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1. Introduction

For a group Γ and a positive integer n, denote by sn(Γ) the number of index n subgroups
in Γ.1 We call Γ an FSG-group if sn(Γ) is finite for all n. In particular, finitely generated
groups have this property. Modular subgroup arithmetic, a chapter in the theory of
subgroup growth, deals with divisibility properties of the sequence {sn(Γ)}n≥1 or related
subgroup counting functions and their connection with the algebraic structure of the
underlying group Γ; cf. the forthcoming book [11] by Lubotzky and Segal for more
background information.

In general, divisibility properties of subgroup counting functions appear to be rather
peculiar to the particular group under investigation, and (unlike their growth behaviour)
tend to be severely distorted when passing to a subgroup of finite index.

Example. Consider the cartesian map from the modular group Γ = PSL2(Z) ∼= C2∗C3

onto C2 × C3
∼= C6. By a theorem of Nielsen, the kernel of this map is free of rank 2;

cf. [18] and [12]. Moreover, by a theorem of Stothers [21],

sn(PSL2(Z)) ≡ 1 mod 2 ⇐⇒ n = 2σ+1 − 3 or n = 2(2σ+1 − 3) for some σ ≥ 1.

On the other hand, it follows from M. Hall’s recursion formula ([7, Theorem 5.2])

sn(Fr) = n (n!)r−1 −
∑

0<µ<n

(
(n− µ)!

)r−1
sµ(Fr), n ≥ 1 (1)

that sn(F2) is always odd.

Against this background it is rather surprising that a non-trivial positive result in this
direction does in fact exist (see Theorem 1 below). Given a prime p and an FSG-group
Γ, define the p-pattern Π(p)(Γ) of Γ to be the family of sets

Π(p)(Γ) =
{

Π
(p)
1 (Γ),Π

(p)
2 (Γ), . . . ,Π

(p)
p−1(Γ)

}
,

where

Π
(p)
j (Γ) :=

{
n ∈ N : sn(Γ) ≡ j mod p

}
, 0 < j < p;

in particular, ΠΓ := Π
(2)
1 (Γ) is the parity pattern of Γ. The main result of this paper is

the following.

1The reader should be warned that, in the literature on subgroup growth, sn(Γ) often denotes the
number of subgroups in Γ of index at most n, that is, the summatory function of sn(Γ) in our notation.
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Theorem 1 (Descent Principle). Let p be a prime, Γ an FSG-group, and let ∆ � Γ be
a normal subgroup of index pr. Then

Π
(p)
j (Γ) = pr Π

(p)
j (∆) ∪

⋃
0≤ρ<r

pρ
(

Π
(p)
j (∆) ∩ (N− pN)

)
, 0 < j < p. (2)

Equivalently, if XΓ,p(z) denotes the mod p projection of the series
∑

n≥0 sn+1(Γ)zn, and
if X∆,p(z) is the corresponding GF (p)-series for the group ∆, then under our assump-
tions

XΓ,p(z) =
r∑

ρ=0

zp
ρ−1X∆,p(z

pρ) +
r−1∑
ρ=0

zp
ρ+1−1X

(p−1)
∆,p (zp

ρ

). (3)

Theorem 1 generalizes the main result of [15], where the conclusions (2) and (3) are
established under the extra hypothesis that Γ/∆ is cyclic. As the above example demon-
strates, the assumption in Theorem 1 that (Γ : ∆) be a prime power cannot be weak-
ened. Also, it is easy to see by examples that, in the context of this theorem, the
subgroup ∆ must be chosen as a normal subgroup.

A certain cohomological property of finite p-groups (to be of ‘Frobenius type’) plays
a crucial role in the proof of the main theorem. This concept, whose definition will
be given in the next section, is implicit in Frobenius’ theorem concerning the equation
xm = 1 in finite groups2 and P. Hall’s twisted version [9, Theorem 1.6] of the latter
result. It follows from Hall’s theorem that every cyclic group of prime power order is of
Frobenius type. The following generalization, to be established in Section 2, is a crucial
ingredient in our proof of the main theorem.

Proposition 1. Every group of prime power order is of Frobenius type.

The relevance of this proposition in the present context stems from the following re-
duction result, whose proof occupies Section 3.

Proposition 2. Let p be a prime, Γ an FSG-group, and let ∆�Γ be a normal subgroup
of index pr with Γ/∆ of Frobenius type. Then formulae (2) and (3) hold true.

Our main result follows immediately from these two propositions.

In the remainder of the paper we present two applications. First, consider the funda-
mental group Γ of a finite graph (Γ(−), Y ) of finite p-groups. If Γ contains a free normal
subgroup F of index mΓ = lcm

{
|Γ(v)| : v ∈ V (Y )

}
, then sn(Γ) is periodic modulo p,

and its p-pattern is determined completely by that of sn(F); cf. Theorem 2. Existence
of such a free normal subgroup F is not guaranteed, and in Section 4 we provide various
sufficient conditions, one of which involves homogeneity; we use the classification of
finite homogeneous groups due to Cherlin and Felgner [3].

As another application, we extend one of the main results of [16] concerning the p-
patterns of free powers G∗q of a finite group G with q a p-power to groups of the more
general form H ∗G∗q, where H is any finite p-group; cf. Theorem 3.

2See [4, §2, Theorem II] and [8].
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2. Groups of Frobenius type

In what follows, a certain cohomological property of finite groups of prime power order
(to be of ‘Frobenius type’) will play a crucial role. Recall the concept of a derivation (in
a non-commutative setting): given groups G and H, and a fixed action α : G→ Aut(H)
by automorphisms of G on H, a map d : G→ H is called a derivation (with respect to
the action α), if

d(g1g2) =
(
d(g1)

)α(g2)
d(g2) (g1, g2 ∈ G).

Note that, for a derivation d : G → H with respect to α, we have d(1) = 1 and,
consequently, (

d(g−1)
)α(g)

= (d(g))−1 (g ∈ G).

Definition 1. Let p be a prime.

(i) A non-trivial finite p-group G is termed admissible, if, for each finite group H
with p

∣∣|H| and every action α : G → Aut(H), the corresponding set Derα(G,H)
of derivations d : G → H, formed with respect to this action α, has cardinality a
multiple of p.

(ii) A finite p-group G is said to be of Frobenius type, if every subgroup U > 1 of G
is admissible.

By a theorem of Philip Hall, cyclic groups of prime power order are of Frobenius type.
Indeed, an equivalent way of stating Hall’s original result [9, Theorem 1.6] is as follows.

Let C be a finite cyclic group, H a finite group, and let α : C→ Aut(H) be an action by
automorphisms of C on H. Then

|Derα(C,H)| ≡ 0 mod gcd(|C|, |H|).

For α = 1, the trivial action of C on H, Hall’s theorem reduces to the well-known
result of Frobenius concerning the equation xn = 1 in finite groups. The problem to
discern which finite groups of prime power order are of Frobenius type was raised in
[17]. Proposition 1 provides a somewhat surprising solution of this problem. In order
to establish this result, we first deal with the untwisted case (α = 1).

Lemma. Let p be a prime, G a non-trivial finite p-group, and let H be a finite group
of order divisible by p. Then |Hom(G,H)| ≡ 0 mod p.

Proof. Classifying homomorphisms by their kernel, and applying the isomorphism the-
orem, we find that

|Hom(G,H)| =
∑
V�G

|Inj(G/V,H)|. (4)

We now make use of the facts that (i) every subgroup of index p in a finite p-group is
normal, (ii) the automorphism group of G/V contains an element of order p, provided
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|G/V| > p, and (iii) Aut(G/V) acts freely on the set Inj(G/V,H), provided the latter is
non-empty. The second fact follows, for instance, from Gaschütz’s theorem [6] asserting
the existence of an outer automorphism of order p; however, since we only need to know
that p

∣∣|Aut(G/V)| for |G/V| > p, we can get by with a more elementary argument.
Indeed, if G/V is non-abelian, then it has an inner automorphism of order p. If, on the
other hand, G/V is abelian and |G/V| > p, then G/V must contain a direct summand
of one of the forms Cpσ or σCp with σ ≥ 2. In the first case, |Aut(G/V)| is divisible by

|Aut(Cpσ)| = ϕ(pσ) = pσ−1(p− 1) ≡ 0 mod p,

where ϕ is Euler’s totient function, while, in the second case, |Aut(G/V)| must be
divisible by

|Aut(σCp)| = |GLσ(p)| = (pσ − 1)(pσ − p) · · · (pσ − pσ−1) ≡ 0 mod p.

Hence, evaluating (4) modulo p, we get

|Hom(G,H)| ≡ 1 + sp(G)|Inj(Cp,H)| mod p.

We have sp(G) ≡ 1 mod p by Frobenius’ generalization of Sylow’s third theorem and
the fact that G 6= 1. (Alternatively, one might compute

sp(G) =
pr(G) − 1

p− 1
= 1 + p+ p2 + · · ·+ pr(G)−1 ≡ 1 mod p,

where r(G) is the rank of the factor group G = G/Φ(G), since every subgroup of G
of index p contains Φ(G). Moreover, by Frobenius’ theorem concerning the equation
xm = 1 in finite groups and the fact that p

∣∣|H|, we have

|Inj(Cp,H)| ≡ −1 mod p,

whence the lemma.

Proof of Proposition 1. Let p be a prime, G a non-trivial finite p-group, H a finite group
of order divisible by p, and let α : G → Aut(H) be an action by automorphisms of G
on H, where multiplication in the group Aut(H) is given by the rule

(σ1 · σ2)(h) := σ2(σ1(h)) (σ1, σ2 ∈ Aut(H), h ∈ H).

We have to show that

|Derα(G,H)| ≡ 0 mod p. (5)

Let

F(G,H) = HG

be the set of all functions from G to H. We make G act (from the right) on F(G,H)
by setting

(f~ g)(x) :=
(
f(gxg−1)

)α(g) (
g, x ∈ G, f ∈ F(G,H)

)
.
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For g1, g2, x ∈ G and f ∈ F(G,H),(
(f~ g1)~ g2

)
(x) =

(
(f~ g1)(g2xg

−1
2 )
)α(g2)

=
(
f(g1g2xg

−1
2 g−1

1 )
)α(g1g2)

=
(
f~ (g1g2)

)
(x),

as well as f~1 = f, and we have indeed defined an action of G on F(G,H). In what fol-
lows, two distinguished subsets of F(G,H) will play a role: the set Derα(G,H) of deriva-
tions d : G → H with respect to α, and the set Hom∗(G,H) of anti-homomorphisms
from G to H. Note that

|Hom(G,H)| = |Hom∗(G,H)|, (6)

a bijection being given by the map

ψ 7→ ψ∗, ψ∗(g) := (ψ(g))−1
(
g ∈ G, ψ ∈ Hom(G,H)

)
.

We have to check that the action of G on F(G,H) defined above restricts to an action
of G on the subsets Derα(G,H) and Hom∗(G,H). Indeed, for g, x, y ∈ G and d ∈
Derα(G,H), we have

(d~ g)(xy) =
(
d(gxyg−1)

)α(g)

=
(
d(gxg−1)

)α(gy)(
d(gyg−1)

)α(g)

=
(
(d~ g)(x)

)α(y)
(d~ g)(y),

that is, d~ g : G→ H is again a derivation with respect to α. Similarly, for g, x, y ∈ G
and ψ∗ ∈ Hom∗(G,H),

(ψ∗ ~ g)(xy) =
(
ψ∗(gxyg−1)

)α(g)

=
(
ψ∗(gyg−1)

)α(g)(
ψ∗(gxg−1)

)α(g)

= (ψ∗ ~ g)(y)(ψ∗ ~ g)(x).

Denote by Derα(G,H)G and Hom∗(G,H)G the fixed point sets of Derα(G,H) and Hom∗(G,H),
respectively, under the respective G-action, so that

|Derα(G,H)| ≡ |Derα(G,H)G| mod p (7)

and

|Hom∗(G,H)| ≡ |Hom∗(G,H)G| mod p. (8)

The decisive point in the proof is the fact that

Derα(G,H)G = Derα(G,H) ∩ Hom∗(G,H) = Hom∗(G,H)G. (9)

Indeed, let d ∈ Derα(G,H). Then

d ∈ Derα(G,H)G ⇐⇒
(
d(gxg−1)

)α(G)
= d(x) (g, x ∈ G).
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Now (
d(gxg−1

)α(g)
=

((
d(gx)

)α(g−1)
d(g−1)

)α(g)

= d(gx)
(
d(g−1)

)α(g)

= d(gx)
(
d(g)

)−1
,

hence

d ∈ Derα(G,H)G ⇐⇒ d ∈ Hom∗(G,H), d ∈ Derα(G,H).

Similarly, if ψ∗ ∈ Hom∗(G,H), then

ψ∗ ∈ Hom∗(G,H)G ⇐⇒ ψ∗(g−1xg) =
(
ψ∗(x)

)α(g)
(g, x ∈ G)

⇐⇒ ψ∗(xg)ψ∗(g−1) =
(
ψ∗(x)

)α(g)
(g, x ∈ G)

⇐⇒ ψ∗ ∈ Derα(G,H),

whence (9). In view of equations (6)–(9) and the lemma, we now find that, modulo p,

|Derα(G,H)| ≡ |Derα(G,H)G|

= |Derα(G,H) ∩ Hom∗(G,H)|

= |Hom∗(G,H)G|

≡ |Hom∗(G,H)|

= |Hom(G,H)| ≡ 0,

whence (5), and the proof of Proposition 1 is complete. �

3. Proof of Proposition 2

Put Γ/∆ = G. A subgroup Γ̃ of index n in Γ, which is not contained in ∆, projects onto

a non-trivial subgroup Γ̃∆/∆ = G̃ of G, say |G̃| = pρ with 0 < ρ ≤ r, and intersects ∆

in a subgroup ∆̃ with (∆ : ∆̃) = n/pr−ρ. Hence, each such Γ̃ is a member of the set⋃
0<ρ≤r

⋃
(G:G̃)=pr−ρ

⋃
(∆:∆̃)=n/pr−ρ

S(G̃, ∆̃), (10)

where

S(G̃, ∆̃) :=
{

Γ̃ ≤ Γ : Γ̃ ∩∆ = ∆̃, Γ̃∆/∆ = G̃
}
,

and, conversely, each subgroup Γ̃ contained in the set (10) is of index n in Γ and not
contained in ∆. It follows that

sn(Γ) =
∑

0<ρ≤r

∑
(G:G̃)=pr−ρ

∑
(∆:∆̃)=n/pr−ρ

|S(G̃, ∆̃)| +

{
sn/pr(∆), pr | n

0, pr - n.
(11)
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Pick ρ, G̃, and ∆̃ as in (11), and consider the corresponding set S(G̃, ∆̃). We claim
that

|Aut(G̃)| · |S(G̃, ∆̃)| =
∣∣{ι ∈ Hom(G̃, NΓ(∆̃)/∆̃) : τι(G̃) = G̃

}∣∣, (12)

where τ : NΓ(∆̃)/∆̃ → G is the natural map with kernel N∆(∆̃)/∆̃ induced by the

identity. Indeed, if we take Γ̃ ∈ S(G̃, ∆̃), then combining the canonical isomorphism

G̃ ∼= Γ̃/∆̃ with the embedding Γ̃/∆̃ ↪→ NΓ(∆̃)/∆̃ induced by the inclusion map Γ̃ ↪→
NΓ(∆̃) gives a homomorphism ι : G̃ → NΓ(∆̃)/∆̃, such that τι = idG̃. Conversely, if

ι : G̃→ NΓ(∆̃)/∆̃ is a homomorphism satisfying τι = idG̃, then π−1(ι(G̃)) is contained

in the set S(G̃, ∆̃). Here, π : NΓ(∆̃)→ NΓ(∆̃)/∆̃ is the canonical projection map. It is
straightforward to check that these two maps invert each other, whence the existence

of a bijective correspondence between S(G̃, ∆̃) and the set{
ι ∈ Hom(G̃, NΓ(∆̃)/∆̃) : τι = idG̃

}
.

It follows in particular, that our claim (12) holds if the set on its right-hand side is

empty. If, on the other hand, this set is non-empty, then it decomposes into |Aut(G̃)|
disjoint subsets of equal size according to the automorphism τι ∈ Aut(G̃) induced by
ι, whence (12). The set on the right-hand side of (12) is of cardinality

|Aut(G̃)|
∑
V

∣∣DerαV
(G̃, N∆(∆̃)/∆̃)

∣∣,
where the summation extends over all subgroups V ≤ τ−1(G̃) which contain N∆(∆̃)/∆̃

and are split extensions of N∆(∆̃)/∆̃ by G̃, and where, for each such V, the action αV

of G̃ on N∆(∆̃)/∆̃ is by conjugation via a fixed chosen complement to N∆(∆̃)/∆̃ in V.

Since G is assumed to be of Frobenius type, we conclude that |S(G̃, ∆̃)| ≡ 0 mod p,

unless p - |N∆(∆̃)/∆̃|. Combining the latter observation with (12), we find that the
triple sum occurring on the right-hand side of (11) is congruent modulo p to∑

0<ρ≤r

∑
(G:G̃)=pr−ρ

∑ ∣∣∣{Γ̃ ≤ τ−1(G̃) : Γ̃ ∼= G̃
}∣∣∣, (13)

where the innermost sum is extended over all subgroups ∆̃ of index n/pr−ρ in ∆ sat-

isfying p - (N∆(∆̃) : ∆̃) and pρ | |τ−1(G̃)|. Omitting the condition that pρ | |τ−1(G̃)|
(which is possible since this restriction only avoids zero summands), we can rewrite (13)
by interchanging the second and third summation, to obtain∑

0<ρ≤r

∑
(∆:∆̃)=n/pr−ρ

p -(N∆(∆̃):∆̃)

∑
(G:G̃)=pr−ρ

∣∣∣{Γ̃ ≤ τ−1(G̃) : Γ̃ ∼= G̃
}∣∣∣. (14)

Since p - (N∆(∆̃) : ∆̃), any p-subgroup of NΓ(∆̃)/∆̃ is mapped faithfully under τ ;
hence, the inner sum in (14) precisely counts the number of subgroups of order pρ

in the group NΓ(∆̃)/∆̃, the latter number being congruent to 1 modulo p (by Frobe-

nius’ generalization of Sylow’s third theorem) provided that pρ
∣∣|NΓ(∆̃)/∆̃|, and zero
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otherwise. Consequently, we find that

sn(Γ) ≡
∑

0<ρ≤r

|Ωρ,n| +

{
sn/pr(∆), pr | n
0, pr - n

mod p, (15)

where

Ωρ,n :=
{

∆̃ ≤ ∆ : (∆ : ∆̃) = n/pr−ρ, p - (N∆(∆̃) : ∆̃), pρ | (NΓ(∆̃) : ∆̃)
}
.

Fix ρ and n, and denote by Un/pr−ρ(∆) the set of subgroups of index n/pr−ρ in ∆.
Since ∆ is normal in Γ, the group Γ acts by conjugation on Un/pr−ρ(∆), and this action
restricts to an action of Γ (and hence of ∆) on the sets Ωρ,n. Therefore, if pr−ρ+1 | n
and ∆̃ ∈ Ωρ,n, then (∆ : N∆(∆̃)) ≡ 0 (p), and Ωρ,n decomposes into orbits of length
divisible by p under ∆. Suppose, on the other hand, that pr−ρ || n, and consider the
action of Γ on the set

Un/pr−ρ(∆)− Ωρ,n =
{

∆̃ ≤ ∆ : (∆ : ∆̃) = n/pr−ρ, pρ - (NΓ(∆̃) : ∆̃)
}
.

Then, if ∆̃ ∈ Un/pr−ρ(∆)−Ωρ,n, we have (Γ : NΓ(∆̃)) ≡ 0 (p); that is, Un/pr−ρ(∆)−Ωρ,n

decomposes into classes of length divisible by p under Γ. Hence,

|Ωρ,n| ≡

{
sn/pr−ρ(∆), pr−ρ || n

0, otherwise
mod p. (16)

Analysing (15) by means of (16) gives

sn(Γ) ≡ sn/pr(∆) mod p, pr | n, (17)

as well as

sn(Γ) ≡ sn/pr−ρ(∆) mod p, pr−ρ ‖ n, 0 < ρ ≤ r. (18)

Statements (17) and (18) can be rephrased as

Π
(p)
j (Γ) ∩ prN = pr Π

(p)
j (∆), 0 < j < p, (19)

and

Π
(p)
j (Γ) ∩ pr−ρ (N− pN) = pr−ρ

(
Π

(p)
j (∆) ∩ (N− pN)

)
, 0 < ρ ≤ r, 0 < j < p, (20)

respectively. Taking the union of (19) and (20) for every fixed j now yields (2). It
remains to establish equation (3) as an equivalent version of (2). Assuming (2), we
have

XΓ,p(z) = Y (z) +
∑

0≤ρ<r

Yρ(z),

where

Y (z) :=
∑

0<j<p

∑
n∈Π

(p)
j (∆)

j zp
rn−1

and

Yρ(z) :=
∑

0<j<p

∑
n∈Π

(p)
j (∆)∩(N−pN)

j zp
ρn−1, 0 ≤ ρ < r.
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Clearly,

Y (z) = zp
r−1X∆,p(z

pr).

Moreover, by Wilson’s theorem,

Yρ(z) = zp
ρ−1X∆,p(z

pρ) +
∑

0<j<p

∑
n∈Π

(p)
j (∆)

j (n− 1) (n− 2) · · · (n− p+ 1) zp
ρn−1

= zp
ρ−1X∆,p(z

pρ) + zp
ρ+1−1X

(p−1)
∆,p (zp

ρ

),

whence (3). The converse follows in a similar way.

4. Divisibility properties determined by free normal subgroups

The category of graphs used in this section is described in Serre’s book [19]. Let
(Γ(−), Y ) be a finite graph of finite groups with fundamental group Γ = π1(Γ(−), Y ),
and let p be a prime. Moreover, denote by V (Y ) andE(Y ) the set of vertices respectively
(geometric) edges of Y , and let mΓ be the least common multiple of the orders of the
finite subgroups in Γ, that is,

mΓ = lcm
{
|Γ(v)| : v ∈ V (Y )

}
.

The free rank µ(Γ) of Γ is defined as the rank of a free subgroup in Γ of index mΓ. It
is connected with the rational Euler characteristic χ(Γ) of Γ via

µ(Γ) + mΓχ(Γ) = 1, (21)

and the latter quantity can be computed in terms of the graph of groups (Γ(−), Y ) by
means of the formula

χ(Γ) =
∑

v∈V (Y )

1

|Γ(v)|
−

∑
e∈E(Y )

1

|Γ(e)|
; (22)

cf. [1, Chap. IX, Prop. 7.3] or [20, Prop. 14]. If Γ has a free normal subgroup F of
index mΓ and with quotient Γ/F a p-group, then every vertex group Γ(v) must be of
p-power order; and if χ(Γ) ≤ 0, then any free normal subgroup F of index mΓ has rank
rk(F) = µ(Γ) ≥ 1, and, by Theorem 1, the p-pattern of Γ is determined via (2) by the
p-pattern of F. Consequently, all conclusions of [15, Theorem 2] remain valid in this
more general situation, and we obtain the following.

Theorem 2. Let p be a prime, (Γ(−), Y ) a finite graph of groups all of whose vertex
groups are of p-power order, and let Γ be its fundamental group. Let mΓ = pr, and
suppose that Γ contains a normal free subgroup of index mΓ, and that χ(Γ) ≤ 0. Then

(i) the function sn(Γ) is periodic modulo p,

(ii) for p = 2 we have ΠΓ = N,

(iii) for p = 3 and µ(Γ) odd we have Π
(3)
1 (Γ) = N,

(iv) for p = 3 and µ(Γ) even, sn(Γ) is periodic modulo 3 with period 8 · 3r. More
precisely, in this case sn(Γ) ≡ 1 mod 3 if and only if n is congruent mod 8 · 3r to
one of the 3r+1 numbers
0, 3r−1, 3r, 8 · 3r−1, 3r+1, 11 · 3r−1, 16 · 3r−1, 17 · 3r−1, 19 · 3r−1, 3ρ(1 + 24λ),
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8 · 3ρ(1 + 3λ), 3ρ(11 + 24λ), 8 · 3ρ(2 + 3λ), 3ρ(17 + 24λ), 3ρ(19 + 24λ)
with 0 ≤ ρ < r − 1 and 0 ≤ λ < 3r−ρ−1;
and sn(Γ) ≡ 2 mod 3 if and only if n is congruent mod 8 · 3r to one of the 3r+1

numbers
4 ·3r−1, 5 ·3r−1, 7 ·3r−1, 4 ·3r, 13 ·3r−1, 5 ·3r, 20 ·3r−1, 7 ·3r, 23 ·3r−1, 4 ·3ρ(1+6λ),
4 · 3ρ(5 + 6λ), 3ρ(5 + 24λ), 3ρ(7 + 24λ), 3ρ(13 + 24λ), 3ρ(23 + 24λ)
with 0 ≤ ρ < r − 1 and 0 ≤ λ < 3r−ρ−1.

The usefulness of Theorem 2 depends on our being able to verify the hypothesis that Γ
contains a normal free subgroup of index mΓ. The remainder of this section is devoted
to the latter problem.

Proposition 3. Let p be a prime, (Γ(−), Y ) a finite tree of groups all of whose vertex
groups are of p-power order, Γ ∼= π1(Γ(−), Y ), and let mΓ = pr.

(i) If all vertex groups Γ(v) are cyclic, then Γ contains precisely∏
v∈V (Y ) ϕ(|Γ(v)|)∏
e∈E(Y ) ϕ(|Γ(e)|)

/
ϕ(mΓ)

free normal subgroups of index mΓ, where ϕ is Euler’s totient function.

(ii) If all vertex groups Γ(v) are elementary abelian, then Γ contains exactly∏
e∈E(Y )

[
|Γ(e)|r−de |GLr−de(p)|

]∏
v∈V (Y )

[
|Γ(v)|r−dv |GLr−dv(p)|

]
free normal subgroups of index mΓ, where dσ = dimpΓ(σ), σ ∈ V (Y ) ∪ E(Y ).

Proof. (i) This is [15, Lemma 1].

(ii) Let G be an elementary abelian p-group of rank r. The number of free normal
subgroups in Γ of index mΓ is obtained by dividing by

|Aut(G)| = |GLr(p)| = (pr − 1)(pr − p) · · · (pr − pr−1)

the number of homomorphisms ψ : Γ→ G with the property that

ψ|Γ(v)
: Γ(v)→ G is an embedding (23)

for every vertex v ∈ V (Y ). We will show by induction on |V (Y )| that there are precisely

|GLr(p)|
∏

e∈E(Y )

[
|Γ(e)|r−de |GLr−de(p)|

]∏
v∈V (Y )

[
|Γ(v)|r−dv |GLr−dv(p)|

]
such homomorphisms ψ. This is true if |V (Y )| = 1. So suppose that |V (Y )| ≥ 2, let v0

be a terminal vertex of Y such that

max
{
|Γ(v)| : v ∈ V (Y )\{v0}

}
= pr,

and let Y ′ be the subtree of Y obtained by clipping the edge e0 ∈ E(Y ) with v0 ∈
∂e0. Let ∂e0 = {v0, v

′
0}. We have Γ = Γ′ ∗

Γ(e0)
Γ(v0), where Γ′ := π1(Γ(−), Y ′), the



A DESCENT PRINCIPLE 11

amalgamation being with respect to the canonical embeddings ιe0 , ι′e0 of Γ(e0) in Γ(v0)
respectively Γ(v′0). By our inductive hypothesis there are exactly

|GLr(p)|
∏

e∈E(Y ′)

[
|Γ(e)|r−de |GLr−de(p)

]/ ∏
v∈V (Y ′)

[
|Γ(v)|r−dv |GLr−dv(p)|

]
homomorphisms ψ′ : Γ′ → G satisfying (23) for every v ∈ V (Y ′). In order to extend
a given such map ψ′ to a homomorphism ψ on Γ satisfying (23) for all v ∈ V (Y ), we
have to find an embedding j : Γ(v0)→ G such that the diagram

Γ(e0)
ιe0−−−→ Γ(v0)

ψ′|
Γ(v′0)

◦ι′e0
y yj
G G

commutes. Let dimpΓ(v0) = r0 and dimpΓ(e0) = ρ0 with 0 ≤ ρ0 ≤ r0 ≤ r. Moreover,
let C0 be a complement to ιe0(Γ(e0)) in Γ(v0), that is, Γ(v0) = ιe0(Γ(e0)) ⊕ C0 and
dimpC0 = r0 − ρ0. Then our task is to find embeddings jC0 : C0 → G such that

ψ′(ι′e0(Γ(e0))) ∩ jC0(C0) = 0. (24)

To this end, we first run through all r0-dimensional subspaces G′0 of G containing
ψ′(ι′e0(Γ(e0))), then seek complements C ′0 to ψ′(ι′e0(Γ(e0))) in each such G′0, and finally
identify C0 with each such C ′0 via an isomorphism, which can be done in |GLr0−ρ0(p)|
possible ways. There are

(
r−ρ0

r0−ρ0

)
p
r0-dimensional subspaces G′0 in G containing

ψ′(ι′e0(Γ(e0))), and, given such a subspace G′0, there are

|Hom(G′0/ψ
′(ι′e0(Γ(e0))), ψ′(ι′e0(Γ(e0))))| = pρ0(r0−ρ0)

complements C ′0 to ψ′(ι′e0(Γ(e0))) in G′0. Hence, the total number of embeddings jC0

satisfying (24) equals(
r − ρ0

r0 − ρ0

)
p

pρ0(r0−ρ0) |GLr0−ρ0(p)| =
|Γ(e0)|r−de0 |GLr−de0 (p)|
|Γ(v0)|r−dv0 |GLr−dv0 (p)|

,

giving rise to the same number of extensions of a given map ψ′ on Γ′, whence (ii).

A group G is termed homogeneous, if every isomorphism between finitely generated
subgroups is induced by an automorphism of G. This concept arouse (for arbitrary
first order structures) in model theory in connection with quantifier elimination. For
instance, it is known that a finite group is homogeneous if and only if its first order
theory has quantifier elimination; cf. [10, Cor. 8.4.2]. The finite homogeneous groups
have been classified by Cherlin and Felgner; cf. [2] and [3]. In particular, a finite
p-group G is homogeneous if and only if one of the following holds:

(i) G ∼= Cpr ⊕ · · · ⊕ Cpr︸ ︷︷ ︸
s copies

for some r, s ∈ N0;

(ii) G ∼= Q, the quaternion group of order 8;

(iii) G ∼= Q∗.
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Here, Q∗ is a certain group of order 64, class 2, and exponent 4, which arises for instance
as the Sylow 2-subgroup of PSU(3, 42); cf. [2, Sect. 2] for more details.

Definition 2. For a group G and a subgroup H ≤ G, we define the centralizer CAut(G)(H)
of H in Aut(G) to be

CAut(G)(H) :=
{
α ∈ Aut(G) : α(h) = h for all h ∈ H

}
.

Proposition 4. Let p be a prime, let (Γ(−), Y ) be a finite tree of groups, Γ ∼= π1(Γ(−), Y ),
and suppose that all vertex groups Γ(v) are isomorphic to G, where G is a finite homo-
geneous p-group. Then Γ contains precisely∏

e∈E(Y )

|CAut(G)(Γ(e)e)|

free normal subgroups of index mΓ = |G|.

The proof of Proposition 4 is similar to that of Proposition 3 (ii), making use of the
fact that |CAut(G)(Γ(e)e)| exactly equals the number of ways in which to extend any
embedding of the edge group Γ(e0) into G to an automorphism of G.

Corollary 1. (i) If, in Proposition 4, we take G = Q, then Γ contains precisely
24a(Γ) · 4b(Γ) free normal subgroups of index mΓ = 8, where

a(Γ) := |{e ∈ E(Y ) : |Γ(e)| < 4}| and b(Γ) := |{e ∈ E(Y ) : |Γ(e)| = 4}|.
(ii) For G = Q∗, the number of free normal subgroups in Γ of index mΓ = 64 equals

15360a(Γ) · 5120b(Γ) · 2560c(Γ) · 256d(Γ) · 128e(Γ) · 32f(Γ) · 16g(Γ) · 4h(Γ),

where

a(Γ) := |{e ∈ E(Y ) : Γ(e) = 1}|,
b(Γ) := |{e ∈ E(Y ) : |Γ(e)| = 2}|,
c(Γ) := |{e ∈ E(Y ) : Γ(e) ∼= C2 × C2}|,
d(Γ) := |{e ∈ E(Y ) : Γ(e) ∼= C4}|,
e(Γ) := |{e ∈ E(Y ) : |Γ(e)| = 8}|,
f(Γ) := |{e ∈ E(Y ) : Γ(e) ∼= C4 × C4}|,
g(Γ) := |{e ∈ E(Y ) : Γ(e) ∼= H16}|,
h(Γ) := |{e ∈ E(Y ) : |Γ(e)| = 32}|.

Here, H16 is the split extension

H16 =
〈
a, b | a4 = b4 = 1, ab = a−1

〉
.

The assertions of the corollary follow immediately from Proposition 4, once the orders
of the corresponding centralizers are known. For the second part these have been found
with the help of the computer algebra system GAP [5].
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Remark. A finite group G is homogeneous if and only if, for every tree of groups
(Γ(−), Y ) with all vertex stabilizers isomorphic to G, Γ = π1(Γ(−), Y ) contains a free
normal subgroup of index mΓ. Indeed, the forward implication follows immediately
from Proposition 4. If, on the other hand, G is not homogeneous, then there exists
an isomorphism between two subgroups H1,H2 of G, which is not induced by an au-
tomorphism. We can then form the amalgam Γ = G ∗

H
G, where the abstract group H

is identified with H1 in the left factor and with H2 in the right factor, in such a way
that the isomorphism between H1 and H2 induced by these embeddings is the given
isomorphism. Then Γ does not possess a free normal subgroup of index mΓ = |G|.

Now let (Γ(−), Y ) be a tree of groups all of whose vertex groups are isomorphic to
D4, the dihedral group of order 8, and let Γ be its fundamental group. Call an edge
e ∈ E(Y ) wild, if Γ(e) contains an involution which is identified with the central in-
volution in one of its corresponding vertex groups, and a non-central involution in the
other.

Proposition 5. Let Γ be as above. Then Γ has a free normal subgroup of index mΓ = 8
if and only if the tree of groups (Γ(−), Y ) does not contain a wild edge. In the latter
case, the number of free normal subgroups of index mΓ equals

2o(Γ)
∏

e∈E(Y )

Γ(e) inner

8

ϕ (|Γ(e)|)
,

where

o(Γ) :=
∣∣{e ∈ E(Y ) : Γ(e) outer

}∣∣,
and an edge e ∈ E(Y ) is termed inner respectively outer, depending on whether or not
Γ(e) is embedded into the cyclic subgroup of order 4 of Γ(τ(e)).

Proof. Necessity of the stated existence criterion is clear. In the positive direction,
one argues along lines similar to the proof of Proposition 3 (ii), distinguishing cases
according to how the group associated with the relevant terminal edge e is embedded
into Γ(σ(e)) in the induction step.

Define the type τ(Γ) of a finitely generated virtually free group Γ ∼= π1(Γ(−), Y ) as the
tuple

τ(Γ) =
(
mΓ; ζ1(Γ), . . . , ζκ(Γ), . . . , ζmΓ

(Γ)
)
,

where the ζκ(Γ) are integers indexed by the divisors of mΓ, given by

ζκ(Γ) =
∣∣{e ∈ E(Y ) : |Γ(e)|

∣∣κ}∣∣ − ∣∣{v ∈ V (Y ) : |Γ(v)|
∣∣κ}∣∣

with V (Y ) and E(Y ) as above. We have ζκ(Γ) ≥ 0 for κ < mΓ and ζmΓ
(Γ) ≥ −1 with

equality occurring in the latter inequality if and only if Y is a tree; cf. [13, Lemma 2]
and [14, Proposition 1]. It can be shown that the type τ(Γ) is in fact an invariant of
the group Γ, that is, independent of the particular decomposition of Γ in terms of a
graph of groups (Γ(−), Y ), and that two virtually free groups Γ1 and Γ2 contain the
same number of free subgroups of index n for each positive integer n if and only if
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τ(Γ1) = τ(Γ2); cf. [13, Theorem 2]. It follows from (22) that the Euler characteristic
of Γ can be expressed in terms of the type via

χ(Γ) = −m−1
Γ

∑
κ|mΓ

ϕ(mΓ/κ)ζκ(Γ). (25)

Equations (21) and (25) imply in particular that, if two virtually free groups have the
same number of free index n subgroups for each n, then their Euler characteristics
respectively free ranks must coincide. For a finitely generated virtually free group Γ
and a prime p define the p-rank µp(Γ) of Γ by means of the formula

µp(Γ) = 1 +
∑
p|κ|mΓ

ϕ(mΓ/κ)ζκ(Γ).

Moreover, denote by fλ(Γ) the number of free subgroups in Γ of index λmΓ.

Proposition 6. Let p be a prime, (Γ(−), Y ) a finite graph of groups all of whose vertex
groups are non-trivial finite p-groups, and let Γ = π1(Γ(−), Y ). Then the following
assertions are equivalent:

(i) f1(Γ) 6≡ 0 mod p,

(ii) µp(Γ) = 0,

(iii) Γ is a free product of the form Γ ∼= H ∗ Cp ∗ · · · ∗ Cp︸ ︷︷ ︸
s copies

with s ≥ 0

and a group H of order mΓ.

Corollary 2. Let p be a prime, and let Γ = H ∗ C∗sp be a free product of s ≥ 0 copies
of the cyclic group of order p and a finite p-group H. Then Γ contains a normal free
subgroup of index mΓ.

Proof. This follows from the action by conjugation of Γ on the set of free subgroups of
index mΓ, together with the implication (iii)⇒ (i) of Proposition 6.

Proof of Proposition 6. The equivalence of (i) and (ii) follows from a discussion of the
formula3

f1(Γ) = mΓ

∏
κ|mΓ

∏
1≤k≤mΓ

(mΓ,k)=κ

kζκ(Γ),

making use of facts concerning τ(Γ) mentioned above. Suppose now that µp(Γ) = 0.
Then Y is a tree, and, after contracting edges of Y corresponding to trivial amalgama-
tions if necessary, we may assume that (Γ(−), Y ) is normalized, that is, |Γ(e)| 6= |Γ(v)|
for all e ∈ E(Y ) and v ∈ ∂e. For a positive integer n, denote by en, vn the number of
edges e ∈ E(Y ) respectively vertices v ∈ V (Y ) whose associated group Γ(e) respectively
Γ(v) has order n, define an arithmetic function f(n) via

f(n) =
∑
ν|n

(eν − vν), n ≥ 1,

3Cf. formulae (3) and (11) in [13].



A DESCENT PRINCIPLE 15

and let mΓ = pr. Then, for 0 ≤ ρ ≤ r,

f(pρ) =


e1, ρ = 0

−1, ρ = r

0, otherwise,

(26)

and, by Möbius inversion,

en − vn =
∑
ν|n

µ(ν)f(n/ν), n ≥ 1, (27)

where µ is the classical Möbius function. Since our claim (iii) holds for r ≤ 1, we may
assume that r ≥ 2. In the latter case, we find from (26) and (27) that

epρ − vpρ =


−e1, ρ = 1

0, 1 < ρ < r

−1, ρ = r.

(28)

Using the facts that (Γ(−), Y ) is normalized and that Y is a tree (hence, in particular,
does not contain loops), we find from (28) that

epr = 0, therefore vpr = 1

epr−1 = 0, therefore vpr−1 = 0

...

ep2 = 0, therefore vp2 = 0

ep = 0, therefore vp = e1.

It follows that all edge groups are trivial, that is, Γ is the free product of its vertex
groups, and that V (Y ) contains precisely one vertex v0 with |Γ(v0)| = pr and e1 ≥ 0
vertices v satisfying Γ(v) ∼= Cp, whence (iii). Since the implication (iii)⇒ (ii) is trivial,
the proof of Proposition 6 is complete. 2

5. The groups Γ(G,H, q)

For a finite group G, a prime p, and p-powers q, q̄ with qq̄ > 1, let

Γ = Γ(G,H, q) = H ∗G ∗ · · · ∗G︸ ︷︷ ︸
q copies

, (29)

where H is of order q̄. Put Γ̃ := Γ(G, 1, q) ∼= G∗q. It follows from the normal form

theorem applied to the free product H ∗ Γ̃ that Γ(G,H, q) is a split extension of the
group

∆ =
〈
Γ̃h : h ∈ H

〉 ∼= G∗qq̄ = Γ(G, 1, qq̄)
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by H; in particular, the groups Γ and ∆ satisfy the hypotheses of Theorem 1, and (2)
yields the reduction formula

Π
(p)
j (Γ(G,H, q)) = q̄Π

(p)
j (Γ(G, 1, qq̄)) ∪

⋃
σ|q̄
σ<q̄

σ
(
Π

(p)
j (Γ(G, 1, qq̄)) ∩ (N− pN)

)
,

0 < j < p. (30)

Formula (30) allows us to translate results concerning the groups Γ(G, 1, q) obtained in
[16] into results for groups of the more general form (29). Since, for the most part, this
translation process is entirely straightforward, and whatever extra arguments are needed
can be found in [16, Sect. 8], we shall leave this task to the reader. As an example,
we state the generalization of [16, Theorem 12], which provides a remarkably explicit
combinatorial description of the p-pattern Π(p)(Γ(G,H, q)) under a certain assumption
on G.

Theorem 3. Let G be a finite group, p a prime, let q and q̄ be p-powers such that
qq̄ > 1, and let H be a group of order q̄. Assume that sd(G) ≡ 0 (p) for all d ∈ N with
d 6≡ 1 (p) (that is, G ∈ Fin(p) in the notation of [16]). Then we have

Π
(p)
j (Γ(G,H, q)) =

⋃
σ|q̄

σΘ
(j)
G,q,q̄, 0 < j < p,

where Θ
(j)
G,q,q̄ consists of all positive integers n ≡ 1 mod pqq̄ such that the sum∑

n∈Nr0
dG,p·n=n−1

pqq̄

(
1 + (qq̄ − 1)(n− 1)/(qq̄)

n, 1 + (qq̄ − 1)(n− 1)/(qq̄)− ||n||

) r∏
i=1

(
sdi(G)

)ni
is congruent to j modulo p.

Here, the vector dG,p ∈ Nr attached to the group G and prime p is defined as

dG,p :=
(d1 − 1

p
,
d2 − 1

p
, . . . ,

dr − 1

p

)
,

where 1 = d0 < d1 < · · · < dr = |G| is the collection in increasing order of those positive
integers d for which sd(G) 6≡ 0 (p).
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