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Abstract
We investigate the filter generated by vertex neighbourhoods in the countable ran-

dom graph R, and two related topologies, with emphasis on their automorphism
groups. These include a number of highly transitive groups containing Aut(R).
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1 Introduction

The role of relational structures (graphs, directed graphs, partial orders, etc.)
in investigating permutation groups is well-known. Of course, the automor-
phism group of a non-trivial relational structure cannot be highly transitive; if
a group is highly transitive, we would expect to have to use “infinitary” struc-
tures such as filters and topologies in its study. In fact, the gap is not so large.
For example, Macpherson and Praeger [5] showed that a permutation group
of countable degree which is not highly transitive is contained in a maximal
subgroup of the symmetric group. As a reviewer of the paper said, “Somewhat
surprisingly, the proof is not entirely combinatorial, but also involves a little
model theory, in particular, an appeal to the Cherlin—Mills—Zil’ber theorem
on Ny-categorical strictly minimal sets.” The other ingredients are filters and
topologies, and indeed their main task is to show that such a group preserves
a non-trivial filter; they deduce this from the fact that it preserves a non-
trivial topology. (A more elementary proof of part of this theorem, avoiding
the model theory, was given in [3].)
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The purpose of this paper is to carry further the investigation of topologies
and filters derived from relational structures, and their automorphism groups.
As a case study, we take the celebrated “random graph”: the next section of
the paper is a brief introduction to this object. The vertex neighbourhoods
in the random graph generate a non-trivial filter (indeed, it is the unique
“minimal” countable graph with this property). We investigate this filter,
its (highly transitive) automorphism group, and several related permutation
groups. Then we turn to a topology defined from the random graph in a rather
similar way. If we treat the graph and its complement symmetrically, we obtain
a stronger topology homeomorphic to the rationals.

2 The random graph and its relations

In 1963 Erdés and Rényi [4] proved the remarkable result that there exists a
countable graph R with the following property: if a random countable graph is
chosen by selecting edges independently with probability 1/2, then the result
is isomorphic to R with probability 1. This graph and its automorphism group
have received a lot of attention; some of the known results are summarised
in [1]. In this paper we consider the neighbourhood filter of R and two related
topologies, and their automorphism groups.

In the remainder of this section, we sketch some properties of R and of a
couple of related objects: the random 3-edge-coloured complete graph, and
the random bipartite graph.

The graph R has the following properties (see [1]):

e Given finite disjoint sets U and V' of vertices, there exists a vertex z joined
to every vertex in U and to no vertex in V. (This property characterises R
up to isomorphism as a countable graph.)

e Ris universal: every finite (or countable) graph is embeddable as an induced
subgraph.

e R is homogeneous: every isomorphism between finite induced subgraphs
of R can be extended to an automorphism of R. (This property and the
preceding one also characterise R up to isomorphism as a countable graph.)

e It follows from the first property that any finite set of vertices of R has
a common neighbour. This property characterises the class of countable
graphs containing R as a spanning subgraph. We use this property of R,
and have provided a proof in an appendix to the paper.

We can think of R as the graph formed by the red edges if the edges of the
countable complete graph are randomly coloured red or blue. More generally,
if the edges are randomly coloured with any finite set of colours, the resulting



object (with probability 1) is uniquely determined up to isomorphism by the
number £ of colours used: this is called the random k-edge-coloured complete
graph. The property which characterises this object is: given finite disjoint sets
Uy, ..., U of vertices, there is a vertex z such that edges from z to U; have
the ith colour for i =1,... k.

Suppose that we take a countable set X of vertices partitioned into two count-
able subsets Y and Z. Form a random bipartite graph by choosing edges be-
tween Y and Z independently with probability 1/2. Again there is a graph B
which occurs with probability 1: the generic bipartite graph. It has properties
similar to those of R. In particular, it is not homogeneous as a graph, but
if we regard it as a graph with bipartition (i.e. there are two relations, one
the equivalence relation defining the two bipartite blocks and the other the
adjacency relation) then it is homogeneous. Thus, the setwise stabiliser of Y
in the automorphism group of B acts highly transitively (i.e. k-transitively for
all k) on Y (and on Z). The graph B is characterised by a similar property: If
U and V are finite disjoint subsets of a bipartite block (either Y or Z), then
there is a vertex z in the other bipartite block joined to all vertices in U and
to none in V.

Thomas [8] determined all the reducts of R (the closed subgroups of Sym(R)
which contain Aut(R)). These are as follows:

o Aut(R);

e D(R), the group of automorphisms and anti-automorphisms of R (where an
anti-automorphism of a graph I' is an isomorphism from I'" to the comple-
mentary graph);

e S(R), the group of switching automorphisms of R (see below);

e B(R), the group of switching automorphisms and anti-automorphisms of R;

e Sym(R).

The operation of switching a graph I' with respect to a subset Y of its ver-
tex set V' (I') consists of interchanging adjacency and non-adjacency between
Y and its complement Z = V(I') \ Y, while preserving adjacency and non-
adjacency within Y and within Z. A switching automorphism of I' is an iso-
morphism from I' to a graph obtained from I' by switching, while a switch-
ing anti-automorphism of I' is an isomorphism to a graph obtained from the
complement of I" by switching. Note that the groups D(R) and S(R) are 2-
transitive, while B(R) is 3-transitive. We refer to [8] for details. On the other
hand, the groups considered in this paper are not reducts: they are highly
transitive, so their closure is the symmetric group.



3 Neighbourhood filters

A filter on a set is a family F of subsets of V' satisfying

o XY € Fimplies X NY € F;
e X cF,Y D X impliesY € F.

A filter F on a set V is trivial if it consists of all subsets of V; it is principal
if it consists of all sets containing a fixed subset A of F; and it is an ultrafilter
if, for any X C V, just one of X and V' \ X belongs to F. Ultrafilters are just
maximal non-trivial filters; the axiom of choice implies that every non-trivial
filter is contained in an ultrafilter.

Given a family A of subsets of V', the filter generated by A is the set

Two families .A4; and A generate the same filter if and only if each member
in A, lies in the filter generated by A; (that is, contains a finite intersection
of sets of A;) and vice versa.

Let I be a graph on a countable vertex set V. We define the neighbourhood
filter Fr of T of I to be the filter generated by the sets {I'(v) : v € V'}, where
['(v) denotes the neighbourhood of v in T', the set of vertices adjacent to v.

Proposition 1 Suppose that I' has the property that each vertex has a non-
neighbour. Then the filter generated by the closed neighbourhoods T'(v) = T'(v)U
{v} is equal to Fr.

PROOF. We have I'(v) C T'(v), and, if w is not adjacent to v, then T'(v) N

['(w) C I'(v).

The condition on I' is necessary. If T" is the complete graph, the closed neigh-
bourhoods generate the filter {V'}, while the open neighbourhoods generate
the filter of cofinite subsets of V.

Let R denote the countable random graph.
Proposition 2 The following three conditions on a graph I' are equivalent:

(a) Fr is nontrivial;
(b) T' contains R as a spanning subgraph;



(C) fp Q fR.

PROOF. A filter is trivial if and only if it contains the empty set. So Fr is
non-trivial if and only if any finitely many neighbourhoods have non-empty
intersection. This is equivalent to the statement that R is a spanning subgraph
of T, as noted in the last section. So (a) and (b) are equivalent.

If " contains R as a spanning subgraph, then R(v) C I'(v) for all v. So (b)
implies (c). Conversely, Fg is non-trivial (by our proof that (b) implies (a)),
so (c) implies (a).

Remark This result shows that Fr is the unique maximal neighbourhood
filter. But this uniqueness is only up to isomorphism. So part (c) really means
that Fr is contained in a filter isomorphic to Fx.

For example, it is possible to find two filters isomorphic to Fg, one contained
in the other. For let T be the random 3-colouring of the edges of the complete
graph, with colours red, green and blue. Let R; be the graph consisting of red
edges, and Ry the graph consisting of red and green edges, in 7. Then both
Ry and R, are isomorphic to R. Since R;(v) C Ry(v), we have Fgr, C Fg,.
We show that the inequality is strict.

The set Ry (v) belongs to Fg,. Suppose that it belongs to Fg,. Then there are
vertices wq, ..., w, such that

Rg(wl) N...N Rg(wn) g R1<U).
But, since the green graph is isomorphic to R, there is a vertex x joined to all

of v,wy,...,w, by green edges; then = belongs to the left-hand expression of
the displayed inclusion but not to R;(v), a contradiction.

Similarly it can be shown that there are countable chains of filters isomorphic
to F, R-

4 Groups

Clearly Aut(R) is a subgroup of Aut(Fg). We will see in this section that
Aut(Fg) is much larger than Aut(R).

First we define a few groups. We say that a permutation g changes the adja-
cency of v and w if (v ~ w) & (v9 ¢ w9). We say that g changes finitely many



adjacencies at v if there are only finitely many points w for which g changes
the adjacency of v and w. Let C(g) be the set of pairs {v, w} whose adjacency
is changed by g. Then C(g~') = C(g)? " and C(gh) C C(g) UC(h)? .

e Auty(R) is the group of permutations which change only finitely many ad-
jacencies (these are called almost-automorphisms, and Truss [9] denotes the
group by AAut(R));

e Auty(R) is the group of permutations which change only finitely many ad-
jacencies at any vertex;

e Autz(R) is the group of permutations which change infinitely many adja-
cencies at only finitely many vertices;

e FSym(V) and Sym(V') are the finitary symmetric group and the full sym-
metric group on the set V.

A little thought shows that all these sets of permutations really are groups,
as claimed. (For Aut;(R), use the above facts about C(g).)

Proposition Ja) Auty(R) < Aut(Fg).
(b) Neither of Auts(R) and Aut(Fgr) contains the other.
(¢) FSym (V) < Auts(R) N Aut(Fg), but FSym(V) N Auto(R) = {1}.

PROOF. (a) Let g € Auty(R). It suffices to show that, for any vertex v, we
have R(v)? € Fr. Now by assumption, R(v)? differs only finitely from R(v9);
let R(v)? \ R(v?) = {x1,...,x,}. Then we have

R@)NR(zy)N---NR(x,) C R(v)?,

and we are done.

(b) Choose a vertex v, and consider the graph R’ obtained by changing all
adjacencies at v. Then R’ = R. Choose an isomorphism ¢ from R to R’
since R’ is vertex-transitive, we can assume that g fixes v. So g maps R(v)
to Ry(v) =V \ ({v} U R(v)). Clearly g € Auts(R), since it changes only one
adjacency at any point different from v. But if g € Aut(Fg), then we would
have R;(v) € Fg, a contradiction since R(v) N Ry(v) = ().

In the reverse direction, let R” be the graph obtained by changing all ad-
jacencies between non-neighbours of v. Again R” = R, and we can pick an
isomorphism from R to R” which fixes v. Now g changes infinitely many adja-
cencies at all non-neighbours of v (and none at v or its neighbours). Also, if w
is a non-neighbour of v, then R(v) N R(w)? = R(v) N R(wY), so g € Aut(Fg).

(c) Any non-identity finitary permutation belongs to Auts(R) \ Aute(R). For
if g moves v, then g changes infinitely many adjacencies at v (namely, all v



and w, where w is adjacent to v but not v9 and is not in the support of g).
On the other hand, if g fixes v, then v changes the adjacency of v and w only
if ¢ moves w, and there are only finitely many such w.

Finally, if ¢ € FSym(V), then R(v)? differs only finitely from R(v), for any
vertex v € V; so g € Aut(Fg).

The inclusion in (c) is proper: Auts(R) is contained in the right-hand side but
intersects FSym(V') in {1}.

The graph R’ in the proof of (b) is obtained from R by switching with respect
to the set {v}; so the permutation g belongs to the group S(R) of switching
automorphisms. Thus S(R) £ Aut(Fg). In fact, more is true:

Proposition 4 Aut(Fg) N D(R) = Aut(Fr) N S(R) = Aut(R).

PROOF. Any anti-automorphism ¢ of R maps R(v) to a set disjoint from
R(v9); so no anti-automorphism can belong to Aut(Fg).

Suppose that g € Aut(Fg) is an isomorphism from R to ox(R), where ox
denotes switching with respect to X. We may suppose that ox is not the
identity, that is, X # () and Y = V' \ X # (). Choose = and y so that 29 € X
and y9 € Y. Then R(z)? AY = R(29) and R(y)? A X = R(y?). Hence
R(z9)NR(z)? € X and R(y9) N R(y?) C Y. Hence

R(z%) N R(x)? N R(y’) N R(y)* =0,

a contradiction.

5 Topology

If F is a filter, then FU{(} is a topology with the same automorphism group.
In this section we discuss two further topologies on V' (R) defined from the
graph R.

In the first topology 7, a sub-basis for the open sets consists of the open
neighbourhoods of vertices. Thus the open sets are all unions of sets which are
finite intersections of open neighbourhoods.

The topology 7 is not Hausdorff: in fact, any two open sets have non-empty
intersection. For it suffices to show this for basic open sets; and the intersection



of two finite intersections of neighbourhoods is itself a finite intersection of
neighbourhoods, and so is non-empty.

However, this topology does satisfy the T1 separation condition: for, given
distinct points x and y, there is a vertex v joined to x but not y, and so a
neighbourhood containing = but not y. Hence all singletons (and so all finite
sets) are closed.

We used open neighbourhoods in the construction of 7. In fact, closed neigh-
bourhoods would have given us the same topology, as we will now see.

Let B denote the generic bipartite graph. Consider the three topologies which
have the following as the points and sub-basic open sets:

T points are vertices of R, sub-basic open sets are open vertex neighbour-
hoods.

T*: points are vertices of R, sub-basic open sets are closed vertex neighbour-
hoods.

T': points are one bipartite block in B, sub-basic open sets are neighbour-
hoods of vertices in the other bipartite block.

Proposition Ja) The three topologies defined above are all homeomorphic.
(b) The homeomorphism groups of these topologies are highly transitive.

PROOF. From R, we construct two bipartite graphs B; and B, as follows.
The vertex set of each graph is V(R) x {0,1}; vertices (v,0) and (w,1) are
adjacent if and only if

e v~ win R (for By);
e v=worv~win R (for By).

The characteristic property of R shows that both bipartite graphs satisfy the
characteristic property of the generic bipartite graph B; so By =& By, = B. It
follows immediately that the three topologies are homeomorphic.

Moreover, the stabiliser in Aut(B) of a bipartite block acts on it as a group
of homeomorphisms of the topology 7', and this group is highly transitive.
(This follows from the homogeneity of B as a graph with bipartition: any two
vertices in the same bipartite block have distance 2, so any bijection between
finite subsets of a bipartite block extends to an automorphism of B).

Remark The topologies 7 and 7%, though homeomorphic, are not identical.
Indeed, the identity map is a continuous bijection from 7* to 7 but not a
homeomorphism.



To see this, note first that, since the topology 7* is T1, every singleton is
closed, and so R(v) = (R(v) U {v}) \ {v} is open in 7*. It follows that any

open set in 7 is also open in 7*.

In the other direction, suppose that R(v)U{v} is open in 7. Then it is a union
of basic open sets. We can take one of these sets to be R(v); let the other be
Nwex R(x) for some finite set X. Then v is joined to all vertices in X, but the
remaining common neighbours of these vertices are all in R(v). So no point is
joined to all vertices in X but not to v, a contradiction.

The second topology U is obtained by symmetrising this one with respect
to the graph R and its complement R¢; in other words, we also take closed
neighbourhoods in R to be open sets. So a basis for the open sets consists of
all sets of the form

ZWUV)={2z€V(R): YueU)z~u)A(YveV)(z{uv)}

for finite disjoint sets U and V. Again it holds that all the non-empty open sets
are infinite. This time the topology is totally disconnected. For given u # v,
there is a point z € Z({u}, {v}); then the open neighbourhood of z is open
and closed in the topology and contains u but not v.

By Sierpinski’s Theorem stated below ([7], see also [6]), this topology is home-
omorphic to Q. So R as a countable topological space is homeomorphic to

Q.

Theorem 6 LetU be a countable, second countable, totally disconnected topo-
logical space with no isolated points. Then U is homeomorphic to the usual

topology on Q.
We end this section with several questions about the topology 7.

e Since 7 is a coarsening of U, there must be an identification of it with Q
such that the open sets in 7 are open in Q. Can such an identification be
found explicitly?

e Is there a characterisation of 7', along the lines of Sierpinski’s Theorem?

e The homeomorphism group Aut(7 ") contains the group Aut’(B) induced
on a bipartite block of B by its setwise stabiliser in the automorphism group
of B. This group is highly transitive. Is it equal to Aut(TT)?

We cannot answer these questions, but we present here a programme which
might lead to an affirmative answer for the third question (which would have
implications for the second as well).

Call an open set U full if, for all = ¢ U, the set U U {z} is not open. By the



argument used previously to show that the topologies 7 and 7 are different,
we see that any positive Boolean combination of neighbourhoods in 77 (that
is, any finite union of basic open sets) is full. Is it true that these are the only
full open sets in T1?

If so, then we can recognise the basic open sets as the full open sets which are
not proper finite unions of full open sets; and then the neighbourhoods are the
basic open sets which are maximal under inclusion. So we can recover the graph
B from the topology, and every homeomorphism is a graph automorphism.

Finally, we can ask: How are the homeomorphism groups of T and T* related
to the groups of Section 4?7 Since Fr consists of all sets containing a non-
empty 7-open set, we see that Aut(7) < Aut(Fg); do any further relations
hold?

6 Other graphs

Given a graph I', we define the k-neighbourhood of a vertex v in I' to be the set
of points distant at most k from v. Which graphs have the property that their
k-neighbourhoods generate a non-trivial filter, for some fixed k7 It is easy to
see that such a graph has diameter at most 2k (else two k-neighbourhoods are
disjoint). Moreover, we can assume that the diameter is at least k + 1 (else
every k-neighbourhood is the whole vertex set).

We make the following observation. For every positive integer d, there is a
countable homogeneous universal integral metric space (one with integer dis-
tances) of diameter d, unique up to isometry: see [2]. The metric is the path
metric in a graph M, of diameter d. Thus, M, is the random graph R.

It is easy to show that the filter generated by the k-neighbourhoods in My is
isomorphic to Fg.

Is the following true? Let I' be a countable graph whose k-neighbourhoods gen-
erate a non-trivial filter. Then My is a spanning subgraph of T'.

What can be said about other distance classes?

Appendix

Here is the proof of the fact that a countable graph I' contains R as a spanning
subgraph if and only if any finite set of vertices has a common neighbour in I'.
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Let V(I') = {vg, vy, ...} and V(R) = {wp, wy,...}. We construct a bijection ¢
from V(R) and V(I") by back-and-forth.

At even-numbered stages, choose the first unused vertex w of R. Let U and V
be the sets of neighbours and non-neighbours of w among vertices on which ¢
has been defined. Choose v € V/(I') joined to all vertices in ¢(U), and extend
¢ to map w to v. In this extension, edges are mapped to edges.

At odd-numbered stages, choose the first unused vertex v of I'. Let U and
V' be its neighbours and non-neighbours among vertices in the image of ¢.
Choose a vertex w of R joined to no vertex in ¢~ *(V), and extend ¢ to map
w to v. Again, edges map to edges since the inverse image of a non-edge is
a non-edge. After countably many steps we have the required bijection which
takes edges of R to edges of T'.
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