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Henry Whitehead reportedly said, “Combinatorics is the slums of topology”.1

This prejudice, the view that combinatorics is quite different from ‘real math-
ematics’, was not uncommon in the twentieth century, among popular exposi-
tors as well as professionals. In his biography of Srinivasa Ramanujan, Robert
Kanigel [23] describes Percy MacMahon in these terms:

[MacMahon’s] expertise lay in combinatorics, a sort of glorified dice-
throwing, and in it he had made contributions original enough to be
named a Fellow of the Royal Society.

In the later part of the century, attitudes changed. When the 1998 film Good
Will Hunting featured a famous mathematician at the Massachusetts Institute of
Technology who had won a Fields Medal for combinatorics, many found this
somewhat unbelievable.2 However, life followed art in this case when, later in the
same year, Fields Medals were awarded to Richard Borcherds and Tim Gowers
for work much of which was in combinatorics.

A more remarkable instance of life following art involves Stanisław Lem’s
1968 novel His Master’s Voice [29]. The narrator, a mathematician, describes
how he single-mindedly attacked his rival’s work:

I do not think I ever finished any larger paper in all my younger work
without imagining Dill’s eyes on the manuscript. What effort it cost
me to prove that the Dill variable combinatorics was only a rough
approximation of an ergodic theorem! Not before or since, I daresay,

1My attribution is confirmed by Graham Higman, a student of Whitehead. Less disparagingly,
Hollingdale [21] wrote “. . . the branch of topology we now call ‘graph theory’ . . . ”

2The “unsolvable math problem” is based on the actual experience of George B. Dantzig, who
as a student solved two problems posed by Jerzy Neyman at Berkeley in 1940: see Brunvald [6].
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did I polish a thing so carefully; and it is even possible that the whole
concept of groups later called Hogarth groups came out of that quiet,
constant passion with which I plowed Dill’s axioms under.

In 1975, Szemerédi [42] published his remarkable combinatorial proof that a set
of natural numbers with positive density contains arbitrarily long arithmetic pro-
gressions; in 1977, Furstenberg [12] gave a proof based on ergodic theory! (This
is not to suggest that Furstenberg’s attitude to Szemerédi parallels Hogarth’s to
Dill in the novel.)

In this chapter, I have attempted to tease apart some of the interrelated reasons
for this change, and perhaps to throw some light on present trends and future di-
rections. I have divided the causes into four groups: the influence of the computer;
the growing sophistication of combinatorics; its strengthening links with the rest
of mathematics; and wider changes in society. I have told the story mostly through
examples.

1 The influence of the computer
Even before computers were built, pioneers such as Babbage and Turing realised
that they would be designed on discrete principles, and would raise theoretical
issues which led to important mathematics.

Kurt Gödel [15] showed that there are true statements about the natural num-
bers which cannot be deduced from the axioms of a standard system such as
Peano’s. This result was highly significant for the foundations of mathematics,
but Gödel’s unprovable statement itself had no mathematical significance. The
first example of a natural mathematical statement which is unprovable in Peano
arithmetic was discovered by Paris and Harrington [32], and is a theorem in com-
binatorics (it is a slight strengthening of Ramsey’s theorem). It is unprovable
from the axioms because the corresponding ‘Paris–Harrington function’ grows
faster than any provably computable function. Several further examples of this
phenomenon have been discovered, mostly combinatorial in nature.3

More recently, attention has turned from computability to computational com-
plexity: given that something can be computed, what resources (time, memory,
etc.) are required for the computation. A class of problems is said to be polynomial-
time computable, or in P, if any instance can be solved in a number of steps

3Calculating precise values for Ramsey numbers, or even close estimates, appears to be one of
the most fiendishly difficult open combinatorial problems.
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bounded by a polynomial in the input size. A class is in NP if the same assertion
holds if we are allowed to make a number of lucky guesses (or, what amounts to
the same thing, if a proposed solution can be checked in a polynomial number of
steps). The great unsolved problem of complexity theory asks:

Is P = NP?

On 24 May 2000, the Clay Mathematical Institute announced a list of seven un-
solved problems, for each of which a prize of one million dollars was offered. The
P = NP problem was the first on the list [8].

This problem is particularly important for combinatorics since many intractable
combinatorial problems (including the existence of a Hamiltonian cycle in a graph)
are known to be in NP. In the unlikely event of an affirmative solution, ‘fast’ al-
gorithms would exist for all these problems.

Now we turn to the practical use of computers.
Computer systems such as GAP [13] have been developed, which can treat

algebraic or combinatorial objects, such as a group or a graph, in a way similar to
the handling of complex numbers or matrices in more traditional systems. These
give the mathematician a very powerful tool for exploring structures and testing
(or even formulating) conjectures.

But what has caught the public eye is the use of computers to prove theo-
rems. This was dramatically the case in 1976 when Kenneth Appel and Wolfgang
Haken [1] announced that they had proved the Four-Colour Theorem by computer.
Their announcement started a wide discussion over whether a computer proof is
really a ‘proof’ at all: see, for example, Swart [41] and Tymoczko [46] for con-
temporary responses. An even more massive computation by Clement Lam and
his co-workers [26], discussed by Lam in [25], showed the non-existence of a pro-
jective plane of order 10. Other recent achievements include the classification of
Steiner triple systems of order 19 [24].

Computers have been used in other parts of mathematics. For example, in the
Classification of Finite Simple Groups (discussed below), many of the sporadic
simple groups were constructed with the help of computers. The very practical
study of fluid dynamics depends on massive computation. What distinguishes
combinatorics? Two factors seem important:

(a) in a sense, the effort of the proof consists mainly in detailed case analysis,
or generate large amounts of data, and so the computer does most of the
work;
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(b) the problem and solution are both discrete; the results are not invalidated by
rounding errors or chaotic behaviour.

Finally, the advent of computers has given rise to many new areas of math-
ematics related to the processing and transmission of data. Since computers are
digital, these areas are naturally related to combinatorics. They include coding
theory (discussed below), cryptography, integer programming, discrete optimisa-
tion, and constraint satisfaction.

2 The nature of the subject
The last two centuries of mathematics have been dominated by the trend towards
axiomatisation. A structure which fails to satisfy the axioms is not to be consid-
ered. (As one of my colleagues put it to a student in a class, “For a ring to pass the
exam, it has to get 100%”.) Combinatorics has never fitted this pattern very well.

When Gian-Carlo Rota and various co-workers wrote an influential series of
papers with the title ‘On the foundations of combinatorial theory’ in the 1960s
and 1970s (see [36, 9], for example), one reviewer compared combinatorialists
to nomads on the steppes who had not managed to construct the cities in which
other mathematicians dwell, and expressed the hope that these papers would at
least found a thriving settlement.

While Rota’s papers have been very influential, this view has not prevailed.
To see this, we turn to the more recent series on ‘Graph minors’ by Robertson
and Seymour [35]. These are devoted to the proof of a single major theorem, that
a minor-closed class of graphs is determined by finitely many excluded minors.
Along the way, a rich tapestry is woven, which is descriptive (giving a topological
embedding of graphs) and algorithmic (showing that many graph problems lie in
P) as well as deductive.

The work of Robertson and Seymour and its continuation is certainly one of
the major themes in graph theory at present, and has contributed to a shorter proof
of the Four-Colour Theorem, as well as a proof of the Strong Perfect Graph Con-
jecture. Various authors, notably Gerards, Geelen and Whittle, are extending it to
classes of matroids (see [14]).

What is clear, though, is that combinatorics will continue to elude attempts at
formal specification.
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3 Relations with mathematics
In 1974, an Advanced Study Institute on Combinatorics was held at Nijenrode,
the Netherlands, organised by Marshall Hall and Jack van Lint. This was one of
the first presentations, aimed at young researchers, of combinatorics as a mature
mathematical discipline. The subject was divided into five sections: theory of
designs, finite geometry, coding theory, graph theory, and combinatorial group
theory.

It is very striking to look at the four papers in coding theory [19]. This was the
youngest of the sections, having begun with the work of Hamming and Golay in
the late 1940s. Yet the methods being used involved the most sophisticated math-
ematics: invariant theory, harmonic analysis, Gauss sums, Diophantine equations.

This trend has continued. In the 1970s, the Russian school (notably Goppa,
Manin, and Vladut) developed links between coding theory and algebraic geom-
etry (specifically, divisors on algebraic curves). These links were definitely ‘two-
way’, and both subjects benefited. More recently, codes over rings and quantum
codes have revitalised the subject and made new connections with ring theory and
group theory. In the related field of cryptography, one of the most widely used
ciphers is based on elliptic curves.

Another example is provided by the most exciting development in mathemat-
ics in the late 1980s, which grew from the work of Vaughan Jones, for which he
received a Fields Medal in 1990. His research on traces of Von Neumann algebras
came together with representations of the Artin braid group to yield a new invari-
ant of knots, with ramifications in mathematical physics and elsewhere. (See the
citation by Joan Birman [3] and her popular account [4] for a map of this terri-
tory.) Later, it was pointed out that the Jones polynomial is a specialisation of the
Tutte polynomial, which had been defined for arbitrary graphs by Tutte and Whit-
ney and generalised to matroids by Tutte. Tutte himself has given two accounts
of his discovery: [44, 45]. The connections led to further work. There was the
work of François Jaeger [22], who derived a spin model, and hence an evalua-
tion of the Kauffman polynomial, from the strongly regular graph associated with
the Higman–Sims simple group; and that of Dominic Welsh and his collabora-
tors (described in his book [47]) on the computational complexity of the new knot
invariants.

Sokal [40] has pointed out that there are close relations between the Tutte
polynomial and the partition function for the Potts model in statistical mechanics;
this interaction has led to important advances in both areas.

Examples such as this of unexpected connections, by their nature, cannot be
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predicted. However, combinatorics is likely to be involved in such discoveries:
it seems that deep links in mathematics often reveal themselves in combinatorial
patterns.

One of the best examples concerns the ubiquity of the Coxeter–Dynkin dia-
grams An, Dn, E6, E7, E8. Arnol’d (see [7]) proposed finding an explanation of
their ubiquity as a modern equivalent of a Hilbert problem, to guide the develop-
ment of mathematics. He noted their occurrence in areas such as Lie algebras (the
simple Lie algebras over C), Euclidean geometry (root systems), group theory
(Coxeter groups), representation theory (algebras of finite representation type),
and singularity theory (singularities with definite intersection form), as well as
their connection with the regular polyhedra. To this list could be added mathe-
matical physics (instantons) and combinatorics (graphs with least eigenvalue −2).
Indeed, graph theory provides the most striking specification of the diagrams: they
are just the connected graphs with all eigenvalues smaller than 2.

Recently this subject has been revived with the discovery by Fomin and Zelevin-
sky [11] of the role of the ADE diagrams in the theory of cluster algebras: this is
a new topic with combinatorial foundations and applications in Poisson geometry,
integrable systems, representation theory and total positivity.

Other developments include the relationship of combinatorics to finite group
theory. The Classification of Finite Simple Groups [16] is the greatest collabora-
tive effort ever in mathematics, running to about 15000 journal pages. (Ironically,
although the theorem was announced in 1980, the proof contained a gap which has
only just been filled.) Combinatorial ideas (graphs, designs, codes, geometries)
were involved in the proof: perhaps most notably, the classification of spherical
buildings by Jacques Tits [43]. Also, the result has had a great impact in combina-
torics, with consequences both for symmetric objects such as graphs and designs
(see the survey by Praeger [34]), and (more surprisingly) elsewhere as in Luks’
proof [30] that the graph isomorphism problem for graphs of bounded valency is
in P.

This account would not be complete without a mention of the work of Richard
Borcherds [5] on ‘monstrous moonshine’, connecting the Golay code, the Leech
lattice, and the Monster simple group with generalised Kac–Moody algebras and
vertex operators in mathematical physics and throwing up a number of product
identities of the kind familiar from the classic work of Jacobi and others.

6



4 In science and in society
Like any human endeavour, combinatorics has been affected by the great changes
in society last century. The first influence to be mentioned is a single individual,
Paul Erdős, who is the subject of two recent best-selling biographies [20, 37].

Erdős’ mathematical interests were wide, but combinatorics was central to
them. He spent a large part of his life without a permanent abode, travelling the
world and collaborating with hundreds of mathematicians. In the days before
email, he was a vital communication link between mathematicians in the East and
West; he also inspired a vast body of research (his 1500 papers dwarf the output
of any other modern mathematician).

Jerry Grossman [18] has demonstrated the growth in multi-author mathemat-
ical papers this century, and how Erdős was ahead of this trend (and almost cer-
tainly contributed to it).

Erdős also stimulated mathematics by publicising his vast collection of prob-
lems; for many of them, he offered financial rewards for solutions. As an example,
here is one of his most valuable problems. Let A = {a1,a2, . . .} be a set of posi-
tive integers with the property that the sum of the reciprocals of the members of
A diverges. Is it true that A contains arbitrarily long arithmetic progressions? The
motivating special case (recently solved affirmatively by Green and Tao [17]) is
that where A is the set of prime numbers: this is a problem in number theory, but
Erdős’ extension to an arbitrary set transforms it into combinatorics.

Increased collaboration among mathematicians goes beyond the influence of
Erdős; combinatorics seems to lead the trend. Aspects of this trend include large
international conferences (the Southeastern Conference on Combinatorics, Graph
Theory and Computing, which held its 42nd meeting in 2011, attracts over 500
people annually), and electronic journals (the Electronic Journal of Combina-
torics [10], founded in 1994, was one of the first refereed specialist electronic
journals in mathematics). Electronic publishing is particularly attractive to com-
binatorialists. Often, arguments require long case analysis, which editors of tradi-
tional print journals may be reluctant to include in full.

On a popular level, the Sudoku puzzle (a variant of the problem of completing
a critical set in a Latin square) engages many people in combinatorial reasoning
every day. Mathematicians have not been immune to its attractions. At the time
of writing, MathSciNet lists 38 publications with ‘Sudoku’ in the title, linking it
to topics as diverse as spreads and reguli, neural networks, fractals, and Shannon
entropy.

Our time has seen a change in the scientific viewpoint from the continuous to
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the discrete. Two mathematical developments of the twentieth century (catastro-
phe theory and chaos theory) have shown how discrete effects can be produced by
continuous causes. (Perhaps their dramatic names reflect the intellectual shock of
this discovery.) But the trend is even more widespread.

In their book introducing a new branch of discrete mathematics (game theory),
John von Neumann and Oskar Morgenstern [31] wrote:

The emphasis on mathematical methods seems to be shifted more to-
wards combinatorics and set theory – and away from the algorithm of
differential equations which dominates mathematical physics.

How does discreteness arise in nature? Segerstråle [38] quotes John Maynard-
Smith as saying “today we really do have a mathematics for thinking about com-
plex systems and things which undergo transformations from quantity into qual-
ity” or from continuous to discrete, mentioning Hopf bifurcations as a mechanism
for this.

On the importance of discreteness in nature, Steven Pinker [33] has no doubt.
He wrote:

It may not be a coincidence that the two systems in the universe that
most impress us with their open-ended complex design – life and
mind – are based on discrete combinatorial systems.

Here, ‘mind’ refers primarily to language, whose combinatorial structure is well
described in Pinker’s book. ‘Life’ refers to the genetic code, where DNA molecules
can be regarded as words in an alphabet of four letters (the bases adenine, cyto-
sine, guanine and thymine), and three-letter subwords encode amino acids, the
building blocks of proteins.

The Human Genome Project, whose completion was announced in 2001, was
a major scientific enterprise to describe completely the genetic code of humans.
(See [2] for an account of the mathematics involved, and [28] for subsequent de-
velopments.) At Pinker’s university (the Massachusetts Institute of Technology),
the Whitehead Laboratory was engaged in this project. Its director, Eric Lander,
rounds off this chapter and illustrates its themes. His doctoral thesis [27] was in
combinatorics, involving a ‘modern’ subject (coding theory), links within com-
binatorics (codes and designs), and links to other parts of mathematics (lattices
and local fields). Furthermore, he is a fourth-generation academic descendant of
Henry Whitehead.

But there are now hints that discreteness plays an even more fundamental role.
One of the goals of physics at present is the construction of a theory which could
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reconcile the two pillars of twentieth-century physics, general relativity and quan-
tum mechanics. In describing string theory, loop quantum gravity, and a variety
of other approaches including non-commutative geometry and causal set theory,
Smolin [39] argues that all of them involve discreteness at a fundamental level
(roughly the Planck scale, which is much too small and fleeting to be directly
observed). Indeed, developments such as the holographic principle suggest that
the basic currency of the universe may not be space and time, but information,
measured in bits. Maybe the ‘theory of everything’ will be combinatorial!
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