple bipartite graph I': the vertex set of I is QU .7
for each w € ., there is an edge joining (1) € Q to w(B) € .Z.

For 1€ .7,i € A, and Y C A, let us denote by fz(i,Y) the number of edges
(i,X) of I"such that XN 7(A) =Y, where i € T(A) and Y C 7(A).

Fix 7 in ., and pick o in Sym(h) (the subgroup of Sym(n) fixing {h +
l,...,n} pointwise) and to (i) in T(A). The number of permutations 7 in .%
having (1) = 70(i) as <;s-minimum of the set 7(A) is the number of edges
(to(i),70(X)) in I such that 70 (i) <s T0(X). By definition of <4, this means
i <X, and, as i € A, this is equivalent to i < X NA. Summing, we have

{7 € |mine, n(A)=n(l)=10()}|= )  fu(t0(i),T0(Y)).
YC{it1,....h}

Now, .7 is a k-MWI family with respect to any linear order on Q. Therefore
we have

% = {mne.|minc_7m(A)=mx(1)}

h
=Y Y flrol).or)

i=1YC{i+1,...h}
+l{m e # | mine,, w(4) = (1), 2(1) ¢ T(A)}]. (D)

We claim that the second summand in (1) does not depend on ¢ € Sym(#k). In-
deed, let 7 be a permutation in .’ such that min<_ w(A) = w(1) and 7(1) ¢ 7(A).
We get min<, 7~ !'7(A) =t~ 'x(1) and 7~ '7(1) ¢ A. Now, o is a permutation sta-
bilizing the set A and acting trivially on Q\ A; therefore we have min< 7~ ! 7(A) =

7= 17(1). This proves our claim. In particular, from equation (1) we have that
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Qo)=), )  filro(i),to(Y)) )
i=1YC{i+1,...,h}
is a constant that does not depend on the choice of ¢ in Sym(h).

We claim that f;(7(i),7(Y)) = fz(t0(i),t0(Y)) for every ¢ € Sym(h) such
that o(Y U{i}) =Y U{i}. We prove this by induction on |Y|. Assume |Y|= 1.
Let 1 <i< j<hand o be a permutation of Sym(%) mapping i into 2 — 1 and j
into h. Using the definition of I" we get

0=0(0)—Q((h—1,h)o) = fe(7(i),{7(j)}) = fe(2()), {z(D)}).

Therefore f:(7(i),{7(j)}) = fz(z(j),{7(i)}). Assume the result for |[Y|=1—1
and let us prove it for |Y|=1. Let 1 <ij;; <---<ip <ij < hand o be a permuta-
tion mapping i; into 4 — j+ 1. Consider the permutation § = (h—1,...,h—1, h).
Now, using the inductive hypothesis we have

0 = Q(o)-Q(no)
h
= Y Y (flwoli).to(¥) ~ fe(tno(i). mo(Y)))

i 1Y C{h=1+1,...h}
= fo(tlirg1),T({irs - 10 })) = fo(2(in), Tin—1, - - i1, i })-

Similarly, using n’=/+!

fe(2(i), (Y = {ij}) = fe(T(ier), (Y = {irg1}))

for every j, where Y = {ij11,...,i1}.

Now we are ready to prove the forward implication in the theorem. By the
previous discussion, f(7(1),7(B)) = f(to(1),t0(B)) for every ¢ € Sym(h).
This proves that, for every x in 7(A), the number of elements in . such that
(1) =xand w(A) = 7(A) equals the number of elements such that (1) = 7(1)
and w(A) = 7(A). Therefore we are done.

rather than 717, we have

For the reverse implication, assume that .% is locally k-MWTI. Let & < k and
let X be an A-set of Q and x € X. Let us denote by X the set {n(X) | # € ./ }. We
have

Hr e |minn(X)=n(x)}| = YZ;:H?rE&” | #(X) =Y,minY = n(x)|}
{re s |zX) =Y} _ |7
yzez 24 CXT
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so the theorem has been proved. We note that this direction of the proof was given
in [5], Lemma 2, in the case where .% is a group.

3 A consequence of Theorem 1

Corollary 1 Let G be a finite permutation group on the set Q. Then G is a k-MWI
group with respect to any linear order in Q if and only if for every subset X of Q
of size at most k we have that Gy is transitive on X.

Proof This is immediate from Theorem 1.

We note that if, for every subset X of Q of size k, the group Gy is transitive on
X, then G is (k — 1)-homogeneous. In fact, let A and B be (k— 1)-sets. Assume
that ANB is a (k—2)-set. Then A and B lie in the same G-orbit. For if X =AUB
then A = X\{b} and B = X\{a}, for some a € A and b € B. Now, X is a k-set, so
by hypothesis, Gx contains an element mapping « into b, and so, A into B. With
an easy induction on |[A N B| and with a connectedness argument we get that all
(k — 1)-sets are in the same orbit.

This remark allow us to get the following classification.

Theorem 2 Let G be a finite permutation group on the set Q and let k be a positive
integer with k > 3. Then the following conditions are equivalent:

(a) G is a k-MWI group with respect to any linear order on ;
(b) Gx is transitive on X for any subset X of Q with |X| < k;

(c) G is one of the groups from Table 1.

Proof (Sketch) Corollary 1 shows that (a) and (b) are equivalent. We have to
show that (b) and (c) are equivalent.

Assume that (b) holds. Then G is h-homogeneous for any & < k (in particular
G is 2-homogeneous). Now, apart known exceptions, if G is a hi-homogeneous
group with degree n, for h < n/2, then G is h-transitive. The list of all possible
exceptions can be found in [4]. Thus the proof of Theorem 2 is a case-by-case
analysis among the list of 2-transitive groups and the list of groups in [4].

In this analysis, the following remark is useful.



Suppose that G is a t-transitive permutation group on G and that all
G, ... o,-0rbits except {o }, ..., {04} have different size. Then Gx is
transitive on X for any subset X of Q with |X| <t+ 1. In particular
Gis (t+1)-MWL

Using this tool, we can deal with the almost simple groups. For instance,
M»; is 3-transitive and the stabilizer of four distinct points has orbits of size
1,1,1,3,16. Therefore, M5, is 4-MWI with respect to any linear order. Further-
more, M»; is not 4-homogeneous, therefore M, can not be 5-MWI with respect
to all linear orders.

The analysis of the affine 2-transitive groups requires other remarks. We
present and prove the main ingredient of this classification.

Let G be an affine 2-transitive group on'V, V an n-dimensional I ,-
vector space, q = p™. If G is a 3-MWI group with respect to any
linear order then g = 2,3,4 or g = 8. In particular, if ¢ = 8 then G
contains the Galois group of Fs.

To prove this, assume that ¢ > 2. By Corollary 1, Gx is transitive on X for any
X CV of size 3. Fix (e;); a basis of V, a € F,\{0,1} and X = {0,e;,ae;}. The
group Gy is transitive on X if and only if it contains an element ¢ : & — AEC +v
such that ¢@(0) = e}, ¢(e;) = ae; and ¢(ae;) = 0. This proves that for all a €
F,\{0,1} there exists o € Aut(F,) such that a®"! —a® + 1 = 0. In particular
any a € F,\{0,1} is a root of X?"*! — X?" 41 for some i. This yields that the
characteristic of I, is either 2 or 3.

Assume that ¢ = 3. The equation X>'*! — X 4 1 has at most 3¢ + 1 roots.
Therefore summing on all the equations we have 2?1:_()1(3i + 1) > 3™ —2. This
happens if and only if m = 1.

Consider the case g = 2™. Now, let us study the solutions of the equation
X2 X2 4 1inF,. Wehave 0=X2"+X =X 2(X2" 124 x = x2(x¥" +
1)+X =X+X"'+X2 ifand only if X3+ X +1=0. Therefore X2 ' 1+ X +1
has at most 3 solutions in I,,. This yields Z;":_Oz (2/+1)+43 > 2™ —2. This happens
if and only if ¢ = 2,4 or ¢ = 8. Now the remaining part is easy to achieve.

Further details of the classification may be obtained from the second author.
In Table 1, C denotes the Galois group of g over [».

For k = 2, no complete classification exists. The groups which are 2-MWTI for
every linear order are just those transitive groups for which every pair of points
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is interchanged by some group element. These groups are sometimes referred to
as generously transitive, and have the property that the permutation character is
multiplicity-free (so they are examples of Gelfand pairs), in which all irreducible
constituents are real. See Saxl [6], for example.

4 Concluding remarks

For practical purposes it is often necessary to get a small k-MWI family. In other
words, for fixed Q and &, the complexity of the algorithms using MWI families is
strictly related to the size of the family. So clearly the problem consists in finding
a compromise between k and the size of the family .. From Theorem 1 we
realize that if the family has to be k-MWI with respect to any linear order then the
actual size has to be comparatively big. In particular, it is worth noting that if G
is a k-MWI group with respect to any linear order and k > 7 then G has to contain
the alternating group Alt(Q), see Theorem 2. Therefore it is reasonable to look
at particular orders of the underlying set. Bargachev [2] has shown that there are
4-MWI groups of degree n and size O(n?). From Table 1 we see that the order
of a 4-MWI group with respect to any linear order and degree n has to be at least
Q(n?).

Next we present a variant of this problem. We say that the family .7 is (&,k)-

MWI if
1 1

RTs Pr(min7(X) = 7(x)) < X[(1I—¢)

for every subset X of Q of size at most k and for every x € X. Here k is a positive
integer and € > 0. One might hope that for “small” values of € the variety of
families that arise is considerably richer than the previous ones. Also, we remark
that a group G is (&, k)-MWI with respect to some probability distribution Pr then
G is (&,k)-MWI with respect to the uniform distribution. The proof of this result
is exactly the same as Theorem 3.1 in [1].

Also, mimicking Definition 1 one can define a local approximated version:
indeed, a set of permutations . is locally (&,k)-MWI, k > 1, if for every subset
X of size at most k, T € . and for every x € X, y € 7(X) we have that

| _res ) =) a0 =y} _ |
X[(te) = [res[aX)=cx))]  KI(1-e)

Clearly, if .7 is a locally (&,k)-MWI family then .7 is (&,k)-MWI with re-
spect to any linear order, see the last paragraph of the proof of Theorem 1. A
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permutation group G which is locally (&,k)-MWI for any € < 1 is k-MWTI, by the
equivalence of (a) and (b) in Theorem 2.

Finally, we remark that every elementary abelian 2-group G, acting regularly,
is (3,3)-MWI with respect to any order. For take a 3-set X = {a, 8,7}, and let
0 € Q be the point such that the stabilizer Gy of Y = {a, 8,7, 0} has order 4. It
is easy to prove that for every ¢ € G we have

{m € Gy |minon(X)=on(a)}| €{1,2}.

Summing over a transversal of Gy in G we have that G is (%, 3)-MWI with respect
to any linear order. The size of G is n = |Q[; a group which is 3-MWI with respect
to any order has size at least n(n — 1)/2. On the other hand, this group is not
locally (&,3)-MWI for any € < 1, since the stabiliser of a 3-set acts trivially on it.
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Table 1: The k-MWI groups with respect to any order (k > 3)

G Condition (12],k)

AltQ < G < SymQ Q| >4 (1€}, 1Q))

M, (12,6)
Moy (24,6)
M (11,5) 0r(12,4)
Ma3 (23,5)

May < G < AutMp, (22,4)
PSL(n,q) < G <PI'L(n,q) n=3 ((¢"—1)/(g—1),3)
PGL(2,9) <G <PI'L(2,q) q#4,5,7 (g+1,4)
PSL(2,9) < G <PXL(2,q) q#4,7 (g+1,3)
PSL(2,7) < G <PGL(2,7) (8,4)

PGL(2,5) (6,6)
PSL(2,11) (11,3)
Alt(7) (15,3)
HS (176,3)
Cos (276,3)
Sp(2d,2) d>3 (22-1 42471 3)
Sp(2d,2) d>3 (22d-1 _2d-13)
PGU(3,q9) < G <PI'U(3,q) (¢°+1,3)
AI'L(1,q) q=3,8 (¢,3)
ASL(n,q) <G<AI'L(n,q) | ¢g=3,4n>2 (4",3)
ASL(n,2) n>2 (2",4)
AXL(n,8) <G < AI'L(n,8) n>?2 (8",3)
V x Alt(6) (16,3)
V % Alt(7) (16,4)
V x PSU(3,3) (64,3)
VxGy(q) 4G q=2,4 (¢°,3)
V x(G2(8)-C)4G (85,3)
V xSp(2d,q) <G g=2,3,4,d >3 (¢°%,3
V % (Sp(2d4,8)-C) < G d>3 (8%24,3)




