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Abstract

There are just five Fraı̈sśe classes of permutations (apart from the trivial
class of permutations of a singleton set); these are the identity permuta-
tions, “reversing” permutations, “composites” (in either order) of these two
classes, and all permutations. The paper also discusses infinite generalisa-
tions of permutations, and the connection with Fraı̈sśe’s theory of countable
homogeneous structures, and states a number of open problems. Links with
enumeration results, and the analogous result for circular permutations, are
also described.

1 What is an infinite permutation?

There are several ways of viewing a permutation of the finite set{1, . . . ,n}, giving
rise to completely different infinite generalisations.

To an algebraist, a permutation is a bijective mapping fromX to itself. This
definition immediately extends to an arbitrary set. The set of all permutations of
any setX is a group under composition, thesymmetric groupSym(X).

A combinatorialist regards a permutation of{1, . . . ,n} in “passive” form, as
the elements of{1, . . . ,n} arranged in a sequence(a1,a2, . . . ,an). If we try to
extend this definition to the infinite, we are immediately faced with a problem:
what kind of sequence should we use? For example, should it be well-ordered?

A more satisfactory approach is to regard a permutation of{1, . . . ,n} as a pair
of total orders, where the first is the natural order and the second is the order
a1< a2< · · ·< an of the terms in the sequence. Thus a permutation is a relational
structure over the language with two binary relational symbols (interpreted as total
orders).

In this aspect, the infinite generalisation is clear, but the result is different from
the other two. On an infinite setX, a pair of total orders do not correspond to a
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single permutation, but to a double cosetG1πG2 in Sym(X), whereG1 andG2 are
the automorphism groups of the two total orders. (In the finite case, of course, a
total order is rigid, so this double coset contains just the single permutationπ.)

This representation also makes the notion of “subpermutation” clear; it is sim-
ply the induced substructure on a subsetY of X (the restriction of the two total
orders toY).

I will adopt this view of permutations here. Accordingly, a finite permutation
will be regarded as a pair of total orders, each represented by a sequence. For
example, the permutation usually written in passive form as(2,4,1,3) might be
represented as(abcd,bdac). I will call (2,4,1,3) the patternof this structure.
Thus, a finite permutation is the pattern of an isomorphism class of finite structures
(each consisting of a set with two total orders).

2 Ages and amalgamation

A relational structureX is homogeneousif any isomorphism between finite sub-
structures ofX can be extended to an automorphism ofX. Theageof a relational
structureX is the class of all finite structures embeddable inX.

The best-known homogeneous structure is the ordered setQ. Fräısśe [10],
taking this as a prototype, gave a necessary and sufficient condition for a class
of finite structures to be the age of a countable homogeneous relational structure.
The four conditions are listed below; a classC satisfying them is called aFraı̈sśe
class.

(a)C is closed under isomorphism.

(b) C is closed under taking induced substructures.

(c) C has only countably many members (up to isomorphism).

(d) C has theamalgamation property: if A,B1,B2 ∈ C and fi : A→ Bi are em-
beddings fori = 1,2, then there existC∈ C and embeddingsgi : Bi→C for
i = 1,2 such thatf1g1 = f2g2.

The amalgamation property informally says that two structures with a common
substructure can be “glued together”. Fraı̈sśe further showed that, ifC is a Fräısśe
class, then the countable homogeneous structureX whose age isC is unique up to
isomorphism. We callX theFraı̈sśe limit of C.
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Some authors include also thejoint embedding propertyhere. This is the fol-
lowing apparent weakening of the amalgamation property: givenB1,B2∈ C, there
existsC∈ C such that bothB1 andB2 can be embedded inC. These authors usu-
ally require a substructure to be non-empty; I will allow the “empty structure”
(but assume that it is unique up to isomorphism). With this convention, the joint
embedding property is a special case of the amalgamation property.

It is easy to see that conditions (a)–(c) above and the joint embedding property
are necessary and sufficient forC to be the age of some countable structure; but
such a structure is by no means unique in general.

Now we interpret (a)–(d) for the structures associated with permutations (sets
with a pair of total orders). Since a pattern specifies an isomorphism class, (a)
means that such a class is defined by a setC of patterns. Condition (b), called
the hereditary property, of course means thatC is defined by a set of excluded
sub-permutations. Condition (c) is vacuous. So the amalgamation property is the
crucial condition. We will not always distinguish carefully between a classC of
relational structures and the corresponding classC of permutations!

The aim of this paper is to determine the Fraı̈sśe classes of permutations (and
so, implicitly, the countable homogeneous structures consisting of a set with a pair
of total orders). The classes will be described in the next section, and the theorem
proved in the section following.

Countable homogeneous graphs, digraphs and posets have been determined
[11, 5, 14]. The result of this paper is analogous (though rather easier); but as far
as I can see it does not follow from existing classifications.

Much effort has been devoted to enumerating the permutations in various
classes. In particular, the Stanley–Wilf conjecture [1] asserts that a hereditary
class not containing all permutations has at mostcn permutations onn points, for
some constantc. On the other hand, Macpherson [12] showed that anyprimitive
Fräısśe class of relational structures of arbitrary signature (one whose members
do not carry a natural equivalence relation derived from the structure) has at least
cn/p(n) members of given cardinality, provided that it has more than one mem-
ber of some cardinality. (Herec is an absolute constant greater than 1, andp a
polynomial. Macpherson’s lower bound forc was improved by Merola [13].) Ex-
amples where the growth is no faster than exponential are comparatively rare. So
it would appear that permutations would be a good place to look for examples.
From this point of view, the main theorem of this paper is a disappointment: of
the five Fräısśe classes of permutations defined below,J andJ ∗ are trivial,J /J ∗

andJ ∗/J are imprimitive, andU consists of all permutations.

3



3 The examples

We begin by defining five classes of finite permutations.

J : the class of identity permutations. This corresponds to two identical total
orders, and is defined by the excluded pattern(2,1).

J ∗: the class of “reversals”, of the form(n,n−1, . . . ,1). This arises when the
second order is the converse of the first, and is defined by the excluded
pattern(1,2).

J /J ∗: this is the class of increasing sequences of decreasing sequences of per-
mutations, defined by the excluded patterns(2,3,1) and(3,1,2).

J ∗/J : the class of decreasing sequences of increasing sequences, defined by the
excluded patterns(2,1,3) and(1,3,2).

U: the “universal” class of all finite permutations, where the two total orders are
arbitrary.

These are all Fraı̈sśe classes. Indeed, the countable homogeneous structures
are clear in the first four cases: the first and second areQ (with the second order
equal to or the reverse of the first); the third and fourth are the lexicographic
product ofQ with itself, with the second ordering reversed within blocks, resp.
reversed between blocks. (Their automorphism groups are Aut(Q) in the first two
cases, and the wreath product Aut(Q) oAut(Q) in the third and fourth.) In the last
case, since the orders are unrelated, we can amalgamate them independently.

The countable homogeneous structure corresponding toU has an explicit de-
scription as follows. The point set isQ2. Choose two real vectors(a,b) and
(c,d), with b/a andd/c distinct irrationals satisfyingb/a+ d/c 6= 0. Now set
(x,y)<1 (u,v) if xa+yb< ua+vb,i and(x,y)<2 (u,v) if xc+yd< uc+vd.

4 The main theorem

Theorem 1 A class of finite permutations is a Fraı̈sśe class if and only if it is one
of the following: the identity permutation of{1}, J , J ∗, J /J ∗, J ∗/J , or U.
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Proof The trivial class is obviously a Fraı̈sśe class, and we have observed that
the same is true for the other five classes. We have to show that any Fraı̈sśe class
is one of these.

Let C be a Fräısśe class of permutations, andC its Fräısśe limit. We may
assume thatC contains permutations on more than one point.

First observe that, ifC contains 2-element structure on which the orders agree,
then it contains arbitrarily large such structures. For, by amalgamating a structure
of lengthm with one of lengthn, where the last point of one is identified with the
first point of the other, we obtain a structure of lengthm+ n−1. So, in this case,
C containsJ .

Dually, if C contains a two-point structure on which the orders disagree, then
it containsJ ∗.

We conclude that, ifC is not equal to eitherJ or J ∗, then it contains both of
them. We may suppose that this is the case.

We further suppose thatC 6= U. Then there is some structureX not contained
in C ; we assume thatX is minimal with this property. We show thatX has three
or four points. For suppose that|X| = n> 4. There aren−1 pairs of elements
which are consecutive in each of the orders. Since

(n
2

)
> 2(n−1), there are points

x,y ∈ X consecutive in neither order. Then the only amalgam ofX \ {x} and
X \ {y} (identifying X \ {x,y}) is the given structure onX, since the relations
betweenx and y are determined by the other points. ThusX ∈ C , contrary to
assumption.

Suppose first that|X| = 3. We know that the patterns(1,2,3) and (3,2,1)
certainly occur. Now amalgamating(ab,ab) with (bc,cb) shows that we have
either(abc,acb) (pattern(1,3,2)) or (abc,cab) (pattern(3,1,2)). The other three
possible ways of amalgamating the two 2-element structures show that we have
one of each of the following pairs:

• (3,1,2) or (2,1,3);

• (2,1,3) or (2,3,1);

• (2,3,1) or (1,3,2).

Thus one of the following holds:

(a) two of these four patterns occur, necessarily either(1,3,2) and(2,1,3), or
(3,1,2) and(2,3,1).

(b) three of the four patterns occur; any one may be the missing one.
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We begin with case (a). LetA andB be structures (carrying two total orders).
We useA↗ B to denote the disjoint union ofA andB, with a<1 b anda<2 b for
all a∈ A, b∈ B.

Lemma 2 Suppose thatC is a Fräısśe class of permutations containing(1,3,2)
and(2,1,3), Then, for any structures A,B∈ C , we have(A↗ B) ∈ C .

Proof First assume that|A|= 1, sayA= {a}, and letx andy be the minimum ele-
ments ofB in the two orders. Ifx= y, then amalgamateB with (ax,ax); otherwise,
amalgamate it with(axy,ayx) (of pattern(1,3,2)).

Dually, the result holds if|B|= 1 (using the pattern(2,1,3)).
Now for the general case, we first construct{c}∪B, with c<1 B andc<2 B,

and alsoA∪{c}, with A<1 c andA<2 c. Amalgamating these structures gives
the result.

If both (3,1,2) and(2,3,1) are forbidden, then the binary relation defined by
x∼ y if the orders disagree on{x,y} is an equivalence relation, and so the structure
belongs to the classJ /J ∗. Lemma2 shows that every permutation in this class
belongs toC . SoC = J /J ∗.

Dually, if (1,3,2) and(2,1,3) are forbidden, thenC = J ∗/J .
Now we turn to case (b) and show that this cannot occur. Suppose, without

loss of generality, that only(1,3,2) is forbidden. (Interchanging either or both of
the orders transforms this case into any of the others.) Now

• amalgamating(abc,bac) (with pattern(2,1,3)) with (bcd,dbc) (with pat-
tern(3,1,2)) gives(abcd,dbac);

• amalgamating(bde,dbe) (with pattern(2,1,3)) with (abe,bea) (with pat-
tern(2,3,1)) gives(abde,dbea);

• amalgamating(abcd,dbac) with (abde,dbea) gives(abcde,dbeac).

But the last structure contains(bce,bec) with the excluded pattern(1,3,2), a con-
tradiction.

Next suppose that|X| = 4. Our earlier argument shows that the forbidden
patterns have the property that of the six 2-subsets in an excluded 4-set, three are
adjacent in each of the two orders. The only permutations satisfying this condition
are the two permutations(2,4,1,3) and(3,1,4,2).
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But amalgamating(abce,aceb) (with pattern(1,3,4,2)) with (acde,dace)
(with pattern(3,1,2,4)) gives(abcde,daceb), containing(abde,daeb) with pat-
tern(3,1,4,2). Similarly the other pattern can be formed by amalgamating(abce,beca)
with (acde,ecad).

Finally, if C contains all four-element structures, then there is no minimal
excluded pattern, and we haveC = U. The proof is complete.

5 Circular permutations

A circular order on a finite setX is the ternary relation obtained by placing the
points on a circle and taking all triples in anticlockwise order. In general, a circular
order can be defined as a ternary relation such that the restriction to any finite set
is a circular order (it suffices to consider restrictions to sets with at most four
points [2]).

Now, by analogy, we can define acircular permutationto be a finite set carry-
ing two distinct circular orders.

Since a circular order onn points is not rigid but admits the cyclic groupCn

of ordern, we see that apattern(defining an isomorphism class of finite permuta-
tions) is not a single permutation but a double cosetCnπCn, for some permutation
π. The number of patterns is asymptoticallyn!/n2; the exact values are given as
sequence A002619 in theEncyclopedia of Integer Sequences[9].

From the main theorem, we can deduce the classification of Fraı̈sśe classes of
circular permutations:

Theorem 3 There are just five Fräısśe classes of circular permutations contain-
ing structures with more than two points.

Proof From any circular orderC on a setA, and any pointa ∈ A, we obtain a
derived total orderCa onA\{a}, where

Ca = {(b,c) : (a,b,c) ∈C}.

Moreover,C can be recovered uniquely fromCa: for, if b< c< d in the order
Ca, then(b,c,d) ∈C. Hence, from any circular permutation, onA and anya∈ A,
we obtain a derived permutation onA\ {a}. For any classC of finite circular
permutations, letC ′ be the class of derived permutations; thenC determinesC ′,
andC ′ determines at most one classC .
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It is easy to see that each of the five classes of permutations in the main theo-
rem is the derived class of a class of circular permutations. (For example, corre-
sponding toJ /J ∗, take points on a circle partitioned into consecutive blocks; for
the second circular order, reverse the order of the points within each block.)

To complete the proof, we show:

Lemma 4 A classC of circular permutations is a Fräısśe class if and only if its
derived classC ′ is a Fräısśe class of permutations.

Proof As usual, the herreditary and amalgamation properties are the only ones
which require attention. The argument here deals with the amalgamation property;
the hereditary property is similar but easier.

Suppose thatC has the amalgamation property. To amalgamate elements
B1,B2 of the derived classC ′ overA, add a pointa to A and construct the corre-
sponding circular permutations, and then amalgamate these and derive the result
with respect toa. Conversely, suppose thatC ′ has the amalgamation property, and
we wish to amalgamateB1,B2 ∈ C over the substructureA. Without loss of gen-
erality, A 6= /0; choosea∈ A and amalgamate the derived structures with respect
to a.

Now the theorem follows from Theorem1.

6 Open problems

I conclude with some open problems.

Problem 1 Which classes of finite permutations are the ages of infinite permuta-
tions? That is, which classes have the joint embedding property? (Such classes
can of course be described by excluded patterns.)

Problem 2 Extend the main theorem of this paper to structures consisting ofm
total orders, wherem≥ 3.
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Problem 3 A reduct of a relational structureR on X is most easily defined as
a closed subgroup of Sym(X) properly containing Aut(R). (The topology on
Sym(X) is that of pointwise convergence; a subgroup is closed if and only if
it is the automorphism group of a relational structure. So a reduct ofR can be
described as a relational structureR′ defined in terms ofR, where we don’t distin-
guish between structures with the same automorphism group.)

For example, the universal homogeneous countable total order is(Q,<); its
reducts are itself, the derived betweenness relation, circular order and separation
relation, and the empty relation (corresponding to the symmetric group) – see [2].
The reducts of the random graph were determined by Thomas [15].

There are 37 obvious reducts: for choosing independently a reduct of each
order gives 25 possibilities; and reversals and interchange of the orders generate a
dihedral group of order 8, with 10 subgroups, and the same comes from reversing
and interchanging the two derived circular orders; but we have now counted 8
reducts twice.

Among these reducts is a universal 2-dimensional poset (the intersection of
<1 and<2) and a universal permutation graph (their agreement graph) – neither
is homogeneous.

Are there any other reducts?

Problem 4 Which infinite permutations are reducts of homogeneous structures?
As an example to illustrate this problem, I note that the class of “N-free per-

mutations” (those containing neither of the patterns(2,4,1,3) and(3,1,4,2)) is
the age of an infinite permutation which is a reduct of a homogeneous structure,
even though it is not itself a Fraı̈sśe class, as we have seen.

Let (T, r) be a finite rooted tree, andc an arbitrary colouring of the internal
vertices ofT with two colours (black and white). LetX be the set of leaves ofT
(excludingr if necessary). Forx,y ∈ X, x 6= y, let x∧ y denote the last non-leaf
common to the pathsrx andry. Now consider the following relations onX:

• A graph, in whichx∼ y if x∧y is black. This graph is acograph[6] or N-
free graph[7]; that is, it contains no induced path of length 3. Every N-free
graph can be so represented, and if we insist that the colouringc is proper,
the representation is unique.

• For the second relation, we insist that the tree is binary, by splitting non-
leaves if necessary. Now the ternary relation is defined by the rule thatx|yz
if x∧y = x∧z 6= y∧z.
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Covington [7] showed that this gives a Fraı̈sśe class of relational structures. Our
class will be a slight variant of Covington’s.

From the data(T, r,c), we obtain a permutation as follows. Let<1 be the order
onX defined in the usual way by depth-first search inT, and<2 the order defined
by the modified depth-first search in which the children of a white non-leaf are
visited in reverse order. The agreement graph of this pair of orders is precisely the
N-free graph defined above; so the permutation excludes(2,4,1,3) and(3,1,4,2).
Any permutation excluding these patterns can be so represented.

Let C be the class of structures with two total orders and a ternary relation,
derived in this way from triples(T, r,c), where(T, r) is a rooted binary tree andc
a 2-colouring of its non-leaves. ThenC is a Fräısśe class. The proof is not given
here, as it is almost identical to that in [7]. If we take the Fräısśe limit and ignore
the ternary relation, we obtain a “universal N-free permutation”.

Problem 5 Which infinite circular permutations are reducts of homogeneous struc-
tures?

Note that, analogous to the N-free permutations, there is a class of “pentagon-
free circular permutations” (similar to the pentagon-free two-graphs [3]).

Problem 6 Let J,U be the countable homogeneous structures corresponding to
the Fräısśe classesJ ,U. ThenJ is the set of rational numbers with both<1 and
<2 the natural order, and so Aut(J) is the group of order-preserving permutations
of the rationals. The normal structure of this group is well known: the non-trivial
proper normal subgroups are the groups of order-preserving permutations of left-
bounded, right-bounded, and bounded support. What is the normal structure of the
group Aut(U)? This is the analogue of Truss’ result [16] that the automorphism
group of the random graph is simple.

One could also study products of conjugacy classes in this group, as Droste [8]
and Truss [16] have done for other countable homogeneous structures.

Problem 7 The paper [4] considered the problem: Which countable homoge-
neous relational structures are Cayley objects for countable groups? In other
words, which countable groups act regularly on the points of such a structure?
The explicit construction ofU given earlier shows that it is a Cayley object for
Q

+×Q+ (whereQ+ is the additive group ofQ). It is shown in [4] that it is not a
Cayley object forZ+ or (Z+)2. Is it a Cayley object for(Z+)3?
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