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Abstract

A set of permutations S on a finite linearly ordered set Ω is said to be
k-min-wise independent, k-MWI for short, if Pr(minπ(X) = π(x)) = 1/|X |
for every X ⊆Ω such that |X | ≤ k and for every x ∈ X . (Here π(x) and π(X)
denote the image of the element x or subset X of Ω under the permutation
π , and Pr refers to a probability distribution on S , which we take to be the
uniform distribution.) We are concerned with sets of permutations which are
k-MWI families for any linear order. Indeed, we characterize such families
in a way that does not involve the underlying order. As an application of
this result, and using the Classification of Finite Simple Groups, we deduce
a complete classification of the k-MWI families that are groups, for k ≥ 3.

1 Introduction
We let SymΩ and AltΩ denote the symmetric group and the alternating group
on the set Ω respectively. If k is a natural number then Sym(k) will denote the
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symmetric group on the set {1, . . . ,k}. We denote by π(x) or π(X) the image of
the element x or subset X under the permutation π . If G is a permutation group on
the set Ω and X is a subset of Ω then GX denotes the set stabilizer of X in G, i.e.
GX = {g ∈ G | g(X) = X}. If ≤ is a linear order in Ω and X is a subset of Ω then
we shall denote by min≤X the minimal element of X in (Ω,≤). Moreover, in the
case that α ≤ β and α 6= β we will write α < β . If σ is a permutation in Ω then
it defines a linear order ≤σ , where α ≤σ β if and only if σ−1(α)≤ σ−1(β ). The
minimum element of X with respect to ≤σ will be denoted by min≤σ

(X).
Let S be a set of permutations of Ω, Pr be a probability distribution on S

and k be a natural number. S is called a k-min-wise independent family, k-MWI
for short, if

Pr(minπ(X) = π(x)) =
1
|X |

for any X ⊆ Ω such that |X | ≤ k and for any x ∈ X . This definition was motivated
by applications in computer science. In fact such a family is important in algo-
rithms used in practice by software to find duplicate documents, see [3]. Later,
such sets were applied in other contexts such as derandomization of algorithms.
We say that G is a k-MWI group if G is a k-MWI family and G is a permutation
group of Ω.

In this paper we consider exclusively k-MWI families S for the uniform dis-
tribution. In [1] Theorem 3.1, it has been proved that if G is a k-MWI group with
respect to some probability distribution Pr then G is k-MWI with respect to the
uniform distribution. Therefore dealing with k-MWI groups our assumption is
not at all a restriction.

We begin with a definition.

Definition 1 We say that a set of permutations S is locally k-MWI, k ≥ 1, if for
every subset X of size at most k, τ ∈ S and for every x ∈ X , y ∈ τ(X) we have
that

|{π ∈S | π(X) = τ(X),π(x) = y}|
|{π ∈S | π(X) = τ(X)}|

=
1
|X |

.

Our main result is the following:

Theorem 1 Let S be a set of permutations of SymΩ and k be a natural number.
S is a k-MWI family with respect to any linear order and with respect the uniform
distribution if and only if S is locally k-MWI.
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As a consequence of this theorem we prove a complete classification of the
k-MWI groups with respect to any linear order in the underlying set Ω, for k ≥ 3.

In the next section we give the proof of Theorem 1. Then we outline the
classification of groups with this property, and discuss some further directions.

2 Proof of Theorem 1
Let Ω and S be as in the statement of the theorem. First we prove the forward
direction. So suppose that S is k-MWI with respect to any linear ordering of Ω.
Without loss of generality we may assume that Ω = {1, . . . ,n}.

Choose h≤ k. Let A = {1, . . . ,h}, B = {2, . . . ,h}, and set F = {X ⊆Ω | |X |=
h−1}. Now define a non-simple bipartite graph Γ: the vertex set of Γ is Ω∪F ;
for each π ∈S , there is an edge joining π(1) ∈ Ω to π(B) ∈F .

For τ ∈ S , i ∈ A, and Y ⊆ A, let us denote by fτ(i,Y ) the number of edges
(i,X) of Γ such that X ∩ τ(A) = Y , where i ∈ τ(A) and Y ⊆ τ(A).

Fix τ in S , and pick σ in Sym(h) (the subgroup of Sym(n) fixing {h +
1, . . . ,n} pointwise) and τσ(i) in τ(A). The number of permutations π in S
having π(1) = τσ(i) as ≤τσ -minimum of the set π(A) is the number of edges
(τσ(i),τσ(X)) in Γ such that τσ(i) <τσ τσ(X). By definition of≤τσ , this means
i < X , and, as i ∈ A, this is equivalent to i < X ∩A. Summing, we have

|{π ∈S | min≤τσ
π(A) = π(1) = τσ(i)}|= ∑

Y⊆{i+1,...,h}
fτ(τσ(i),τσ(Y )).

Now, S is a k-MWI family with respect to any linear order on Ω. Therefore
we have

|S |
h

= |{π ∈S | min≤τσ
π(A) = π(1)}|

=
h

∑
i=1

∑
Y⊆{i+1,...,h}

fτ(τσ(i),τσ(Y ))

+ |{π ∈S | min≤τσ
π(A) = π(1),π(1) /∈ τ(A)}|. (1)

We claim that the second summand in (1) does not depend on σ ∈ Sym(h). In-
deed, let π be a permutation in S such that min≤τσ

π(A) = π(1) and π(1) /∈ τ(A).
We get min≤σ

τ−1π(A) = τ−1π(1) and τ−1π(1) /∈A. Now, σ is a permutation sta-
bilizing the set A and acting trivially on Ω\A; therefore we have min≤ τ−1π(A) =
τ−1π(1). This proves our claim. In particular, from equation (1) we have that
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Q(σ) =
h

∑
i=1

∑
Y⊆{i+1,...,h}

fτ(τσ(i),τσ(Y )) (2)

is a constant that does not depend on the choice of σ in Sym(h).
We claim that fτ(τ(i),τ(Y )) = fτ(τσ(i),τσ(Y )) for every σ ∈ Sym(h) such

that σ(Y ∪{i}) = Y ∪{i}. We prove this by induction on |Y |. Assume |Y | = 1.
Let 1 ≤ i < j ≤ h and σ be a permutation of Sym(h) mapping i into h− 1 and j
into h. Using the definition of Γ we get

0 = Q(σ)−Q((h−1, h)σ) = fτ(τ(i),{τ( j)})− fτ(τ( j),{τ(i)}).

Therefore fτ(τ(i),{τ( j)}) = fτ(τ( j),{τ(i)}). Assume the result for |Y | = l− 1
and let us prove it for |Y |= l. Let 1≤ il+1 < · · ·< i2 < i1 ≤ h and σ be a permuta-
tion mapping i j into h− j +1. Consider the permutation η = (h− l, . . . ,h−1, h).
Now, using the inductive hypothesis we have

0 = Q(σ)−Q(ησ)

=
h

∑
i=h−l

∑
Y⊆{h−l+1,...,h}

( fτ(τσ(i),τσ(Y ))− fτ(τησ(i),τησ(Y )))

= fτ(τ(il+1),τ({il, . . . , l1}))− fτ(τ(il),τ{il−1, . . . , i1, il+1}).

Similarly, using η l− j+1 rather than η , we have

fτ(τ(i j),τ(Y −{i j})) = fτ(τ(il+1),τ(Y −{il+1}))

for every j, where Y = {il+1, . . . , i1}.
Now we are ready to prove the forward implication in the theorem. By the

previous discussion, f (τ(1),τ(B)) = f (τσ(1),τσ(B)) for every σ ∈ Sym(h).
This proves that, for every x in τ(A), the number of elements in S such that
π(1) = x and π(A) = τ(A) equals the number of elements such that π(1) = τ(1)
and π(A) = τ(A). Therefore we are done.

For the reverse implication, assume that S is locally k-MWI. Let h ≤ k and
let X be an h-set of Ω and x ∈ X . Let us denote by Σ the set {π(X) | π ∈S }. We
have

|{π ∈S | minπ(X) = π(x)}| = ∑
Y∈Σ

|{π ∈S | π(X) = Y,minY = π(x)|}

= ∑
Y∈Σ

|{π ∈S | π(X) = Y}|
|X |

=
|S |
|X |

,
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so the theorem has been proved. We note that this direction of the proof was given
in [5], Lemma 2, in the case where S is a group.

3 A consequence of Theorem 1
Corollary 1 Let G be a finite permutation group on the set Ω. Then G is a k-MWI
group with respect to any linear order in Ω if and only if for every subset X of Ω

of size at most k we have that GX is transitive on X.

Proof This is immediate from Theorem 1.

We note that if, for every subset X of Ω of size k, the group GX is transitive on
X , then G is (k− 1)-homogeneous. In fact, let A and B be (k− 1)-sets. Assume
that A∩B is a (k−2)-set. Then A and B lie in the same G-orbit. For if X = A∪B
then A = X\{b} and B = X\{a}, for some a ∈ A and b ∈ B. Now, X is a k-set, so
by hypothesis, GX contains an element mapping a into b, and so, A into B. With
an easy induction on |A∩B| and with a connectedness argument we get that all
(k−1)-sets are in the same orbit.

This remark allow us to get the following classification.

Theorem 2 Let G be a finite permutation group on the set Ω and let k be a positive
integer with k ≥ 3. Then the following conditions are equivalent:

(a) G is a k-MWI group with respect to any linear order on Ω;

(b) GX is transitive on X for any subset X of Ω with |X | ≤ k;

(c) G is one of the groups from Table 1.

Proof (Sketch) Corollary 1 shows that (a) and (b) are equivalent. We have to
show that (b) and (c) are equivalent.

Assume that (b) holds. Then G is h-homogeneous for any h < k (in particular
G is 2-homogeneous). Now, apart known exceptions, if G is a h-homogeneous
group with degree n, for h ≤ n/2, then G is h-transitive. The list of all possible
exceptions can be found in [4]. Thus the proof of Theorem 2 is a case-by-case
analysis among the list of 2-transitive groups and the list of groups in [4].

In this analysis, the following remark is useful.
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Suppose that G is a t-transitive permutation group on G and that all
Gα1,...,αt -orbits except {α1}, . . . ,{αt} have different size. Then GX is
transitive on X for any subset X of Ω with |X | ≤ t + 1. In particular
G is (t +1)-MWI.

Using this tool, we can deal with the almost simple groups. For instance,
M22 is 3-transitive and the stabilizer of four distinct points has orbits of size
1,1,1,3,16. Therefore, M22 is 4-MWI with respect to any linear order. Further-
more, M22 is not 4-homogeneous, therefore M22 can not be 5-MWI with respect
to all linear orders.

The analysis of the affine 2-transitive groups requires other remarks. We
present and prove the main ingredient of this classification.

Let G be an affine 2-transitive group on V , V an n-dimensional Fq-
vector space, q = pm. If G is a 3-MWI group with respect to any
linear order then q = 2,3,4 or q = 8. In particular, if q = 8 then G
contains the Galois group of F8.

To prove this, assume that q > 2. By Corollary 1, GX is transitive on X for any
X ⊆ V of size 3. Fix (ei)i a basis of V , a ∈ Fq\{0,1} and X = {0,e1,ae1}. The
group GX is transitive on X if and only if it contains an element ϕ : ξ 7→ Aξ σ + v
such that ϕ(0) = e1, ϕ(e1) = ae1 and ϕ(ae1) = 0. This proves that for all a ∈
Fq\{0,1} there exists σ ∈ Aut(Fq) such that aσ+1 − aσ + 1 = 0. In particular
any a ∈ Fq\{0,1} is a root of X pi+1 −X pi

+ 1 for some i. This yields that the
characteristic of Fq is either 2 or 3.

Assume that q = 3m. The equation X3i+1 −X3i
+ 1 has at most 3i + 1 roots.

Therefore summing on all the equations we have ∑
m−1
i=0 (3i + 1) ≥ 3m − 2. This

happens if and only if m = 1.
Consider the case q = 2m. Now, let us study the solutions of the equation

X2m−1+1+X2m−1
+1 in Fq. We have 0 = X2m

+X = X−2(X2m−1+1)2+X = X−2(X2m
+

1)+X = X +X−1 +X−2, if and only if X3 +X +1 = 0. Therefore X2m−1+1 +X +1
has at most 3 solutions in Fq. This yields ∑

m−2
i=0 (2i +1)+3≥ 2m−2. This happens

if and only if q = 2,4 or q = 8. Now the remaining part is easy to achieve.
Further details of the classification may be obtained from the second author.

In Table 1, C denotes the Galois group of F8 over F2.

For k = 2, no complete classification exists. The groups which are 2-MWI for
every linear order are just those transitive groups for which every pair of points
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is interchanged by some group element. These groups are sometimes referred to
as generously transitive, and have the property that the permutation character is
multiplicity-free (so they are examples of Gelfand pairs), in which all irreducible
constituents are real. See Saxl [6], for example.

4 Concluding remarks
For practical purposes it is often necessary to get a small k-MWI family. In other
words, for fixed Ω and k, the complexity of the algorithms using MWI families is
strictly related to the size of the family. So clearly the problem consists in finding
a compromise between k and the size of the family S . From Theorem 1 we
realize that if the family has to be k-MWI with respect to any linear order then the
actual size has to be comparatively big. In particular, it is worth noting that if G
is a k-MWI group with respect to any linear order and k ≥ 7 then G has to contain
the alternating group Alt(Ω), see Theorem 2. Therefore it is reasonable to look
at particular orders of the underlying set. Bargachev [2] has shown that there are
4-MWI groups of degree n and size O(n2). From Table 1 we see that the order
of a 4-MWI group with respect to any linear order and degree n has to be at least
Ω(n3).

Next we present a variant of this problem. We say that the family S is (ε,k)-
MWI if

1
|X |(1+ ε)

≤ Pr(minπ(X) = π(x))≤ 1
|X |(1− ε)

for every subset X of Ω of size at most k and for every x ∈ X . Here k is a positive
integer and ε ≥ 0. One might hope that for “small” values of ε the variety of
families that arise is considerably richer than the previous ones. Also, we remark
that a group G is (ε,k)-MWI with respect to some probability distribution Pr then
G is (ε,k)-MWI with respect to the uniform distribution. The proof of this result
is exactly the same as Theorem 3.1 in [1].

Also, mimicking Definition 1 one can define a local approximated version:
indeed, a set of permutations S is locally (ε,k)-MWI, k ≥ 1, if for every subset
X of size at most k, τ ∈S and for every x ∈ X , y ∈ τ(X) we have that

1
|X |(1+ ε)

≤ |{π ∈S | π(X) = τ(X),π(x) = y}|
|{π ∈S | π(X) = τ(X)}|

≤ 1
|X |(1− ε)

.

Clearly, if S is a locally (ε,k)-MWI family then S is (ε,k)-MWI with re-
spect to any linear order, see the last paragraph of the proof of Theorem 1. A
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permutation group G which is locally (ε,k)-MWI for any ε < 1 is k-MWI, by the
equivalence of (a) and (b) in Theorem 2.

Finally, we remark that every elementary abelian 2-group G, acting regularly,
is (1

3 ,3)-MWI with respect to any order. For take a 3-set X = {α,β ,γ}, and let
δ ∈ Ω be the point such that the stabilizer GY of Y = {α,β ,γ,δ} has order 4. It
is easy to prove that for every σ ∈ G we have

|{π ∈ GY | minσπ(X) = σπ(α)}| ∈ {1,2}.

Summing over a transversal of GY in G we have that G is (1
3 ,3)-MWI with respect

to any linear order. The size of G is n = |Ω|; a group which is 3-MWI with respect
to any order has size at least n(n− 1)/2. On the other hand, this group is not
locally (ε,3)-MWI for any ε < 1, since the stabiliser of a 3-set acts trivially on it.
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Table 1: The k-MWI groups with respect to any order (k ≥ 3)

G Condition (|Ω|,k)
AltΩ ≤ G ≤ SymΩ |Ω| ≥ 4 (|Ω|, |Ω|)

M12 (12,6)
M24 (24,6)
M11 (11,5) or (12,4)
M23 (23,5)

M22 ≤ G ≤ AutM22 (22,4)
PSL(n,q)≤ G ≤ PΓL(n,q) n ≥ 3 ((qn−1)/(q−1),3)
PGL(2,q)≤ G ≤ PΓL(2,q) q 6= 4,5,7 (q+1,4)
PSL(2,q)≤ G ≤ PΣL(2,q) q 6= 4,7 (q+1,3)
PSL(2,7)≤ G ≤ PGL(2,7) (8,4)

PGL(2,5) (6,6)
PSL(2,11) (11,3)

Alt(7) (15,3)
HS (176,3)
Co3 (276,3)

Sp(2d,2) d ≥ 3 (22d−1 +2d−1,3)
Sp(2d,2) d ≥ 3 (22d−1−2d−1,3)

PGU(3,q)≤ G ≤ PΓU(3,q) (q3 +1,3)
AΓL(1,q) q = 3,8 (q,3)

ASL(n,q)≤ G ≤ AΓL(n,q) q = 3,4; n ≥ 2 (qn,3)
ASL(n,2) n ≥ 2 (2n,4)

AΣL(n,8)≤ G ≤ AΓL(n,8) n ≥ 2 (8n,3)
V o Alt(6) (16,3)
V o Alt(7) (16,4)

V o PSU(3,3) (64,3)
V o G2(q) E G q = 2,4 (q6,3)

V o (G2(8) ·C) E G (86,3)
V o Sp(2d,q) E G q = 2,3,4;d ≥ 3 (q2d,3)

V o (Sp(2d,8) ·C) E G d ≥ 3 (82d,3)
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