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Abstract

The celebrated Urysohn space is the completion of a countable universal homoge-
neous metric space which can itself be built as a direct limit of finite metric spaces.
It is our purpose in this paper to give another example of a space constructed in this
way, where the finite spaces are scaled cubes. The resulting countable space pro-
vides a context for a direct limit of finite symmetric groups with strictly diagonal
embeddings, acting naturally on a module which additively is the “Nim field” (the
quadratic closure of the field of order 2). Its completion is familiar in another guise:
it is the set of Lebesgue-measurable subsets of the unit interval modulo null sets.
We describe the isometry groups of these spaces and some interesting subgroups,
and give some generalisations and speculations.
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1 Introduction

In this paper we discuss several constructions of metric spaces which are lim-
its of sequences of isometric embeddings of scaled finite cubes. We mainly
concentrate on the case where each embedding doubles the dimension; but
we begin with a simpler example where we just add one to the dimension,
and in the concluding section we consider briefly an embedding in which the
n-dimensional cube is embedded in the cube of dimension n!.

1.1 Finite cubes

The n-dimensional cube, or Hamming space over the alphabet {0, 1}, is the set
of all binary n-tuples, endowed with Hamming distance, where the distance
between two n-tuples v and w is equal to the number of coordinates where
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they differ. We can of course identify it with the power set of a standard n-
element set {0, 1, . . . , n − 1}; the distance between two sets A and B is the
cardinality of their symmetric difference A4B. We denote it by H(n, 2).

The isometry group Iso(H(n, 2)) is the wreath product Sym(2)oSym(n), which
is a semidirect product Tn o Sn of an elementary abelian group Tn of order 2n

by the symmetric group Sn.

1.2 A limit of finite cubes

The obvious way to create an “infinite cube” is simply to let the length n
of the tuples become infinite. Of course, if we do that, then the distances
between tuples can also be infinite. In order to obtain a metric space, we
can take the set of tuples containing only finitely many ones (or equivalently,
the finite subsets of N). This is a discrete metric space of infinite diameter,
whose isometry group is a semidirect product T o S, where T is a countable
elementary abelian 2-group and S = Sym(N).

Another way of looking at this is to observe that there are isometric embed-
dings

H(1, 2) → H(2, 2) → H(3, 2) → · · ·

where H(n, 2) is embedded in H(n + 1, 2) as the set of points with last coor-
dinate zero. Taking the union, we obtain the cube as above. The embeddings
of metric spaces induce embeddings

G1 → G2 → G3 → · · ·

where Gn = Tn oSn as above. The union of these groups is a proper subgroup
of the full isometry group, of the form T o S0, where S0 is the group of all
finitary permutations of N, the union of the chain S1 → S2 → S3 → · · · of
finite symmetric groups. (Note that we do get the full translation group in the
union.) The closure of G0 (in the topology of pointwise convergence) is the
full isometry group G.

2 Another limit of finite cubes

The “infinite cube” constructed in the preceding section is discrete. In this
section we construct a different limit of finite cubes, whose completion is more
interesting.
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2.1 Construction of Hω and H

Given positive real numbers c0, . . . , cn−1, we define the scaled hypercube
(c0, . . . , cn−1)H(n, 2) to have the same set of points, but with distance given
by

d(x, y) =
∑

i:xi 6=yi

ci.

If c0 = · · · = cn−1 = c, we write simply cH(n, 2). Furthermore, we denote
1
n
H(n, 2) by Hn. This metric space has diameter 1.

There is an isometric embedding θ : Hn → H2n given by

(θ(x))2i = (θ(x))2i+1 = xi, i = 0, . . . , n− 1.

This embedding has the further property that every isometry of Hn is induced
by an isometry of H2n.

We can iterate this embedding to get a chain

H1 → H2 → H4 → H8 → · · ·

Let Hω denote the union of the chain, and H its completion. These metric
spaces are our candidates for an infinite-dimensional cube. It follows from our
remarks that every isometry of any term in the chain is induced by an isometry
of Hω (and hence of H).

2.2 Hω as a Cayley metric space: the countable Nim group

The metric space Hω can be described as a Cayley metric space, as follows.

Define the operation ⊕ of Nim addition (or bitwise addition) on the set N of
natural numbers (including 0) as follows: to calculate x ⊕ y, express x and y
in base 2, and add modulo 2 (without carrying). Then (N,⊕) is an elementary
abelian 2-group. In order to define a metric on N invariant under this group,
it suffices to find a function f from N to the positive real numbers satisfying

|f(x)− f(y)| ≤ f(x⊕ y) ≤ f(x) + f(y) for all x, y ∈ N,

and then put d(x, y) = f(x⊕ y) for all x, y ∈ N.
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We define a function f recursively as follows:

f(0) = 0, f(1) = 1,

f(22n

x + y) = 1
2
(f(y) + f(x⊕ y)) for 0 ≤ x, y ≤ 22n − 1.

(Note that any number z > 1 satisfies 22n ≤ z < 22n+1
for some unique n, and

such a z can be uniquely written in the form 22n
x + y for 0 ≤ x, y < 22n

.)
The recursive statement extends the range of definition of f from the set
{0, . . . , 22n − 1} to {0, . . . , 22n+1 − 1}. The function is well-defined since the
right-hand side of the recursion gives f(y) when x = 0.

Proposition 1 If the function f is defined by the above recursion, then the
induced Cayley metric on N is isometric to Hω.

PROOF. Clearly the induced metric on {0, 1} is isometric to H1.

Suppose that the induced metric on {0, . . . , 22n−1} is isometric to H2n , via an
isometry φn. Then the composition of φn with the coordinate-doubling map θ
is an isometry to a subspace of H2n+1 . We have to show that this map extends
to an isometry from {0, . . . , 22n+1 − 1} to H2n+1 . Because the initial set is a
subgroup of the abelian group on N, it is enough to consider the function f .

We have embedded H2n into H2n+1 as the set of points y satisfying y2i = y2i+1

for i = 0, . . . , 2n − 1. Any point can be expressed uniquely as x + y (with
coordinatewise addition mod 2), where y is as above and x is supported on
the even coordinates: that is, x2i+1 = 0 for i = 0, . . . , 2n− 1. We have to show
that

1

2n+1
s(x + y) = 1

2
(f ∗(y) + f ∗(x⊕ y)),

where f ∗(x) = f(φ−1
n (x)), and s is the support size. By the induction hypoth-

esis, f ∗(y) is equal to the size of the support of y, divided by 2n.

Let A, B and C be pairwise disjoint subsets of {0, . . . , 2n − 1} such that the
supports of x and y are {2u : u ∈ A ∪ B} and {2u, 2u + 1 : u ∈ A ∪ C}
respectively, and let f ∗(x) denote f(φ−1

n (x)) = 1
2n s(x). We have

f ∗(x) =
1

2n
(|A|+ |B|),

f ∗(y) =
1

2n
(|A|+ |C|),

f ∗(x⊕ y) =
1

2n
(|B|+ |C|).
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Thus

f(22n

x + y) =
1

2n+1
(|A|+ |B|+ 2|C|) = 1

2
(f ∗(y) + f ∗(x⊕ y)),

as required. �

For example, the first 256 values of f are given in the following table, with
16x + y in row x and column y:

0 1 1/2 1/2 1/2 1/2 1/2 1/2 1/4 3/4 1/4 3/4 1/4 3/4 3/4 1/4

1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2

1/4 3/4 1/4 3/4 1/2 1/2 1/2 1/2 1/4 3/4 1/4 3/4 1/2 1/2 1/2 1/2

1/4 3/4 3/4 1/4 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/2 1/4 3/4 3/4 1/4

1/4 3/4 1/2 1/2 1/4 3/4 1/2 1/2 1/4 3/4 1/2 1/2 1/4 3/4 1/2 1/2

1/4 3/4 1/2 1/2 3/4 1/4 1/2 1/2 1/2 1/2 1/4 3/4 1/2 1/2 3/4 1/4

1/4 3/4 1/2 1/2 1/2 1/2 1/4 3/4 1/2 1/2 1/4 3/4 1/4 3/4 1/2 1/2

1/4 3/4 1/2 1/2 1/2 1/2 3/4 1/4 1/4 3/4 1/2 1/2 1/2 1/2 3/4 1/4

1/8 7/8 3/8 5/8 3/8 5/8 5/8 3/8 1/8 7/8 3/8 5/8 3/8 5/8 5/8 3/8

3/8 5/8 5/8 3/8 5/8 3/8 3/8 5/8 5/8 3/8 3/8 5/8 3/8 5/8 5/8 3/8

1/8 7/8 3/8 5/8 5/8 3/8 3/8 5/8 3/8 5/8 1/8 7/8 3/8 5/8 5/8 3/8

3/8 5/8 5/8 3/8 3/8 5/8 5/8 3/8 3/8 5/8 5/8 3/8 3/8 5/8 5/8 3/8

1/8 7/8 5/8 3/8 3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8 1/8 7/8 5/8 3/8

3/8 5/8 3/8 5/8 5/8 3/8 5/8 3/8 3/8 5/8 3/8 5/8 5/8 3/8 5/8 3/8

3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8 3/8 5/8

1/8 7/8 5/8 3/8 5/8 3/8 5/8 3/8 3/8 5/8 3/8 5/8 3/8 5/8 7/8 1/8

In this representation, 1 is the point antipodal to 0, and more generally the
points 2i and 2i + 1 are antipodal for all i ∈ N.

Problem Is it possible to give an explicit (non-recursive) formula for f(n)?

The metric space H is also a Cayley metric space, that is, has an abelian
group structure. This will follow from a more detailed look at translations in
the next section.
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Conway [3] has shown that the group structure defined on N by Nim addition
is the additive group of a field, whose multiplication is given by the rules

22n ⊗ y = 22n · y for y < 22n

,

22n ⊗ 22n

= 3 · 22n−1.

This field is the quadratic closure of GF(2), that is, the union of the chain

GF(220

) → GF(221

) → GF(222

) → GF(223

) → · · ·

This raises several questions about the relationship between Conway’s con-
struction and ours.

(a) Clearly the multiplication does not preserve the function f , since 1 is the
unique point n satisfying f(n) = 1.

There is a Frobenius map n 7→ n2 on the field. Unfortunately this
does not preserve the function f either, since 82 = 13 but f(8) = 1

4
and

f(13) = 3
4
.

Is it true that f(n2) ∈ {f(n), 1− f(n)} for all n?
(b) Conway [3] extended the definition of the Nim addition and multiplica-

tion to transfinite ordinals, obtaining an algebraically closed “Nim-field”.
Is there any connection between this field and our space H, with its un-
countable elementary abelian group of translations?

2.3 Another description: measurable sets

A more explicit description of the cubes is given by the following result.

Theorem 2 (a) The points of Hω can be identified with the subsets of [0, 1)
which are unions of finitely many half-open intervals [x, y) with dyadic
rational endpoints, the distance between two such sets being the sum of
the lengths of their symmetric difference.

(b) The points of H can be identified with the Lebesgue measurable subsets of
[0, 1] modulo null sets, the distance between two points being the Lebesgue
measure of their symmetric difference.

PROOF. (a) A point of H2n is a subset A ⊆ {0, . . . , 2n − 1}, and can be
represented in the above form as

⋃
i∈A

[
i

2n
,
i + 1

2n

)
.
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The isometric embedding of H2n into H2n+1 corresponds to inclusion on the
set of subsets of this form. Finally, given any finite union of intervals with
dyadic rational endpoints, there is a maximum denominator 2n which occurs,
so the set represents a point of H2n .

(b) In the representation of (a), it is clear that the limit of a Cauchy sequence
of sets of the form given there is a measurable set (well-defined up to a null
set). Conversely, let A be any measurable set. Given ε > 0, we can find sets
B and C which are unions of intervals, with B ⊆ A ⊆ C and µ(C \B) < ε/2.
We can replace B and C by sets B′ and C ′ which are finite unions of sets with
dyadic rational endpoints, changing the measure of each by at most ε/4. We
obtain elements of Hω within ε of A. �

2.4 Translations

We now turn to the isometry groups of our spaces. We define a translation
of a metric space to be an isometry g satisfying g2 = 1 such that d(x, xg)
is independent of x. In general, translations have no particular properties:
for example, in a discrete space with n points pairwise at distance 1, the
translations are all the fixed-point-free involutions in Sym(n), together with
the identity. However, in our cubes, they are much better behaved.

Theorem 3 In any of the spaces Hn, Hω, or H, the translations form an ele-
mentary abelian 2-group which is a regular normal subgroup of the full isometry
group. Moreover, the translation group of Hω is the union of the translation
groups of H2n, while the translation group of H is the closure of that of Hω

(in the topology of pointwise convergence).

The proof depends on a lemma about the combinatorial structure of these
metric spaces. Note that each such space has diameter 1, and is antipodal,
with a unique point at distance 1 from any given point. For any two points
x, y, the interval [x, y] is defined as the set

{z : d(x, z) + d(z, y) = d(x, y)}.

Lemma 4 Let M denote one of Hn, Hω or H.

(a) Given x, y, z ∈ M , with z ∈ [x, y], there is a unique point w ∈ [x, y]
such that d(z, w) = d(x, y), d(y, w) = d(x, z), and d(x, w) = d(y, z). (We
denote the point w by f(x, y, z).)

(b) Given any three points x, y, z ∈ M , there exist unique points z1, z2 ∈ M
such that z1 ∈ [x, y], x ∈ [y, z2], and z1, z2 ∈ [x, z] with f(x, z, z1) = z2.
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PROOF. (a) In Hn, an interval is a scaled cube, and f(x, y, z) is the point
antipodal to z in [x, y]. In Hω, any three points lie in a finite cube, and the
result for Hn applies. Finally, take x, y, z ∈ H with z ∈ [x, y], and let (xn),
(yn), (zn) be Cauchy sequences in Hω converging to x, y, z respectively. It need
not be the case that zn ∈ [xn, yn]; but, considering a finite cube containing
these points, we see that there is a unique point z′n ∈ [xn, yn] nearest to zn,
and that d(zn, z

′
n) → 0. Then z′n → z also. By the result for Hω, there are

points wn = f(xn, yn, z
′
n). Then (wn) is a Cauchy sequence, and its limit is the

required point f(x, y, z).

(b) First consider Hn, represented as the power set of {0, . . . , n− 1}, we may
choose x = ∅ without loss of generality. Then z1 = z ∩ y and z2 = z \ y
are the required points. The extension to Hω and H are almost identical to
part (a). �

Now we turn to the proof of the Theorem. We observe first that in each
case there is a regular elementary abelian group of translations: in the set
representations, the translations are the maps x 7→ x4 a for fixed a. We have
to show that these subgroups contain all the translations. By the regularity, it
suffices to show that, given any two points x, y, there is a unique translation
carrying x to y.

So let g be a translation with xg = y, and let z be any further point.

• If z ∈ [x, y], then d(x, zg) = d(xg, z) = d(y, z); d(y, xg) = d(yg, z) = d(x, z);
and d(z, zg) = d(x, xg) = d(x, y). So zg = f(x, y, z).

• If x ∈ [y, z], a similar argument shows that zg = f(y, z, x).
• Suppose that neither of the above hold. Choose z1 and z2 as in the Lemma.

Then zg
1 and zg

2 are uniquely determined, by the two cases just considered;
and the facts that z = f(z1, z2, x) and g is an isometry show that zg =
f(zg

1 , z
g
2 , y).

In particular, we see that the set T of all translations is a group (a regular
subgroup of the full isometry group).

Finally, the definition shows that the set of translations is closed under con-
jugation by any isometry, and so T is a normal subgroup of the isometry
group. �

2.5 The full isometry group

The theorem of the last subsection shows that the full isometry group of
any of the spaces Hn, Hω or H has the structure of a semidirect product
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G = T o G0, where T is the group of translations and G0 is the stabiliser of
a point 0 (which, without loss of generality, we can take to be the empty set
in our set representation).

In the case of Hn, as is well known, G0 is the symmetric group Sym(n).

For Hω, we have the following:

Proposition 5 Any isometry of Hω fixing 0 is induced by a permutation of
[0, 1], uniquely determined except on the dyadic rationals.

PROOF. Let x be a real number in [0, 1) which is not a dyadic rational, and
express x in base 2. The first n bits of x specify the interval [k/2n, (k +1)/2n)
in which x lies. The image of this interval under a fixed isometry g is a union
of, say, 2l intervals of length 1/2n+l. Now g−1 maps each of these intervals to
a union of finitely many subintervals of [k/2n, (k +1)/2n). If the smallest such
interval has size 1/2m, then the first m bits of x determine which interval in
[k/2n, (k+1)/2n)g contains the image of an interval of length 2m containing x.
So the first m bits of x determine at least the first n bits of the putative point
xg. Letting n →∞ we see that xg is well-defined. �

A similar result holds for H:

Theorem 6 Any isometry of H fixing 0 is induced by a measure-preserving
permutation of [0, 1], well-defined up to a null set.

PROOF. We will not always say “modulo null sets” – this will be assumed
everywhere – and we will identify a measurable set A with its characteristic
function in L1[0, 1]. We are given an isometry F of H fixing 0. We µ(F (A)) =
d(F (A), 0) = d(A, 0) = µ(A), so F is measure-preserving; we have to show
that it is induced by a map on [0, 1].

Step 1 F preserves intersections: that is, F (A ∩ B) = F (A) ∩ F (B). For
A ∩B is the unique point lying in the interval between any pair of 0, A,B.

Step 2 We can extend F to a linear isometry on the space of simple functions.
For a simple function has the form f =

∑
ciAi, where the sum is finite, the

Ai are pairwise disjoint measurable sets and ci are real numbers; its norm is
||f || = ∑ |ci|µ(Ai). Clearly F (f) is well defined by the rule F (f) =

∑
ciF (Ai).
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If g =
∑

djBj, then

f + g =
∑
i,j

(ci + dj)(Ai ∩Bj),

and these sets are pairwise disjoint; Step 1 now shows that F (f +g) = F (f)+
F (g). The argument for scalar multiplication is similar but easier. The fact
that F preserves the norm is trivial.

Step 3 The simple functions are dense in L1[0, 1], so F extends to a linear
isometry of L1[0, 1].

Step 4 A theorem of Lamperti [7] (see [8, p.416]) shows that F (f) = h(f◦φ),
where φ is measurable and h ∈ L1[0, 1]. The fact that F maps the characteristic
function of [0, 1] to itself shows that h(x) = 1 for almost all x, so that φ is
measure-preserving, as required. �

We also record the following fact.

Theorem 7 The isometry group Iso(Hω) is dense in the isometry group Iso(H)
(in the topology of pointwise convergence).

This depends on a lemma giving a weak form of homogeneity for Hω.

Lemma 8 Any isometry between finite scaled hypercubes embedded in Hω is
induced by an isometry of Hω.

PROOF. Suppose that H1 and H2 are copies of (c0, . . . , cm−1)H(m, 2) em-
bedded in Hω. Each is embedded in some term of the chain whose union is
Hω; so by considering a term containing both, and re-scaling, we may assume
that H1 and H2 are two copies of (c0, . . . , cm−1)H(m, 2) inside H2n . Applying
isometries of H2n if necessary, we may assume that both H1 and H2 contain
the point 0.

It is clear that each of H1 and H2 is described by m pairwise disjoint sets
of coordinates with cardinalities c0, . . . , cm−1, and consists of all the points
whose coordinates are constant on each of these sets and are zero outside
their union. Now a permutation of the coordinates induces an isometry of
H(2n, 2) mapping H1 to H2.

Finally, the corresponding isometry of H2n maps the original H1 to H2. �
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The space Hω is not, however, a homogeneous metric space. For example, the
two sets

{(0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (1, 0, 0, 1)}

and

{0, 0, 0, 0), (1, 1, 0, 0), (1, 0, 1, 0), (0, 1, 1, 0)}

are isometric subsets of H(4, 2) (each is a regular tetrahedron with side 2) but
are not equivalent under isometries of H(4, 2).

Now we turn to the proof of the theorem. It is enough to prove this for isome-
tries fixing 0, since it is clear for translations from the results of the previous
section.

Take any isometry g of H, and any n points x1, . . . , xn of H, regarded as
measurable subsets of [0, 1]. The set of all Boolean combinations of these sets
forms a scaled cube in H, which can be approximated to within any given ε by
a scaled cube in Hω. Similarly the points xg

1, . . . , x
g
n can be approximated by a

scaled cube with the same scale factors. The Lemma implies that we can map
the first approximating scaled cube to the second by an isometry of Hω. �

2.6 Locally finite subgroups

It is clear that we obtain a group of isometries of Hω (and hence of H) by
taking the union of the chain

Sym(1) → Sym(2) → Sym(4) → Sym(8) → · · ·

of isometries fixing 0 in the finite cubes H1, H2, H4, . . . . Here Sym(2n) is
embedded in Sym(2n+1) as the subgroup having two orbits, the even and odd
integers in {0, . . . , 2n+1 − 1}, and acting in the natural way on each orbit.

This is an example of a strictly diagonal embedding as considered by Kroshko
and Sushchanskĭı [6]. The union of these finite subgroups bears a similar re-
lation to the stabiliser of 0 in the full isometry group Iso(Hω) as the finitary
symmetric group does to the full symmetric group of countable degree. (There
is one obvious difference – it is not a normal subgroup.)
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3 Further comments

In this section we look at some workpoints, including properties of H and
more general constructions.

3.1 Cycles and Gray codes

The “rational Urysohn space” admits an isometry permuting all the points in
a single cycle. It follows that Urysohn space U has an isometry all of whose
cycles are dense. See [2]. Does anything similar happen for our space H?

It is tempting to think that, even if such isometries don’t exist, the existence
of Gray codes (that is, Hamiltonian cycles) in finite cubes should imply the
existence of something similar in the limit spaces (perhaps something like a
space-filling curve).

The space H cannot have a space-filling curve in the usual sense, since it is
not compact. We do not know how to proceed.

A related question would be the existence of something like a space-filling
curve in the “middle level” of H, the set of points lying at distance 1

2
from

0. Here, the existence of the analogous object in finite cubes is a difficult
combinatorial problem, as yet unsolved (see [5]).

3.2 A more general construction of H

Let r0, r1, . . . be any sequence of integers greater than 1, and let ni = r0r1 · · · ri−1,
with n0 = 1. Then we have isometric embeddings

Hn0 → Hn1 → Hn2 → · · ·

where the embedding of Hni
in Hni+1

repeats each coordinate ri times.

Proposition 9 For any sequence r0, r1, . . . as above, if we take the union of
the cubes Hni

under these embeddings and then form its completion, we obtain
the space H.

PROOF. As we did above, we can identify the countable union with the set
of all finite unions of half-open intervals in [0, 1) with denominators ni for
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some i. Now the proof that the completion consists of measurable sets modulo
null sets goes through as before. �

For any such sequence r1, r2, . . ., Kroshko and Sushchanskĭı consider the union
of the chain of strictly diagonal embeddings of symmetric groups

Sym(n0) → Sym(n1) → Sym(n2) → · · ·

where Sym(ni) is embedded in Sym(ni+1) by taking ri copies of the natural
representation. Clearly this union acts on the countable union of the spaces
Hni

, and hence on H.

Another consequence of the Proposition is the following:

Proposition 10 Every countable locally finite group is embeddable in the sta-
biliser of 0 in Iso(H).

PROOF. Such a group is a union of a chain of finite subgroups, say 1 =
H0 < H1 < H2 < · · ·. If |Hi| = ni and ni+1/ni = ri, then the regular action
of Hi+1 contains the action of Hi with ri regular orbits. So these embeddings
are compatible with the embeddings of the finite cubes. �

3.3 Other generalisations

We list here several possible generalisations which should be worth investigat-
ing.

Other Hamming spaces Let H(n, q) denote the Hamming space consisting
of all n-tuples over an alphabet of size q. As usual, the distance between two
n-tuples is the number of coordinates where they differ. If we let Hn(q) denote
the scaled Hamming space 1

n
H(n, q), then we have isometric embeddings

H1(q) → H2(q) → H4(q) → · · ·

with union Hω(q) and completion H(q).

• Is there a convenient representation of H(q)? What is the structure of its
isometry group?

• Is it true that the set of points at distance 1 from any point of H(q) is
isometric to H(q − 1)?
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• If we modify the embedding to take Hni
(q) to Hni+1

(q), where ni+1/ni = ri,
with (ri) any given sequence of integers greater than 1, is it the case that
the completion of the union is isometric to H(q), independent of the choice
of sequence (ri)?

Philip Hall’s locally finite group Philip Hall [4] constructed a universal
homogeneous locally finite group as follows. Embed Sym(n) into Sym(n!) by
its regular representation, and take the union of the sequence

Sym(3) → Sym(6) → Sym(720) → · · · .

This group is countable and locally finite; it contains an isomorphic copy of
every finite group, and any isomorphism between finite subgroups is induced
by an inner automorphism of the group.

We can construct a limit of cubes to mirror this construction, so that Hall’s
group acts on the union. ConsiderHn, with the coordinates indexed 0, 1, . . . , n−
1 as usual. We will take the coordinates of Hn! to be indexed by elements of
Sym(n). Any subset K of {0, 1, . . . , n− 1} is mapped to the subset

π(K) = {g ∈ Sym(n) : 0g ∈ K}

of Sym(n!). The embedding is an isometry, because |π(K)|/n! = |K|/n. Since

g ∈ π(K) ⇔ 0g ∈ K ⇔ 0gh ∈ Kh ⇔ gh ∈ π(Kh),

we have π(Kh) = π(K)h, and so π intertwines the natural action of Sym(n)
on {0, . . . , n− 1} with its action on itself by right multiplication. Hence Hall’s
group acts on the union of this chain of cubes. We propose the name Hall cube
for this space. Its completion is H (the construction above agrees with that in
Section 3.2, with ni+1 = ni!).

What properties does the Hall cube have, and how does Hall’s group act on
it?

Other embeddings of metric spaces We can play the same game with
other chains of finite metric spaces with lots of symmetry (for example, scaled
versions of distance-transitive graphs).

One example involves the dual polar spaces Dn(F ) of type Dn over a field F
(see [1]). The points of such a space are the maximal totally singular subspaces

14



of a vector space of dimension 2n over the field F carrying the quadratic form

Q(x0, x1, . . . , x2n−1) = x0x1 + x2x3 + · · ·+ x2n−2x2n−1.

The distance between two subspaces is the codimension of their intersection.
There is a natural embedding of Dn(F ) into Dn+1(F ), as the set of maximal
totally singular subspaces containing a fixed 1-dimensional singular subspace.
This embedding is the analogue of our embedding of H(n, 2) into H(n + 1, 2)
without re-scaling.

A more interesting possibility would involve re-scaling, embedding Dn(F ) into
D2n(F ). One possibility would be to let K be a quadratic extension of F ;
then Dn(F ) is embedded in Dn(K) (by tensoring the underlying vector space
with K), and Dn(K) is embedded in 1

2
D2n(F ) by restriction of scalars. This

is a close analogue of the cubes considered in this paper.

Acknowledgement We are grateful to Cho-Ho Chu for discussion on measure-
preserving maps of [0, 1].
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