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Abstract

There are just five Fiag classes of permutations (apart from the trivial
class of permutations of a singleton set); these are the identity permuta-
tions, “reversing” permutations, “composites” (in either order) of these two
classes, and all permutations. The paper also discusses infinite generalisa-
tions of permutations, and the connection withiBgls theory of countable
homogeneous structures, and states a number of open problems. Links with
enumeration results, and the analogous result for circular permutations, are
also described.

1 Whatis an infinite permutation?

There are several ways of viewing a permutation of the finit¢ 5et . ,n}, giving
rise to completely different infinite generalisations.

To an algebraist, a permutation is a bijective mapping fdno itself. This
definition immediately extends to an arbitrary set. The set of all permutations of
any setX is a group under composition, tsgmmetric grougsym(X).

A combinatorialist regards a permutation{df,...,n} in “passive” form, as
the elements of1,...,n} arranged in a sequengay,ay,...,a,). If we try to
extend this definition to the infinite, we are immediately faced with a problem:
what kind of sequence should we use? For example, should it be well-ordered?

A more satisfactory approach is to regard a permutaticfiof..,n} as a pair
of total orders, where the first is the natural order and the second is the order
a1 < ap < --- < ap of the terms in the sequence. Thus a permutation is a relational
structure over the language with two binary relational symbols (interpreted as total
orders).

In this aspect, the infinite generalisation is clear, but the result is different from
the other two. On an infinite s&t, a pair of total orders do not correspond to a



single permutation, but to a double co&aiG, in Sym(X), whereG; andG; are
the automorphism groups of the two total orders. (In the finite case, of course, a
total order is rigid, so this double coset contains just the single permutajion

This representation also makes the notion of “subpermutation” clear; it is sim-
ply the induced substructure on a subgetf X (the restriction of the two total
orders toy).

| will adopt this view of permutations here. Accordingly, a finite permutation
will be regarded as a pair of total orders, each represented by a sequence. For
example, the permutation usually written in passive forni2a4, 1,3) might be
represented ag@bcd bdag. | will call (2,4,1,3) the pattern of this structure.
Thus, afinite permutation is the pattern of an isomorphism class of finite structures
(each consisting of a set with two total orders).

2 Ages and amalgamation

A relational structureX is homogeneous any isomorphism between finite sub-
structures oK can be extended to an automorphisnXofTheageof a relational
structureX is the class of all finite structures embeddablXin

The best-known homogeneous structure is the ordere@ sdfrasse [10],
taking this as a prototype, gave a necessary and sufficient condition for a class
of finite structures to be the age of a countable homogeneous relational structure.
The four conditions are listed below; a cla&satisfying them is called Brais®
class

(a) ¢ is closed under isomorphism.
(b) € is closed under taking induced substructures.
(c) € has only countably many members (up to isomorphism).

(d) € has theamalgamation propertyif A;B1,B> € € and f; : A— B; are em-
beddings foii = 1,2, then there exist € ¢ and embeddingg; : B; — C for
i = 1,2 such thatf1g1 = f20p.

The amalgamation property informally says that two structures with a common
substructure can be “glued together”. Bsa further showed that, i is a Frass$
class, then the countable homogeneous struwbose age i€ is unique up to
isomorphism. We calK theFrais< limit of €.



Some authors include also tj@nt embedding propertiiere. This is the fol-
lowing apparent weakening of the amalgamation property: gd4eB, € €, there
existsC € ¢ such that botiB; andB, can be embedded {©. These authors usu-
ally require a substructure to be non-empty; | will allow the “empty structure”
(but assume that it is unique up to isomorphism). With this convention, the joint
embedding property is a special case of the amalgamation property.

It is easy to see that conditions (a)—(c) above and the joint embedding property
are necessary and sufficient ®rto be the age of some countable structure; but
such a structure is by no means unigue in general.

Now we interpret (a)—(d) for the structures associated with permutations (sets
with a pair of total orders). Since a pattern specifies an isomorphism class, (a)
means that such a class is defined by acsef patterns. Condition (b), called
the hereditary property of course means that is defined by a set of excluded
sub-permutations. Condition (c) is vacuous. So the amalgamation property is the
crucial condition. We will not always distinguish carefully between a ctas$
relational structures and the corresponding ctass$ permutations!

The aim of this paper is to determine the iBga classes of permutations (and
so, implicitly, the countable homogeneous structures consisting of a set with a pair
of total orders). The classes will be described in the next section, and the theorem
proved in the section following.

Countable homogeneous graphs, digraphs and posets have been determined
[11, 5, 14]. The result of this paper is analogous (though rather easier); but as far
as | can see it does not follow from existing classifications.

Much effort has been devoted to enumerating the permutations in various
classes. In particular, the Stanley—Wilf conjecturg dsserts that a hereditary
class not containing all permutations has at neBgiermutations om points, for
some constart. On the other hand, Macphersar’] showed that anyprimitive
Fraise class of relational structures of arbitrary signature (one whose members
do not carry a natural equivalence relation derived from the structure) has at least
c"/p(n) members of given cardinality, provided that it has more than one mem-
ber of some cardinality. (Hereis an absolute constant greater than 1, aral
polynomial. Macpherson’s lower bound fowas improved by Merolal[3].) Ex-
amples where the growth is no faster than exponential are comparatively rare. So
it would appear that permutations would be a good place to look for examples.
From this point of view, the main theorem of this paper is a disappointment: of
the five Fréss classes of permutations defined belgvgnd 7* are trivial, 7/ 7*
andf* /4 are imprimitive, andU consists of all permutations.



3 The examples

We begin by defining five classes of finite permutations.

J: the class of identity permutations. This corresponds to two identical total
orders, and is defined by the excluded pat{&).

J*: the class of “reversals”, of the foriftm,n—1,...,1). This arises when the
second order is the converse of the first, and is defined by the excluded
pattern(1,2).

J/7%: this is the class of increasing sequences of decreasing sequences of per-
mutations, defined by the excluded pattefas,1) and(3,1,2).

J*/39: the class of decreasing sequences of increasing sequences, defined by the
excluded pattern&,1,3) and(1,3,2).

U: the “universal” class of all finite permutations, where the two total orders are
arbitrary.

These are all Fias classes. Indeed, the countable homogeneous structures
are clear in the first four cases: the first and second)afeith the second order
equal to or the reverse of the first); the third and fourth are the lexicographic
product ofQ with itself, with the second ordering reversed within blocks, resp.
reversed between blocks. (Their automorphism groups argAun the first two
cases, and the wreath product AQ}: Aut(Q) in the third and fourth.) In the last
case, since the orders are unrelated, we can amalgamate them independently.

The countable homogeneous structure correspondifigitas an explicit de-
scription as follows. The point set i9%. Choose two real vector,b) and
(c,d), with b/a andd/c distinct irrationals satisfyingp/a+ d/c # 0. Now set
(X,y) <1 (u,v) if xa+yb < ua+vb,iand(x,y) <2 (u,v) if xc+yd < uc+ vd.

4 The main theorem

Theorem 1 A class of finite permutations is a Fsze class if and only if it is one
of the following: the identity permutation §1}, 7, 7%, 9/9%, 9*/ 9, or U.



Proof The trivial class is obviously a Fige class, and we have observed that
the same is true for the other five classes. We have to show that aisgrekass
is one of these.

Let C be a Frése class of permutations, ar@lits Frass limit. We may
assume that contains permutations on more than one point.

First observe that, if contains 2-element structure on which the orders agree,
then it contains arbitrarily large such structures. For, by amalgamating a structure
of lengthmwith one of lengtm, where the last point of one is identified with the
first point of the other, we obtain a structure of length-n— 1. So, in this case,

C contains/.

Dually, if C contains a two-point structure on which the orders disagree, then
it containsy*.

We conclude that, it" is not equal to eitheg or 7%, then it contains both of
them. We may suppose that this is the case.

We further suppose that # U. Then there is some structuxenot contained
in C; we assume tha is minimal with this property. We show that has three
or four points. For suppose thpf| = n > 4. There aren— 1 pairs of elements
which are consecutive in each of the orders. Sifige> 2(n— 1), there are points
X,y € X consecutive in neither order. Then the only amalganXaf{x} and
X\ {y} (identifying X \ {x,y}) is the given structure ok, since the relations
betweenx andy are determined by the other points. ThXiss C, contrary to
assumption.

Suppose first thaiX| = 3. We know that the patternd,2,3) and(3,2,1)
certainly occur. Now amalgamatin@b,ab) with (bc,cb) shows that we have
either(abc acb) (pattern(1,3,2)) or (abc cab) (pattern(3,1,2)). The other three
possible ways of amalgamating the two 2-element structures show that we have
one of each of the following pairs:

e (3,1,2)0r(2,1,3);
e (2,1,3)0r(2,3,1);
e (2,3,1)0r(1,3,2).
Thus one of the following holds:

(a) two of these four patterns occur, necessarily eithe3, 2) and(2,1,3), or
(3,1,2) and(2,3,1).

(b) three of the four patterns occur; any one may be the missing one.
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We begin with case (a). L& andB be structures (carrying two total orders).
We useA " B to denote the disjoint union & andB, with a <1 b anda <2 b for
allae A beB.

Lemma 2 Suppose that is a Fraise class of permutations containird, 3, 2)
and(2,1,3), Then, for any structures,B € C, we havgA /' B) € C.

Proof Firstassume thaf| =1, sayA= {a}, and letx andy be the minimum ele-
ments ofB in the two orders. Ik=y, then amalgamat® with (ax, ax); otherwise,
amalgamate it witlfaxy, ayx) (of pattern(1,3,2)).

Dually, the result holds ifB| = 1 (using the patter(2, 1, 3)).

Now for the general case, we first constrfic} UB, with ¢ <3 B andc <2 B,
and alscAU {c}, with A <; c andA <3 c. Amalgamating these structures gives
the result. m

If both (3,1,2) and(2,3,1) are forbidden, then the binary relation defined by
X~ yif the orders disagree ofx,y} is an equivalence relation, and so the structure
belongs to the clas$/7*. Lemma2 shows that every permutation in this class
belongs taC. SoC = J/7*.

Dually, if (1,3,2) and(2,1,3) are forbidden, theq@ = 7* /7.

Now we turn to case (b) and show that this cannot occur. Suppose, without
loss of generality, that onlyl,3,2) is forbidden. (Interchanging either or both of
the orders transforms this case into any of the others.) Now

e amalgamatindabc bac) (with pattern(2,1,3)) with (bcd,dbc) (with pat-
tern(3,1,2)) gives(abcd dbao;

e amalgamatingbde dbe) (with pattern(2,1,3)) with (abe bea (with pat-
tern(2,3,1)) gives(abdedbes);

e amalgamatingabcd dbac with (abdedbeg gives(abcdedbeag.

But the last structure contailibce bec) with the excluded patterfl, 3,2), a con-
tradiction.

Next suppose thaiX| = 4. Our earlier argument shows that the forbidden
patterns have the property that of the six 2-subsets in an excluded 4-set, three are
adjacent in each of the two orders. The only permutations satisfying this condition
are the two permutation®,4,1,3) and(3,1,4,2).
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But amalgamatingabceaceb (with pattern(1,3,4,2)) with (acdedace
(with pattern(3,1,2,4)) gives(abcdedacel, containing(abdedaeb with pat-
tern(3,1,4,2). Similarly the other pattern can be formed by amalgamdiibge becag
with (acdeecad).

Finally, if C contains all four-element structures, then there is no minimal
excluded pattern, and we hage= U. The proof is complete. m

5 Circular permutations

A circular order on a finite seiX is the ternary relation obtained by placing the
points on a circle and taking all triples in anticlockwise order. In general, a circular
order can be defined as a ternary relation such that the restriction to any finite set
is a circular order (it suffices to consider restrictions to sets with at most four
points []).

Now, by analogy, we can definecacular permutationto be a finite set carry-
ing two distinct circular orders.

Since a circular order on points is not rigid but admits the cyclic gro@y,
of ordern, we see that pattern(defining an isomorphism class of finite permuta-
tions) is not a single permutation but a double c&gtC,, for some permutation
1. The number of patterns is asymptoticatly'n?; the exact values are given as
sequence A002619 in thencyclopedia of Integer Sequendék

From the main theorem, we can deduce the classification t€relasses of
circular permutations:

Theorem 3 There are just five Fis$ classes of circular permutations contain-
ing structures with more than two points.

Proof From any circular orde€ on a setA, and any pointa € A, we obtain a
derived total orde€, on A\ {a}, where

Ca={(b,c): (a,b,c) eC}.

Moreover,C can be recovered uniquely fro@: for, if b < ¢ < d in the order
Ca, then(b,c,d) € C. Hence, from any circular permutation, Arand anya € A,
we obtain a derived permutation @\ {a}. For any clasC of finite circular
permutations, le” be the class of derived permutations; theretermines”,
and(’ determines at most one clasSs



It is easy to see that each of the five classes of permutations in the main theo-
rem is the derived class of a class of circular permutations. (For example, corre-
sponding ta7/7*, take points on a circle partitioned into consecutive blocks; for
the second circular order, reverse the order of the points within each block.)

To complete the proof, we show:

Lemma 4 A class(C of circular permutations is a Figs class if and only if its
derived clasg” is a Frais€ class of permutations.

Proof As usual, the herreditary and amalgamation properties are the only ones
which require attention. The argument here deals with the amalgamation property;
the hereditary property is similar but easier.

Suppose that” has the amalgamation property. To amalgamate elements
B, B, of the derived clasg’ over A, add a pointa to A and construct the corre-
sponding circular permutations, and then amalgamate these and derive the result
with respect ta. Conversely, suppose that has the amalgamation property, and
we wish to amalgamatB;, B, € C over the substructur&. Without loss of gen-
erality, A # 0; choosea € A and amalgamate the derived structures with respect
toa. =m

Now the theorem follows from Theorein =

6 Open problems
| conclude with some open problems.

Problem 1 Which classes of finite permutations are the ages of infinite permuta-
tions? That is, which classes have the joint embedding property? (Such classes
can of course be described by excluded patterns.)

Problem 2 Extend the main theorem of this paper to structures consistimg of
total orders, wheren> 3.



Problem 3 A reductof a relational structur&® on X is most easily defined as

a closed subgroup of Syi{) properly containing AUR). (The topology on
Sym(X) is that of pointwise convergence; a subgroup is closed if and only if
it is the automorphism group of a relational structure. So a reduB adn be
described as a relational structiRedefined in terms oR, where we don’t distin-
guish between structures with the same automorphism group.)

For example, the universal homogeneous countable total ord€, is); its
reducts are itself, the derived betweenness relation, circular order and separation
relation, and the empty relation (corresponding to the symmetric group) <Jsee [
The reducts of the random graph were determined by Thoirigs |

There are 37 obvious reducts: for choosing independently a reduct of each
order gives 25 possibilities; and reversals and interchange of the orders generate a
dihedral group of order 8, with 10 subgroups, and the same comes from reversing
and interchanging the two derived circular orders; but we have now counted 8
reducts twice.

Among these reducts is a universal 2-dimensional poset (the intersection of
<1 and<y) and a universal permutation graph (their agreement graph) — neither
is homogeneous.

Are there any other reducts?

Problem 4 Which infinite permutations are reducts of homogeneous structures?

As an example to illustrate this problem, | note that the class of “N-free per-
mutations” (those containing neither of the pattefd},1,3) and(3,1,4,2)) is
the age of an infinite permutation which is a reduct of a homogeneous structure,
even though it is not itself a Fise class, as we have seen.

Let (T,r) be a finite rooted tree, andan arbitrary colouring of the internal
vertices of T with two colours (black and white). Let be the set of leaves df
(excludingr if necessary). Fogy € X, X #, let x Ay denote the last non-leaf
common to the paths< andry. Now consider the following relations ofx

e A graph, in whichx ~ y if XAy is black. This graph is aograph[6] or N-
free graph[7]; that is, it contains no induced path of length 3. Every N-free
graph can be so represented, and if we insist that the coloaimpgroper,
the representation is unique.

e For the second relation, we insist that the tree is binary, by splitting non-
leaves if necessary. Now the ternary relation is defined by the rule|gzat
if XAY=XAZ#YAZ



Covington [/] showed that this gives a Hsze class of relational structures. Our
class will be a slight variant of Covington’s.

From the dat&T,r, c), we obtain a permutation as follows. Lej be the order
on X defined in the usual way by depth-first searchi jrand< the order defined
by the modified depth-first search in which the children of a white non-leaf are
visited in reverse order. The agreement graph of this pair of orders is precisely the
N-free graph defined above; so the permutation excl(@&s1,3) and(3,1,4,2).
Any permutation excluding these patterns can be so represented.

Let € be the class of structures with two total orders and a ternary relation,
derived in this way from triple§T, r,c), where(T,r) is a rooted binary tree ard
a 2-colouring of its non-leaves. Thehis a Frass class. The proof is not given
here, as it is almost identical to that if][ If we take the Fré< limit and ignore
the ternary relation, we obtain a “universal N-free permutation”.

Problem 5 Which infinite circular permutations are reducts of homogeneous struc-
tures?

Note that, analogous to the N-free permutations, there is a class of “pentagon-
free circular permutations” (similar to the pentagon-free two-grapps [

Problem 6 Let J,U be the countable homogeneous structures corresponding to
the Fras< classed, U. ThenJ is the set of rational numbers with bothy, and
< the natural order, and so AUl is the group of order-preserving permutations
of the rationals. The normal structure of this group is well known: the non-trivial
proper normal subgroups are the groups of order-preserving permutations of left-
bounded, right-bounded, and bounded support. What is the normal structure of the
group AufU)? This is the analogue of Truss’ result] that the automorphism
group of the random graph is simple.

One could also study products of conjugacy classes in this group, as Cijste [
and Truss [ 6] have done for other countable homogeneous structures.

Problem 7 The paper 4] considered the problem: Which countable homoge-
neous relational structures are Cayley objects for countable groups? In other
words, which countable groups act regularly on the points of such a structure?
The explicit construction o) given earlier shows that it is a Cayley object for
QT x Q" (whereQ™ is the additive group of)). It is shown in [] that it is not a
Cayley object foiZt or (Z*)2. Is it a Cayley object fo(Z*)3?

10



References

[1] M. Bobna, Exact and asymptotic enumeration of permutations with subse-
guence condition?h.D. thesis, M.1.T, 1997.

[2] P. J. Cameron, Transitivity of permutation groups on unordered gt
Z.48(1976), 127-139.

[3] P.J. Cameron, Counting two-graphs related to treketronic J. Combina-
torics 2 (1995), #R4 (8pp). Available from
http://www.combinatorics.org

[4] P.J.Cameron, Homogeneous Cayley objdeisppean J. Combinatorical
(2000), 745-760.

[5] G. Cherlin, The classification of countable homogeneous directed graphs
and countable homogeneausournamentsylemoirs Amer. Math. S0621,
American Mathematical Society, Providence, RI, 1998.

[6] D. G. Cornell, Y. Perl and L. Stewart, Cographs: recognition, applications
and algorithmsCongr. Numerantiurd3 (1984), 249-258.

[7] J. Covington, A universal structure for N-free grapRspc. London Math.
Soc.(3) 58(1989), 1-16.

[8] M. Droste, Products of conjugacy classes of the infinite symmetric groups,
Discrete Math47(1983), 35-48.

[9] Encyclopedia of Integer Sequencasgailable from
http://www.research.att.com:80/ ~ njas/sequences/

[10] R. Frds<, Sur certains relations quérgralisent I'ordre des nombres ra-
tionnels,C. R. Acad. Sci. Pari237(1953), 540-542.

[11] A. H. Lachlan and R. E. Woodrow, Countable ultrahomogeneous undirected
graphs,Trans. Amer. Math. So62(1980), 51-94.

[12] H. D. Macpherson, The action of an infinite permutation group on the un-
ordered subsets of a s€toc. London Math. So¢3) 46 (1983), 471-486.

[13] F. Merola, Orbits om-tuples for infinite permutation group&urop. J. Com-
binatorics22 (2001), 225-241.

11


http://www.combinatorics.org
http://www.research.att.com:80/~njas/sequences/

[14] J. H. Schmerl, Countable homogeneous partially orderedAlggsbra Uni-
versalis9 (1979), 317-321.

[15] S. Thomas, Reducts of the random graplgymbolic Logi&6(1991), 176—
181.

[16] J. K. Truss, The group of the countable universal grégath. Proc. Cam-
bridge Philos. Soc98 (1985), 213-245.

12



	What is an infinite permutation?
	Ages and amalgamation
	The examples
	The main theorem
	Circular permutations
	Open problems

