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Abstract

An old conjecture of Marušič, Jordan and Klin asserts that any finite vertex-
transitive graph has a non-trivial semiregular automorphism. Marušič and Scapel-
lato proved this for cubic graphs. For these graphs, we make a stronger conjecture,
to the effect that there is a semiregular automorphism of order tending to infinity
with n. We prove that there is one of order greater than 2.
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A permutation σ is semiregular if all its cycles have the same length. An old
conjecture made independently by Marušič, Jordan and Klin (see the intro-
duction to [3] for details) asserts that any finite vertex-transitive graph has a
non-trivial semiregular automorphism. Clearly there is no loss of generality in
assuming that the graph is connected. Marušič and Scapellato proved:

Theorem 1 A vertex-transitive connected cubic simple graph has a non-trivial
semiregular automorphism.

We need to reproduce the proof since we will use parts of it later.

PROOF. We argue by contradiction. Let G be a connected cubic vertex-
transitive graph, and suppose that G has no non-trivial semiregular automor-
phism.

We first observe that, if σ is an automorphism of prime order greater than 3,
then σ is semiregular. For, if σ fixes a vertex v, then it must fix the three
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neighbours of v, and then their neighbours, ad so on; since G is connected, we
would find that σ is the identity, a contradiction.

So |Aut(G)| = 2x3y for some x, y.

Next we show that y 6= 0. For suppose that y = 0. Then Aut(G) is a 2-
group, so there is a non-identity element σ in its centre; and since Aut(G) is
transitive, σ is semiregular, contrary to assumption.

Now it follows that G is arc-transitive, that is, Aut(G) is transitive on ordered
pairs of adjacent vertices. For let σ be an automorphism of order 3. Then σ
fixes a vertex. Arguing as before, there must be a vertex v such that σ fixes
v and permutes its three neighbours transitively. Since G is vertex-transitive
(by assumption), it is thus arc-transitive.

By Burnside’s pαqβ-theorem, Aut(G) is soluble. So a minimal normal subgroup
N of Aut(G) is elementary abelian. We split the argument into two cases,
according as N is a 3-group or a 2-group.

Case 1: N is a 3-group. Since N is abelian, it acts regularly on each or its
orbits. We further subdivide into cases as follows. Consider the stabiliser Nv

of a vertex v.

Case 1A: Nv fixes the three neighbours of v. Since N is a normal subgroup
of Aut(G), this holds for all vertices v. As before, we find that Nv = 1, so that
N is semiregular, as of course are all its non-identity elements.

Case 1B: Nv permutes the three neighbours of v transitively. Then these
neighbours lie in the same N -orbit, say O1. Let v lie in the orbit O2. Then
Nv fixes O2 pointwise (since N acts regularly on O2) but acts semiregularly
on O1 as a group of order 3. So O1 6= O2. Moreover, all edges from vertices
in O1 go to vertices in O2, so G is bipartite, with bipartite blocks O1 and O2.
Thus G is the complete bipartite graph K3,3. But this graph has a regular
automorphism of order 6.

Case 2: N is a 2-group. Choose a vertex v. Then Aut(G)v acts transitively
on the three neighbours of v, hence as either the symmetric group S3 or the
cyclic group A3. So its normal subgroup Nv acts as S3, A3 or the trivial group.
Since N is a 2-group, the first two cases are impossible, and Nv fixes the
neighbours of v. Then the usual argument shows that Nv is trivial, so N is
semiregular, and we are done. 2
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The proof allows the possibility that the semiregular element has order 2 or 3.
However, in all the examples known to us, there are semiregular elements with
order at least 4. We make the following conjecture:

Conjecture 2 There is a function f , so that f(n) → ∞ as n → ∞, with
the property that a connected vertex-transitive cubic graph on n vertices has a
semiregular automorphism of order at least f(n).

In the rest of this paper, we show that there is always a semiregular automor-
phism of order at least 3, and end with some examples which give an upper
bound to the growth of such a function.

Theorem 3 Let G be a connected vertex-transitive cubic graph. Then G has
a semiregular automorphism of order greater than 2.

The proof depends on the following group-theoretic lemma.

Lemma 4 If P is a 2-group which is not elementary abelian, and Q a core-
free subgroup of P , then there is an element of P of order 4 whose square lies
in no conjugate of Q.

PROOF. Recall that a subgroup Q of P is core-free if Q contains no non-
trivial normal subgroup of P . Note that, if Q is core-free, then Q ∩ ζ(P ) = 1,
where ζ(P ) is the centre of P .

Our proof is by induction on |P |. Let P be a minimal counterexample. Let Q
be a core-free subgroup of P such that

P2 = {g2|g ∈ G} ⊆
⋃
g∈P

Qg.

If the exponent of ζ(P ) is at least 4, then the centre of P contains a square,
and the proposition is clear, so assume ζ(P ) is elementary abelian.

Let Z be a central subgroup of order 2 and consider P/Z and QZ/Z. If P/Z
is elementary abelian then 1 6= g2 ∈ Z for some g ∈ P . In particular, as Q
is core-free, g2 /∈ Q. So, we may as well assume that P/Z is not elementary
abelian.

Now, |P/Z| < |P | and {g2Z|g ∈ P} ⊆ ⋃
g∈P (QZ/Z)g. So, by the induction

hypothesis, QZ/Z is not core-free in P/Z.

Set N =
⋂
g∈P (QZ)g. Now, Z < N ≤ QZ, hence NQ = ZQ. In particular⋂

g∈P (QN)g = N . Therefore QN/N is a core-free subgroup of P/N . Moreover
{g2N |g ∈ P} ⊆ ⋃

g∈P (QN/N)g. So, by the induction hypothesis, P/N is
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elementary abelian, so that Φ(P ) ⊆ N , where Φ(P ) is the Frattini subgroup
of P .

Now NQ = QZ, |Z| = 2 and Z < N ; so N ∩Q has index 2 in N . Furthermore,
Q ∩ N is core-free, therefore N is a subdirect product of copies of the cyclic
group of order 2, and hence is a normal elementary abelian 2-subgroup of P .
Since Φ(P ) ⊆ N , this implies that Φ(P ) is elementary abelian.

Let Z1 be another subgroup of ζ(P ) of order 2. Applying the same argument,
we get Φ(P ) ⊆ QZ1 as well as Φ(P ) ⊆ QZ. If QZ 6= QZ1 then Q = QZ∩QZ1.
Therefore Q is a normal subgroup of P , a contradiction. Therefore QZ =
QZ1. This proves that QZ = Qζ(P ) (since ζ(P ) is elementary abelian). In
particular, as Q is core-free, ζ(P ) has order 2, P ′ = ζ(P ) and P has nilpotency
class 2.

Let g, h be elements of P , 1 = [g, h]2 = [g2, h]. Therefore g2 lies in the centre
of P . Thence P2 ⊆ ζ(P ). So, either P2 = 1 or ζ(P ) contains a square. In the
former case P is elementary abelian, a contradiction. In the latter case P is
not a counterexample. This concludes the proof. 2

This is equivalent to the following result about permutation groups:

Corollary 5 Let P be a transitive 2-group which is not elementary abelian.
Then P contains a semiregular element of order 4. 2

This follows immediately from the lemma, on taking Q to be the stabiliser of
a point in P . (An element of order 4 is semiregular if and only if its square
has no fixed points.)

Now we can prove the Theorem. Let G be a vertex-transitive cubic graph
which has no semiregular automorphism of order greater than 2. As in the
proof of Theorem 1, Aut(G) has order divisible by the primes 2 and 3 only.

Suppose that P = Aut(G) is a 2-group. By the above Corollary, it is elemen-
tary abelian and regular, and G is a Cayley graph for P . Since G is a cubic
graph, P is generated by three elements. Thus P has order 4 or 8, and G is
K4 or the cube; but each of these graphs has a semiregular automorphism of
order 4. So 3 must divide |Aut(G)|.

If 3 does not divide the order of the vertex stabiliser, then an element of or-
der 3 is semiregular. (Note that in this case we cannot construct a semiregular
automorphism of order greater than 3; but such an automorphism will exist
unless the exponent of a Sylow 3-subgroup of G is 3.)

So we may assume that there is an automorphism of order 3 fixing a vertex
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and permuting its three neighbours transitively. Since G is vertex-transitive,
it is arc-transitive.

Let v be any vertex, and N a minimal normal subgroup of G (which we may
assume is an elementary abelian 2-group). We separate three cases, according
to the behaviour of the neighbours of v.

Case 1: The neighbours of v are in the same N -orbit as v. In this case, N is
transitive, so G is a Cayley graph, which is dealt with by the same argument
as before.

Case 2: The neighbours of v are all in a single N -orbit which doesn’t contain
v. In this case, as before, there are just two N -orbits and G is bipartite; we
find easily that it is the 3-cube.

Case 3: The neighbours of v are all in different N -orbits. In this case, the
edges between two orbits (if any) form a 1-factor; the graph obtained by
shrinking each N -orbit to a single vertex and each such 1-factor to a single
edge is a cubic vertex-transitive graph, so has a semiregular automorphism of
order greater than 2, by induction. This lifts to a semiregular automorphism
group of G which is not an elementary abelian 2-group, and hence contains
an element of order greater than 2. 2

Remark In an earlier version, we asked whether the following stronger ver-
sion of the Lemma is true:

If P is a 2-group which is not elementary abelian, then some non-identity
element of the centre of P is a square.

It was pointed out to us by Alexander Hulpke and Andreas Caranti that this
is not the case: there are counterexamples of order 128, for example, group
number 36 in the list of small groups in GAP [2].

We conclude with an example to show that, if our conjecture is true, the
function f(n) cannot grow faster than n1/3.

Let p be a prime congruent to ±1 mod 16, and let G be the group PSL(2, p).
Then G has a maximal subgroup H isomorphic to S4. This subgroup contains
a dihedral subgroup K of order 8, with NG(K) a dihedral group of order 16.
(See Burnside [1] for the subgroups of G.) Then G, acting on the cosets of
H, preserves the orbital graph corresponding to the double coset HxH, where
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x ∈ NG(K) \K. Since H ∩ x−1Hx = K, and |H : K| = 3, this orbital graph
is cubic and 1-transitive. Since |H| = 3 · 23, it is 4-transitive. Now it follows
that G is the full automorphism group. For Tutte’s Theorem [4] shows that
the full automorphism group has at most twice the order of G. So it contains
G as a normal subgroup of index at most 2. If it is larger than G, it would be
PGL(2, p). But this group does not contain a subgroup isomorphic to S4×C2.

Now the largest order of an element of G is p, and the number of vertices of
the graph is (p3 − p)/48.
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