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Abstract

Julius Whiston showed that the size of an independent generating set in
the symmetric grouf, is at mosin— 1. We determine all sets meeting this
bound. We also give some general remarks on the maximum size of an in-
dependent generating set of a group and its relationship to coset geometries

for the group. In particular, we determine all coset geometries of maximum
rank for the symmetric grou§, for n > 6.
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1 Independent generating sets

LetS= (s :i € 1) be a family of elements of a group. ForJ C I, letG; = (5 :
i ¢J); we abbreviate(;‘-{i} to G;. We say thaSis independentf s ¢ G; for all
i € 1. Itis strongly independent, in addition,GyN Gk = Gy k for all J,K C 1.

A family of elements which generat€zis independent if and only if it is a
minimal generating set (that is, no proper subset gene@tes

We let y(G) denote the size of the largest independent generating $&t in
and [/ (G) the size of the largest independent set. Clep(lg) < /(G). Strict
inequality can hold: Whiston [9] gives examples w@h= PSL(2,q).

We also define a relativised version. Ltbe a subgroup oB. If S= (s :
i € 1) a family of elements of5, we say thatS is independent relative to B
s ¢ (B,sj: j #1i), and is arindependent generating set relative taf B1 addition
(B,S) = G. We denote by(G, B) and|/ (G, B) the largest size of an independent
generating set and of an independent set relati& to

We will also have to use another version. Bdbe a group acting on the group
G. Thenp,(G) is the largest size of a family of elements @f none of which
belongs to the subgroup generated by Ahienages of the others; we call such a
setA-independentAlso, pa(G) is the largest size of a-independent generating
set forG.

The first result is not in [8], but Whiston deploys the argument used to prove
it in several places.

Theorem 1.1 Let N be a normal subgroup of a group G. TheBu< u(G/N) +
K (N). Moreover, if N is abelian, then(() < pu(G/N) + p5(N).

Proof Let Sbe an independent generating set@®rLets denote the image of
sin G/N. ThenSgeneratess/N, so there is a subsét of Ssuch thafT is an
independent generating set f8fN. Thus,|T| < u(G/N).

Now, for eachs € S\ T, there is a wordv(s) in the elements o such that
s=w(s). Thus,sw(s)~1 € N. We claim that these elementsidfare independent.
For suppose that

sws)te (uwu)t:iue S\ T\ {s}).

Since eachw(u) belongs to(T), we see thas € (u: u € S\ {s}), a contradiction.
So|S\ T| < Y(N), from which we get

S| <W(G/N) +H(N).



Since this is true for any independent generating seGfathe first statement is
proved.

Now suppose thal is abelian; therG acts onN by conjugation, withN in
the kernel of the action. Now we claim that the elemeswés)~! ¢ N are G-
independent. For suppose that

sws)te (uwu) H9:ueS\T\{s},geG).

Since eachw(u) belongs to(T), and the conjugating elements can be taken to
belong to(T) also, we see thate (u:ue S\ {s}), a contradiction. The proof
concludes as before. m

It follows that, if W(G) = Y/ (G), thenu(G x H) = u(G) +u(H) for any grouH.
(The upper bound comes from the theorem, and the lower bound from the fact that
the union of independent generating set&iandH is an independent generating
set inG x H.) We do not know whether the equatipfiG x H) = pu(G) + p(H)
holds for any pair of groups.

2 Symmetric groups

The main result of [8] asserts that an independent subs®t lods cardinality at
mostn — 1, with equality if and only if it generateS,. Thus,u(S)) = H(S) =
n—1.

We are interested in the structure of independent subseds @if maximum
size. We prove the following theorem. LEtbe a tree om vertices, and 1e§(T)
be the set oh— 1 transpositions %, corresponding to the edgesbf

Theorem 2.1 Let S be an independent generating set fpofsize n— 1, where
n>7. Thenthereisatree T ofl,...,n}, such that one of the following holds:

(a) S=T);
(b) for some elements S(T), we have
S={spu{(st®™ :te S(T)\{s}},
whereg(t) = £1.

Conversely, each of these sets is an independent generating sgt for S
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Note that in case (b), all the elementsS¥xcept the transpositicsare either
3-cycles or double transpositions, and the support of each such element contains
the support ok. The exponent(t) is only necessary st is a 3-cycle.

Proof We prove the converse first. It is well-known that any set of transposi-
tions as in (a) generat&, from which it follows that a set of type (b) is also a
generating set.

In case (a), removing an edge of the tree leaves a graph with two connected
components, and @&\ {s}) is intransitive for alls€ S. In case (b), removal of
the generatofst)¢(t) gives the group generated B¢T) \ {t}; and if the generator
sis removed, then all the others are even permutations and the group they generate
is contained in the alternating group.

We now turn to the forward implication.
LetS= (s :i € |) be an independent generating set@®# S, of sizen— 1.
From [8], we get the information that each subgr@ips one of the following:

(a) intransitive;
(b) transitive but imprimitive, with blocks of size 2;
(c) the alternating group,.

We now examine these cases in turn.

First we show that transitive but imprimitive subgroups cannot occur for .
For such a subgroup is contained ifi 2S,,. We actually show that a transitive
subgrouH of 2™ : Sy hasy(H) < 2m—2 form > 4.

LetH be a transitive subgroup of2 Sy, with p(H) = 2m— 2, and letN be the
kernel of the homomorphism t&,. We haveu(H/N) < m—1 andp,(N) <m
(since the action is nontrivial unlegd| < 2), while y(H) = 2m—2. So we must
haveH /N = Sy. Then it is easy to see thaf(N) <2, and so h—2 = p(H) <
m+ 1, whencan < 3.

Now if Gj = Ay, thens; is an even permutation for ajl# i; sos must be an
odd permutation. Henc€; falls under case (a) (intransitive) for gll= i. We
conclude that all or all but one of the subgroupsare intransitive. Choose the
notation so thaGo, ..., Gn_1 are intransitive.

We construct a grapf, having an edge; for each generatas;, as follows.
Let &g = {x1,y1}, wherex; is any point moved by, andy; = x3s1. Fori > 1,
the subgroufgs; is intransitive, and s§ must map some poing to a pointy; in a
differentG;-orbit; choose any such pair and &t= {x;, Vi }.
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We claim thafT is atree. For, iff # i, theng;j joins points in the sam@;-orbit;
SO Nno circuit containsg;, as such a circuit would have to have at least two edges
between differenG;j-orbits. Thusg; is the only edge which could be contained
in a circuit. But no circuit contains a single edge! Since therenard edges and
nvertices,T is a tree, as claimed.

Next, we claim that, foi # 1, § is a transposition, a 3-cycle, or a double
transposition; moreover, in the second and third case, its support coatdars
ey is a cycle ofs in the third case). The edge= {X;,Vi} has its ends in different
Gi-orbits. Letu andv be any points in th&;-orbits ofx; andy; respectively, and
suppose that some power §fmapsu to v. There is a path from; to u, and a
path fromy; tov, in the treel. Suppose that the union of these two paths contains
some edgej = {xj,y;} for j # 1. Then we can magj to y; using only powers
of 5 together with possibly generators other tlsanBut this contradicts the fact
thatx; andy; lie in different orbits ofG;. So in this case, we conclude that the set
{x,Vi,u,Vv} contains at most three points and supports a cycte dfit has three
points then it containe;.

The same argument shows that the only possibility for two painisn the
sameG;-orbit and in the same cycle &f is that they are the ends of the edge
So the claim is proved.

Note that the edge; is uniquely determined by if 5 is not a transposition,
since it must join two points in the same cycle and in the s&mnerbit. This
implies thats; is a transposition.

If all the subgroup<s; are intransitive, then any generator could be chosen to
bes;. So all the generators are transpositions, and we have case (a) of the theorem.
Suppose, on the other hand, ti@tis the alternating group. Then the above
argument shows thaj is a transposition, while all the other generatgrare 3-
cycles or double transpositions such thgg is a transposition. Thus case (b) of
the theorem holds. =

Corollary 2.2 (a) The number of independent generating sets of type (a) in the
Theorem is A 2.

(b) The number of independent generating sets of type (b) in the Theorem is
n"2(n— 1); if we don't distinguish between&cycle and its inverse, then
the number i) (n—1)"-3.

Proof (a) The generating sets of type (a) are clearly bijective with the labelled
trees om vertices.



(b) Let Sbe a generating set of type (b). The tree associated Svigthnot
uniquely determined. I§= (a,b,c) is a 3-cycle inS, then one of the three trans-
positions with support contained i, b,c}, say(a,b), is in S, and we could
choose eithefa,c} or {b,c} as the edge associated whWe can normalise by
choosing{b,c} in this case (that is, a vertex in the 2-cycle whose image usider
not in the 2-cycle). There is no ambiguity for double transpositions. So each such
generating set is associated with a tree having one distinguished edge.

If we do not distinguish between 3-cycles and their inverses, then we cannot
normalise as above, so there are several trees associated with the set. But all
these trees become identical when the edge corresponding to the transposition is
contracted. So the number of generating sets is equal to the number of choices for
the transposition multiplied by the number of treesenl vertices. =

Corollary 2.3 For n > 7, any independent generating set for & size n— 1 is
strongly independent.

Proof Let Sbe an independent generating set of sizel. Suppose first th&é
consists of transpositions.
The groupG; is the direct product of the symmetric groups on the connected
components ofj, the forest obtained by deleting fromthe edges corresponding
to sj for j € J. We claim first thatG; N Gk is the direct product of symmetric
groups on the non-empty intersections of component§;and Tx. This just
asserts that, if we have two partitions of a set, then a permutation preserves every
part of both partitions if and only if it preserves all their intersections; this is clear.
So to finish, we have to show that a non-empty intersection of connected com-
ponents offy andTk is a connected component ®f k. Suppose that two points
X,y lie in such an intersection. Then the (unique) path froto y in T uses no
edge labelled by an element &#fand uses no edge labelled by an elemeri of
so it is a path inly_k, as required.
Now suppose that case (b) of the Theorem occurs. Fodany{2,...,n—
1}, let T; be the graph obtained frof by deleting the edges corresponding to
elements ofl. It is now easy to see that

(i) Gy is the direct product of the symmetric groups on the connected components
of Ty;

(ii) Gyuqay is the subgroup of even permutations3p.

Now the argument proceeds as beforea
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Corollary 2.4 Forn>7,ifB< §,and S,,B) =n—1, then B=1.

Proof LetS=(s:i€l)beanindependentgenerating set relative, tof sizen—

1, and lefG; = (sj : j #i) fori € |. By Whiston’s theorem (stated at the beginning
of section 2),Sis an independent generating set &r From Theorem 2.1G;

is a maximal subgroup d, except in the case where the removal of the eglge
breaks the tree into two parts of equal sizeGifis maximal, therB < G;, since
otherwise(B,Gj) = S,, contradicting independence. Takifgsuch thate; is a
pendant edge, we had® = S,_1, so thatB fixes a point. Thus, even in the case
whenG; is not maximal, we havB < G;. Then

n—1

B<()Gi=Gp. n1=(0=1
i—1

where the equality in the second place follows from Corollary 2.

Remark It is possible, with a combination of hand and computer calculation
(the latter usin@gsAP [6]), to determine the independent generating sets ofsize
1inS, forn<6 as well.

The theorem as stated holds form¥ 4,6. Forn= 6, as well as the sets given
in the theorem, we have their images under the outer automorphiSs tfese
involve products of two or three transpositions and two 3-cyclesnko#, there
is one type not appearing in the theorem, nan¢ly 2), (1,3),(1,4)(2,3)}.

All are strongly independent except for the last examplenfer4.

We end this section with a question. Our main theorem depends on the theo-
rem of Whiston, and hence on the Classification of Finite Simple Groups. Whiston
uses the Classification to establish the followingGifs an almost simple proper
subgroup of5, (resp.Ay), thenu(G) < n—2 (resp(G) < n— 3). Can this asser-
tion be proved without using the Classification?

3 Geometries

Let G be a group, andG; : i € |) a family of subgroups ofs. for J C I, let
Gy =jesGj. Suppose that the following three conditions hold:

(G1) The subgroup&;, for J C I, are all distinct.
(G2)IfJC 1 and[J] < [I| -1, thenGy = (Gyupy - ke T\ J).
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(G3) If a family (Gjx; : j € J) of right cosets have pairwise non-empty intersec-
tion, then there is an element Gflying in all these cosets.

Thecoset geometry G, (G : i € 1)) has type sel; the varieties of typé are the
right cosets of5;, and two varieties are incident if their intersection is non-empty.
If conditions (G1)—(G3) hold, then this is a firm and residually connected geome-
try, andG acts flag-transitively on it by right multiplication. Conversely, any firm
and residually connected geometry on which the gr@uacts flag-transitively
arises as such a coset geometry.

The rank of the coset geometry|ig. ForJ C I, the residue of the fla¢G; :
j € J) is isomorphic to the coset geometi@,, (Gy ¢k - k€ 1\J)). TheBorel
subgroupof the geometry is the subgroup

B=G =[G
i€l
See [1] for more explanation of these terms.

Condition (G3) was re-phrased in terms of the subgrdaply Buekenhout
and Hermand [4], following Tits [7], as follows:

For anyJ C | with |J] > 3 and anyj € J, we have

Gj( ﬂ Gk) ﬂ GjGk.

ked\{j} ke\{j}

Moreover, if this holds for ong € J, then it holds for all. We refer to this as
condition (BH).

The coset geometry residually weakly primitiveor RWRRI, if the following
condition holds:

(G4) For anyJ C I, there existk € | \ J such thatG; gy is @ maximal subgroup
of Gj.

This means that the group; acts primitively on the varieties of at least one
type in the residue of the standard flag of type(A geometry is calledveakly
primitiveif its automorphism group acts primitively on the varieties of some type;
the condition RWRI asserts that this condition should hold “residually”.)

Theorem 3.1 The rank of a coset geometry for G with Borel subgroup B is at
most (G, B), while the rank of arRWPRI coset geometry is at most@, B).
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Proof Choose elements, fori € I, so thats fixes the varietiess; for j # i
but moves the variet(;. In other wordss € Gy, (. Clearly the elements are
independent relative tB.

Suppose that (G4) holds. We claim tt@ag = (B,s¢: ke 1\J) forall J C 1.
The proof is by induction ofl \ J|, the conclusion being obviousdf=1. If J#1,
choosek as in (G4). By the inductive hypothesi, ) is generated b and
§ for | ¢ JU{k}. Sinces € G\ Gk, andGy gy is @ maximal subgroup of
Gj, we see that the desired conclusion follows, and the inductive step is proved.
In particular, we now see th@&= (B,s5:i€l). =

The proof shows more: if the coset geometry is R¥,Rhen the elements
(s :i€l) form a strongly independent generating set relativ.to

The converse is not true. (§ : i € |) is a strongly independent generating set
for G relative toB, and we puG; = (B,s;j : j # i), then conditions (G1) and (G2)
hold, but (G3) and (G4) may fail. However, we show that they do hold in the case
of independent generating sets of maximal size for symmetric groups.

Theorem 3.2 For n > 7, there is a bijection between independent generating sets
of size n— 1 (up to conjugation and inversion of some generators) W PRI
coset geometries of rank-nl for the symmetric group,S

Proof We have seen that any RWPcoset geometry gives rise to an independent
generating se$ relative toB. By Corollary 2.4, if the rank is1— 1, thenB = 1,
andSis of one of the types described in Theorem 2.1. In particular, the generators
are determined up to choice of the maximal flag (that is, conjugacy) and inversion
of some generators of order 3 (in case (b)).

Conversely, leS= (s :i € |) be an independent generating set &y and
define the subgrougs; as usual. We have observed tBét strongly independent,
so that (G1) and (G2) hold (witB = 1), and we must prove (G3) (that is, (BH))
and (G4). We do this for the two types separately.

Let T be a tree om vertices, and(T) the set of transpositions corresponding
to the edges of .
To prove condition (BH) by induction, it suffices to show that

Gi(GyNGk) = GiGyN GGk

for any two subsetd andK of | with i ¢ JUK. Clearly the left-hand side is
contained in the right-hand side; we have to prove the reverse inclusion.



Let A be one of the connected components of the forest obtained by deleting
the edges from T. ThenG; is the setwise stabiliser @fin the symmetric group.
Now G; is the direct product of symmetric groups on the connected components
of T, (obtained by deleting the edgesfrom T, for j € J). Each such component,
except the one containirey, is contained irA or its complement. So, i € G;G;,
thenAg\ X = A\ Xj, whereX; is the connected component ©f containinge,.

If also g € GiGk, then we also havBg\ Xk = A\ Xk. HenceAg\ (X3NXk) =
A\ (X3NXk).

But Xj N Xk is just the connected component of the tigex containing the
edgeg. SinceG; NGk = Gyuk induces the symmetric group on this set, there
is an elemenh € G3 N Gk such thath acts trivially outsideX; N Xk andh maps
AgN (X3NXk) to AN (X3NXk). Thusgh fixesA, and sggh~! = f € Gj, whence
g= fhe Gj(G3nGCk), as required.

To prove condition (G4) we note that,Jf£ |, thenG; acts as the symmetric
group on each of its orbits. Take a pendant eglg@ the forestT;; thenG; acts
on the cosets dB;,(x as the symmetric group, when€g i, is maximal inG;,
as required.

Now letS*(T) be a generating set of type (b) derived from the free which
(without loss of generality) the generataris a transposition, while the others are
3-cycles or double transpositions.

We note that, if ¢ J, thenG; is the same as it is for the generating S¢f)

(that is, the direct product of symmetric groups on the connected components of
Tj); while, if 1 € J, thenG; consists of the even permutations in the direct product
of symmetric groups on the connected componentof; .

It follows immediately that condition (BH) holds for any sktvith 1 ¢ J. On
the other hand, if £ J, then we can takg= 1 in (BH), so thatG; is the alternating
group. SinceGy (1) contains an odd permutation, both sides of the equation are
equal to the symmetric group, and equality holds.

For (G4), if 1¢ J, then we may také& = 1 and find thatG, 1, has index 2
(and is maximal) irGy; if 1 € J, thenG; acts as the symmetric or alternating group
on each of its orbits, and the same argument applies as we used in case (a).

Corollary 3.3 For n> 7, any coset geometry of ranknl for S, is RWPRI.

Proof This follows immediately from Theorem 3.1, Corollary 2.4, Whiston’s
Theorem, and Theorem 3.2m
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Remark The diagram for a geometry of type (a) arising from the generating set
S(T) is simply the line graph of the treB. This was shown in [5] where these
geometries are calledductively minimal See also [3] and [2] for more details.
For geometries of type (b), the node corresponding to the subdypigisolated

in the diagram.

Remark Theorem 3.2 is true for alh # 4. As noted in the earlier remark, all
independent generating sets fo# 4 are of the types found in the main theorem

or the image of one of these under an outer automorphism. The geometry defined
by the independent generating $ét, 2), (1,3),(1,4)(2,3)} for & is not RWRRI.
Indeed, this set fails to be strongly independent.

References

[1] F. Buekenhout, Foundations of incidence geometry, pp. 63—105and-
book of Incidence Geometfgd. F. Buekenhout), North-Holland, Amsterdam,
1995.

[2] F. Buekenhout and Ph. Cara, Some Properties of Inductively minimal Geome-
tries,Bull. Belg. Math. Soc. Simon Ster{1998), 213-219.

[3] F. Buekenhout, Ph. Cara and M. Dehon, Inductively minimal flag-transitive
geometries, pp. 185-190 iMostly finite geometrieed. N.L. Johnson), Mar-
cel Dekker, New York , 1997.

[4] F. Buekenhout and M. Hermand, On flag-transitive geometries and groups,
pp. 45—-78 in:Travaux de matbmatiquesUniversié Libre de Bruxelles, Vol
[, 1991.

[5] Ph. Cara, S. Lehman and D.V. Pasechnik, On the number of inductively min-
imal geometriesTheoret. Comp. Sc263(2001), 31-35.

[6] The GAP GroupGAP — Groups, Algorithms, and Programmijnggrsion 4.2;
2000, (http://www.gap-system.org)

[7] J. Tits, Buildings of Spherical Type and Finite BN-Paiisecture Notes in
Math. 382 Springer—\Verlag, Berlin, 1974.

[8] J. Whiston, Maximal independent generating sets of the symmetric gdoup,
Algebra232(2000), 255—-268.

11



[9] J. Whiston, The Independent Generating Sets of Maximal Size of Selected
Groups Ph.D. thesis, University of Cambridge, 2001.

12



