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In response to problems in the foundations of
mathematics such as Russell’s Paradox (‘Consider
the set of all sets which are not members of them-
selves. Is it a member of itself?’), David Hilbert
proposed that the consistency of a part of math-
ematics (such as the natural numbers) was to be
established by finitary methods which could not
lead to contradiction. Then this part can be used
as a secure foundation for all of mathematics.

Such a branch of mathematics can be described
in terms of first-order logic. We begin with sym-
bols, logical (connectives such as ‘not’ and ‘im-
plies’, quantifiers such as ‘for all’, the equality sym-
bol, symbols for variables, and punctuation) and
non-logical (symbols for constants, relations and
functions suitable for the branch of mathematics
under consideration.) Formulae are finite strings
of symbols built according to certain rules (so that
they can be mechanically recognised). We take a
recognisable subset of the formulae as axioms, and
also rules of inference allowing some formulae to
be inferred from others. A theorem is a formula
which is at the end of a chain (or tree) of inference
starting with axioms.

Axioms for the natural numbers were given by
Peano. The non-logical symbols are zero, the ‘suc-
cessor function’ s, addition and multiplication (the
last two can be defined in terms of the others by
inductive axioms). The crucial axiom is the Prin-
ciple of Induction, asserting that if a formula P (n)
is such that P (0) is true and P (n) implies P (s(n))
for all n, then P (n) is true for all n. Specifically,
Hilbert asked for a proof of the consistency of this
theory, that is, a proof that no contradiction can
be deduced from the axioms by the rules of first-
order logic.

Hilbert’s program was undone by two remark-
able Incompleteness Theorems proved by Kurt
Gödel:

Theorem 1. 1. There are (first-order) state-
ments about the natural numbers which can
neither be proved nor disproved from Peano’s
axioms (assuming that the axioms are consis-

tent).

2. It is impossible to prove from Peano’s axioms
that they are consistent.

Gödel’s proof is long, but is based on two simple
ideas. The first is Gödel numbering, where each
formula or sequence of formulae is encoded by a
natural number in a mechanical way. It can be
shown that there is a two-variable formula ω(x, y)
such that ω(m,n) holds if and only if m is the
Gödel number of a formula φ and n the Gödel num-
ber of a proof of φ. Now the formula (∀y)(¬ω(x, y))
has a Gödel number p: let ζ be the result of sub-
stituting p for x in this formula. This brings us
to the second idea in the proof, self-reference: ζ
asserts its own unprovability! Hence ζ is indeed
unprovable, and so it is true; being true, it is not
disprovable (unless the axioms are inconsistent).

It is more elementary to see that Peano’s ax-
ioms are not categorical : even if they are consis-
tent, there are models for the axioms which are
not isomorphic to the natural numbers. Such non-
standard models contain infinitely large numbers
(bigger than all natural numbers).

The proof is not specific to the Peano axioms,
but applies to any system of axioms powerful
enough to describe the natural numbers. (By con-
trast, it is possible to find complete axiom systems
(such that every true statement is provable) for the
theory of the natural numbers with zero, successor
and addition. So multiplication is essential to the
argument.

Completeness cannot be restored simply by
adding a true but unprovable statement as a new
axiom. For the resulting system is still strong
enough for Gödel’s Theorem to apply to it.

Assuming that the natural numbers exist, it
seems that we could obtain a complete axioma-
tisation by simply taking all true statements as
axioms. However, one requirement of a first-order
theory is that the axioms should be recognisable
by some mechanical method. As Turing subse-
quently showed, the true statements about the
natural number cannot be mechanically recognised
(their Gödel numbers do not form a recursive set).

Gödel’s true but unprovable statement is impor-
tant for foundations but has no particular math-
ematical significance of its own. Later, Paris and
Harrington gave the first example of a mathemat-
ically significant statement which is unprovable
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from Peano’s axioms. Their statement is a vari-
ant on Ramsey’s Theorem. Subsequently, many
other ‘natural incompletenesses’ have been found.

Of course, the consistency of Peano’s axioms can
be proved in a stronger system. Trivially, we could
just add it as an axiom: ¬(∃n)ω(k, n) will do,
where k is the Gödel number of the formula 0 = 1.
Less trivially, since a model of the natural numbers
can be constructed within set theory, the consis-
tency of Peano arithmetic can be proved from the
Zermelo–Fraenkel axioms ZFC for set theory. Of
course, ZFC cannot prove its own consistency, but
this can be deduced from a yet stronger system
(for example, adding an axiom asserting the exis-
tence of a suitably ‘large’ cardinal number such as
an inaccessible cardinal).

Gödel’s theorem has been a battleground for
philosophers arguing about whether the human
brain is a deterministic machine (in which case,
presumably, we would not be able to prove any for-
mally unprovable statement). Fortunately, space
does not allow me to give more details!


