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CRESTED PRODUCTS OF ASSOCIATION SCHEMES

R. A. BAILEY and PETER J. CAMERON

Abstract

In this paper, we define a new type of product of association schemes (and of the related objects,
permutation groups and orthogonal block structures), which generalizes the direct and wreath
products (which are referred to as “crossing” and “nesting” in the statistical literature.) Given
two association schemes Qr for r = 1, 2, each having an inherent partition Fr (that is, a partition
whose equivalence relation is a union of adjacency relations in the association scheme), we define
a product of the two schemes, which reduces to the direct product if F1 = U1 or F2 = E2, and to
the wreath product if F1 = E1 and F2 = U2, where Er and Ur are the relation of equality and
the universal relation on Qr. We calculate the character table of the crested product, and show
that if the two schemes Q1 and Q2 have formal duals, then so does their crested product (and we
give a simple description of this dual). We make an analogous definition for permutation groups
with intransitive normal subgroups, and show that the constructions for association schemes and
permutation groups are related in a natural way.

The definition can be generalized to association schemes with families of inherent partitions, or
permutation groups with families of intransitive normal subgroups. This time the correspondence
is not so straightforward, and works as expected only if the inherent partitions (or orbit partitions)
form a distributive lattice.

We conclude with some open problems.

1. Introduction

Following Bose and Shimamoto [8], we define an association scheme on a finite
set Ω to be a partition of Ω × Ω into classes Ci, for i in K, whose (0, 1) adjacency
matrices Ai are symmetric and satisfy

(i) there is a distinguished element 0 in K such that A0 = IΩ, the identity matrix
on Ω;

(ii) for all i, j in K, the product AiAj is an integer linear combination of the Ak
for k in K.

It follows that
∑
i∈KAi = JΩ, the all-1 matrix on Ω, and that the span A of

{Ai : i ∈ K} over R is a commutative algebra, called the Bose–Mesner algebra of
the scheme. The rank of the scheme is |K|. Note that we do not follow Bannai [6]
in allowing non-symmetric adjacency matrices, apart from a remark at the end of
Section 7.

The trivial association scheme on Ω has A0 = IΩ and A1 = JΩ − IΩ. The
isomorphism type of this association scheme is denoted by n, where n = |Ω|.

Given two association schemes Q1 and Q2 on sets Ω1 and Ω2, with adjacency
matrices Ai (i ∈ K1) and Bj (j ∈ K2), there are two well-established methods of
combining them into a product association scheme on Ω1 × Ω2. The two methods
were formalized by Nelder in a statistical context [15]. One is called crossing : it
yields the direct product Q1 ×Q2, whose adjacency matrices are

Ai ⊗Bj for i in K1 and j in K2.

2000 Mathematics Subject Classification 05E30, 20B25.



2 r. a. bailey and peter j. cameron

The other is called nesting : it yields the wreath product Q1/Q2 (also denoted
Q2 o Q1), whose adjacency matrices are

Ai ⊗ JΩ2 for i in K1 \ {0}

and
IΩ1 ⊗Bj for j in K2.

For example, n × m is the rectangular association scheme R(n,m); while n/m is
the group-divisible scheme GD(n,m) with n blocks of size m.

The purpose of this paper is to give a single method of combining Q1 and Q2 into
an association scheme on Ω1×Ω2 that has both crossing and nesting as special cases.
The new method can be described very naturally for the class of association schemes
derived from orthogonal block structures. This is done in Section 2, where necessary
information about orthogonal block structures is summarized. Orthogonal block
structures are defined by partitions. Section 3 gives some results about partitions
in general association schemes. These are used in Section 4 to extend the new
product to general association schemes, using a distinguished partition in each
scheme. Section 5 gives the character table of the crested product of two schemes,
and Section 6 uses this to explore duality of crested products.

Direct and wreath products are also established ways of combining two permu-
tation groups. Section 7 gives the crested product of permutation groups, in such
a way that if each group preserves an association scheme then the crested product
of the groups preserves the crested product of the schemes.

Finally, a more general version of the crested product is presented in Sections 8–
10. Here a whole family of partitions is needed in each scheme, rather than just
one. Pointers to further work are in Section 11.

2. Orthogonal block structures

An orthogonal block structure on a set Ω is a set of partitions of Ω satisfying
some conditions. Orthogonal block structures were introduced in [17]. The following
summary is based on [2].

Given a partition F of Ω, denote by RF the Ω×Ω relation matrix for F ; that is
RF (α, β) = 1 if α and β are in the same part of F , while RF (α, β) = 0 otherwise. A
partition is uniform if all its parts have the same size; if F is uniform its part size
is denoted by kF . The two trivial partitions are the universal partition U , which
has a single part, and the equality partition E, all of whose parts are singletons.

Partitions of Ω are partially ordered by the relation 4, where F 4 G if every part
of F is contained in a part of G. Given any two partitions F and G, their infimum
is the partition F ∧ G whose parts are intersections of F -parts with G-parts. It is
the coarsest partition which is finer than both F and G. Their supremum is the
partition F ∨ G whose parts are minimal subject to being unions of F -parts and
unions of G-parts.

Definition. A set F of uniform partitions of Ω is an orthogonal block structure
if

(i) F contains U and E;
(ii) for all F and G in F , F contains F ∧G and F ∨G;
(iii) for all F and G in F , the matrices RF and RG commute with each other.
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Given a partition F in an orthogonal block structure F on Ω, define the adjacency
matrix AF by

AF (α, β) =
{

1 if F =
∧
{G ∈ F : RG(α, β) = 1}

0 otherwise.
It is shown in [2, 17] that {AF : F ∈ F , AF 6= 0} is an association scheme on Ω.

Now let F and G be partitions of sets Ω1 and Ω2 respectively. Define F × G to
be the partition of Ω1×Ω2 whose relation matrix is RF ⊗RG. If F and G are both
uniform then so is F ×G, and kF×G = kF × kG.

Given orthogonal block structures F and G on Ω1 and Ω2 respectively, we can
cross them to obtain F × G or nest them to obtain F/G. Here

F × G = {F ×G : F ∈ F , G ∈ G}

while
F/G = {F × U2 : F ∈ F} ∪ {E1 ×G : G ∈ G} ,

where Er and Ur are the trivial partitions of Ωr. It is shown in [17] that F ×G and
F/G are both orthogonal block structures on Ω1 ×Ω2. Furthermore, the operation
of deriving the association scheme from the orthogonal block structure commutes
with both crossing and nesting. Thus the notation n can be used unambiguously
for both the trivial association scheme on an n-set and the trivial orthogonal block
structure {E,U} on an n-set, while n/m denotes both the group-divisible scheme
with n blocks of size m and also n copies of the trivial orthogonal block structure
on an m-set.

We can now define the new way of combining two orthogonal block structures.

Definition. For r = 1, 2, let Fr be an orthogonal block structure on a set Ωr
and let Fr ∈ Fr. The (simple) crested product of F1 and F2 with respect to F1

and F2 is the following set G of partitions of Ω1 × Ω2:

G = {G1 ×G2 : G1 ∈ F1, G2 ∈ F2, G1 4 F1 or G2 < F2} .

Theorem 1. The crested product, as just defined, is an orthogonal block struc-
ture on Ω1 × Ω2.

Proof. All partitions in G are uniform, and all their relation matrices commute
with each other. The two trivial partitions U1×U2 and E1×E2 of Ω1×Ω2 are in G,
because U2 < F2 and E1 4 F1. Suppose that G1 ×G2 and H1 ×H2 are both in G.
Then (G1×G2)∧ (H1×H2) = (G1∧H1)× (G2∧H2) and (G1×G2)∨ (H1×H2) =
(G1 ∨ H1) × (G2 ∨ H2). If G1 4 F1 or H1 4 F1 then G1 ∧ H1 4 F1 and so
(G1×G2)∧ (H1×H2) ∈ G; otherwise, G2 < F2 and H2 < F2 so G2 ∧H2 < F2 and
so (G1 ×G2) ∧ (H1 ×H2) ∈ G. Similarly, (G1 ×G2) ∨ (H1 ×H2) ∈ G.

If F1 = U1 or F2 = E2 then G is F1×F2; if F1 = E1 and F2 = U2 then G = F1/F2.
Thus both crossing and nesting are special cases of the crested product. The word
“crested” is a mixture of “crossed” and “nested” and is also cognate with the
meaning of “wreath” in “wreath product”.

Example 1. Any Latin square of order n defines an orthogonal block structure
on the set of n2 cells of the square: the nontrivial partitions R, C and L have as their
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parts the rows, columns and letters respectively. Take F1 to be such an orthogonal
block structure and F2 to be trivial. The crested product of F1 and F2 with respect
to L and U2 has the Hasse diagram shown in Figure 1.

v
v

v
v

v
v
v

�
�
�
�

�
�
�
�

�
�
�
�

@
@

@
@
@
@
@
@

@
@
@

@
@
@

@
@

E1 × E2

U1 × U2

L× U2

L× E2E1 × U2

C × U2

Figure 1. Crested product of a Latin square and a trivial orthogonal block structure

An important subclass of orthogonal block structures consists of the poset block
structures. Suppose that 6 is a partial order on a finite set X. A subset Y of X is
defined to be ancestral if y ∈ Y whenever x ∈ Y and x 6 y. Denote by S(X) the
set of ancestral subsets of X. For x in X, let Γx be a set of finite cardinality greater
than 1, and put Ω =

∏
x∈X Γx. Each subset Y of X defines a partition F (Y ) of Ω

as follows: (γx : x ∈ X) and (δx : x ∈ X) are in the same part of F (Y ) if and only
if γx = δx for all x in Y . Note that F (Y ) 4 F (Z) if and only if Z ⊆ Y . It is shown
in [2] that {F (Y ) : Y ∈ S(X)} is an orthogonal block structure on Ω. It is called a
poset block structure.

Theorem 2. Crested products of poset block structures are poset block struc-
tures.

Proof. For r = 1, 2, let 6r be a partial order on Xr. Assume that X1 ∩X2 = ∅,
and put X = X1 ∪X2. Let Ω1 =

∏
x∈X1

Γx and Ω2 =
∏
x∈X2

Γx, where each |Γx|
is finite and at least 2. Then Ω1×Ω2 =

∏
x∈X Γx. For r = 1, 2, let Pr be the poset

block structure on Ωr defined by (Xr,6r), and let Yr be an ancestral subset of Xr.
If P is the crested product of P1 and P2 with respect to F (Y1) and F (Y2) then
P = {F (Z) : Z ∈ T } where

T = {Z1 ∪ Z2 : Z1 ∈ S(X1), Z2 ∈ S(X2), Z1 ⊇ Y1 or Z2 ⊆ Y2} .

The elements of T are precisely those subsets of X which are ancestral for the
partial order 6 defined by

x 6 y if


x ∈ X1, y ∈ X1 and x 61 y, or
x ∈ X2, y ∈ X2 and x 62 y, or
x ∈ X2 \ Y2 and y ∈ Y1.

(2.1)

Hence P is the poset block structure on Ω1 × Ω2 defined by (X,6).
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If Y1 = ∅ or Y2 = X2 then P = P1 × P2 and (X,6) is the cardinal sum of the
posets (X1,61) and (X2,62); if Y1 = X1 and Y2 = ∅ then P = P1/P2 and (X,6) is
the ordinal sum of the posets (X1,61) and (X2,62). Thus Equation (2.1) is a way
of combining two disjoint posets that generalizes both cardinal sum and ordinal
sum.

When only crossing and nesting are available as binary operators on orthogonal
block structures, not all poset block structures can be built up from trivial ones.
For example, the poset
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cannot be obtained from singleton posets by repeated use of cardinal and/or ordinal
sum. Crested products change this completely.

Theorem 3. Every poset block structure can be obtained from trivial poset block
structures by repeated use of crested products.

Proof. It suffices to prove that every finite poset can be built from two disjoint
smaller posets by means of Construction (2.1).

Let (X,6) be a finite poset and let y be a maximal element of X. Put X1 =
Y1 = {y}, X2 = X \ {y} and Y2 = X2 \ {x ∈ X2 : x < y}. Let 61 be the trivial
partial order on X1 and let 62 be the restriction of 6 to X2. Then Y1 ∈ S(X1),
Y2 ∈ S(X2) and 6 is obtained from 61 and 62 by Construction (2.1).

Theorem 3 does not extend to orthogonal block structures. The lattice of part-
itions in an orthogonal block structure is modular, so the lattice has a well-defined
height. Since the crested product of F1 and F2 always contains

F × U2 for all F in F1

and
E1 ×G for all G in F2,

the height of the crested product is the sum of the heights of F1 and F2.
It follows that the only crested products of height two are n/m and n×m. The

orthogonal block structure defined by a Latin square in Example 1 has height two
and cannot be obtained as a crested product. Nor can the other orthogonal block
structures of height two: these are obtained from sets of mutually orthogonal Latin
squares, with t+ 2 non-trivial partitions if there are t squares.

Example 2. Similar arguments show that the orthogonal block structure shown
in Figure 2 is not a crested product. Here Ω is the group

〈a, b : a9 = b3 = 1, b−1ab = a4〉.

Each subgroup of Ω defines a uniform partition of Ω into its left cosets. In this group
all subgroups commute in pairs, so these partitions do form an orthogonal block
structure, which has height three. Examination of all possible crested products of
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orthogonal block structures with heights one and two shows that none of them is
the one in Figure 2.
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Figure 2. Orthogonal block structure defined by the subgroups of the group in Example 2

3. Partitions in association schemes

Definition. Let Q be an association scheme on Ω with adjacency matrices Ai
for i in K. A partition F of Ω is inherent in Q if there is a subset L of K such that
RF =

∑
i∈LAi.

The trivial partitions E and U are inherent in every association scheme. If there
are no other inherent partitions then the association scheme is called primitive;
otherwise it is imprimitive: see [11]. Thus all non-trivial orthogonal block structures
are imprimitive.

Example 3. There is an association scheme on the 12 edges of the cube. Dis-
tinct edges α and β are related by relation

1 if α and β meet at a vertex
2 if α and β are diagonally opposite
3 if α and β are parallel but not opposite
4 if α and β are skew.

The partitions inherent in the association scheme have relation matricesA0,A0+A2,
A0 +A2 +A3 and A0 +A1 +A2 +A3 +A4.

Theorem 4. If Q is an association scheme on Ω then the set F of partitions
of Ω which are inherent in Q is an orthogonal block structure on Ω.

Proof. Every adjacency matrix of Q has constant row-sums, so every partition
in F is uniform. Moreover, F contains U and E.

Suppose that F and G are in F . Then RF and RG are in the Bose–Mesner
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algebra A of Q, which is commutative, so RF commutes with RG. If RF =
∑
i∈LAi

and RG =
∑
i∈MAi then RF∧G =

∑
i∈L∩MAi, and so F ∧G is in F . In particular,

F ∧ G is uniform, and so Proposition 3 of [2] shows that RFRG = kF∧GRF∨G:
therefore RF∨G ∈ A and so F ∨G ∈ F .

Theorem 4 gives a more direct proof of Theorem 7 of [3].

Example 4. Let Ω be an Abelian group and let Q be the association scheme
on Ω in which (α, β) is in the same class as (γ, δ) if α−1β ∈

{
γ−1δ, δ−1γ

}
. The part-

itions inherent in Q form the orthogonal block structure defined by all subgroups
of Ω: see [1, 9].

Given any partition P of Ω×Ω, let V (P) be the span (over R) of the adjacency
matrices of its classes. Then Q 4 P if and only if V (P) 6 A.

Definition. Let Q be an association scheme on Ω. A partition P of Ω × Ω is
ideal for Q if V (P) is an ideal of A in the sense that V (P) 6 A and AD ∈ V (P)
whenever A ∈ A and D ∈ V (P).

Inherent partitions were introduced in [11] in order to define quotient schemes.
The calculations in the proof of Theorem 9.4 of [7] show that if F is an inherent
partition of Q then there is an ideal partition ϑ(F ) for Q such that AiRF is an
integer multiple of an adjacency matrix of ϑ(F ) for all i in K. The following result
shows that ϑ is a bijection.

Theorem 5. Let P be an ideal partition for Q. Let the adjacency matrices
for Q be Ai for i in K, and those for P be Dm for m in M. Denote by σ the
surjection from K to M such that class i of Q is contained in class σ(i) of P. Put
R = Dσ(0). Then R is the relation matrix of an inherent partition in Q. Moreover,
for all i in K, AiR is an integer multiple of Dσ(i).

Proof. First fix i in K. Because P is an ideal partition, there are integers tm,
for m in M, such that AiR =

∑
m∈M tmDm. If m and n are distinct elements

of M then the diagonal elements of DmDn are zero; while those of D2
m are equal

to the constant row-sum dm of Dm. Therefore the diagonal elements of AiRDm

are equal to tmdm. If m 6= σ(i) then the diagonal elements of AiDm are zero, but
AiDm ∈ V (P) so there are integers ul, for l in M\ {σ(0)}, such that

AiDm =
∑

l∈M\{σ(0)}

ulDl.

Then AiRDm = AiDmR = AiDmDσ(0) =
∑
l 6=σ(0) ulDlDσ(0), whose diagonal

elements are zero, so tm = 0. Hence AiR = tσ(i)Dσ(i).
Now put L = {i ∈ K : σ(i) = σ(0)}. Then R =

∑
i∈LAi and AiR is an integer

multiple of R for all i in L. Consequently R2 is an integer multiple of R and so R is
the relation matrix of a uniform partition of Ω. This partition is inherent because
R is in the Bose–Mesner algebra of Q.

In the quotient association scheme of Q by its inherent partition F , the objects
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are the parts of F and the adjacency matrices are the collapsed versions of the
adjacency matrices of ϑ(F ).

4. Products of association schemes

Let F be a partition in an orthogonal block structure F . Then RF =
∑
G∈LAG,

where L = {G ∈ F : G 4 F}. Hence F is inherent in the association scheme Q
derived from F . Let A be the Bose–Mesner algebra of Q. Then {AG : G ∈ L} and
{RG : G ∈ L} span the same subspace A|F of A, and this is closed under matrix
multiplication.

Let P be the ideal partition ϑ(F ). For G in F , RG is in the ideal of A generated
by RF if and only if F 4 G: therefore V (P) is the span of {RG : G ∈ F , G < F}.
Henceforth write A|F for V (ϑ(F )).

Now let G be the crested product of orthogonal block structures F1 and F2 with
respect to F1 and F2. The span of the relation matrices of the partitions in G is

(A1|F1 ⊗A2) + (A1 ⊗A2|F2),

where A1 and A2 are the Bose–Mesner algebras of the association schemes defined
by F1 and F2. The adjacency matrices of the association scheme defined by G are
(0, 1)-matrices which sum to JΩ1×Ω2 and which span this algebra. Therefore they
are

AG ⊗AH for G in L and H in F2

and
AG ⊗D for G in F1 \ L and D an adjacency matrix of P,

where L = {G ∈ F1 : G 4 F1} and P = ϑ(F2). This motivates the following defini-
tion.

Definition. For r = 1, 2, let Qr be an association scheme on a set Ωr, and
let Fr be an inherent partition in Qr. Put P = ϑ(F2) and Ω = Ω1 × Ω2. Let the
adjacency matrices of Q1, Q2 and P be Ai for i in K1, Bj for j in K2, and Dm for
m inM. Let L be the subset of K1 such that RF1 =

∑
i∈LAi. The (simple) crested

product of Q1 and Q2 with respect to F1 and F2 is the set Q of subsets of Ω × Ω
whose adjacency matrices are

Ai ⊗Bj for i in L and j in K2

and
Ai ⊗Dm for i in K1 \ L and m in M.

Theorem 6. The crested product, as just defined, is an association scheme
on Ω.

Proof. All of the matrices are symmetric. There are distinguished elements 0 in
both L and K2 such that A0 = IΩ1 and B0 = IΩ2 : then A0 ⊗B0 = IΩ.

We have ∑
i∈L

∑
j∈K2

(Ai ⊗Bj) =

(∑
i∈L

Ai

)
⊗

∑
j∈K2

Bj

 = RF1 ⊗ JΩ2
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and ∑
i∈K1\L

∑
m∈M

(Ai ⊗Dm) =

 ∑
i∈K1\L

Ai

⊗( ∑
m∈M

Dm

)
= (JΩ1 −RF1)⊗ JΩ2

so the subsets of Ω × Ω defined by the adjacency matrices do form a partition of
Ω× Ω.

For r = 1, 2, let Ar be the Bose–Mesner algebra of Qr. Let A1|F1 be the span
of {Ai : i ∈ L}. Then A1, A2, A1|F1 and A2|F2 are all closed under multiplication.
Define σ:K2 →M as in Theorem 5. Then∑

j:σ(j)=m

Ai ⊗Bj = Ai ⊗Dm

and so the span A of the adjacency matrices is (A1|F1 ⊗A2) + (A1 ⊗A2|F2). Each
of (A1|F1 ⊗A2) and (A1 ⊗A2|F2) is closed under matrix multiplication. If i1 ∈ L,
j ∈ K2, i2 ∈ K1 and m ∈ M then Ai1Ai2 ∈ A1 and BjDm ∈ A2|F2 , because P is
ideal, and so (Ai1 ⊗ Bj)(Ai2 ⊗ Dm) ∈ A. Hence A is closed under multiplication
and so Q is an association scheme.

Again, the crested product reduces to the direct product if F1 = U1 or F2 = E2

(in which case P = Q2); and it reduces to the wreath product if F1 = E1 and
F2 = U2 (in which case P = UΩ2×Ω2). The crested product is always imprimitive,
because it contains the inherent partition E1×U2. The subscheme induced on each
class of E1×U2 is isomorphic to Q2, while the quotient scheme is isomorphic to Q1.
This gives a flexible method of constructing an ‘extension’ of one association scheme
by another.

5. The character table of a crested product

Since the Bose–Mesner algebra A of an association scheme Q is commutative, it
has common eigenspaces, called strata by statisticians. The stratum projectors Se,
for e in E , are also known as primitive idempotents. They form an alternative basis
for A, so |K| = |E|: see [12, Chapter 17]. The character table of Q is the K × E
matrix whose entry C(i, e) is the eigenvalue of Ai on stratum We (this matrix is
called P in [12]).

If F is an inherent partition in Q then k−1
F RF is idempotent so there is a subset

H of E such that RF = kF
∑
e∈H Se. Define the equivalence relation ∼ on E by

e ∼ f if and only if C(i, e) = C(i, f) for all i in L, and write [e] for the equivalence
class containing e. Then H = [0]. The classes of each of the subschemes defined by
F are indexed by L while the strata of each are indexed by the equivalence classes
of ∼. The Bose–Mesner algebra of each subscheme is isomorphic to A|F .

On the other hand, the classes of the quotient scheme are indexed by the classes of
ϑ(F ) while the stratum projectors are collapsed versions of Se for e in H. The linear
map τ that takes k−1

F Dm to the m-th adjacency matrix of the quotient scheme is
an isomorphism from A|F to the Bose–Mesner algebra of the quotient scheme.

Theorem 7. Let Q be the crested product defined in Section 4. Let the strata
for Q1 be We, for e in E1, with stratum projectors Se, and those for Q2 be Vf , for f
in E2, with stratum projectors Tf . For r = 1, 2, let Cr be the character table of Qr.
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In Q1, put e ∼ f if C1(i, e) = C1(i, f) for all i in L, and put U[e] =
⊕

f∼eWf ,
whose projector is equal to

∑
f∼e Sf . In Q2, let H be the subset of E2 such that

RF2 = kF2

∑
f∈H Tf . Then the strata for Q are We ⊗ Vf , for (e, f) in E1 ×H, and

U[e] ⊗ Vf , for equivalence classes [e] of ∼ and f in E2 \ H. The eigenvalues are as
follows, where C̄2 is the character table of the quotient Q̄2 of Q2 by F2.

We ⊗ Vf (f ∈ H) U[e] ⊗ Vf (f /∈ H)

Ai ⊗Dm (i /∈ L) C1(i, e)kF2C̄2(m, f) 0

Ai ⊗Bj (i ∈ L) C1(i, e)C2(j, f) C1(i, e)C2(j, f)

Proof. The claimed strata are mutually orthogonal and sum to RΩ1×Ω2 .
If f /∈ H then RF2Tf = 0 and so DmTf = 0 because Dm is a multiple of RF2 .

The other eigenvalues given follow directly from the character tables of the two
schemes, the definition of ∼ and the isomorphism τ . Thus to show that none of the
claimed strata merge into a single stratum it is sufficient to show that we have the
correct number of strata.

The number of equivalence classes of ∼ is equal to the rank of the subscheme of
Q1 induced on each part of F1, which is |L|, while |M| and |H| are both equal to
the rank of Q̄2. Hence the number of adjacency matrices and the number of claimed
strata are both equal to |K1| · |H| − |L| · |H|+ |L| · |K2|.

6. Dual association schemes

Association schemes Q and Q∗ on sets of the same size n are said to be formally
dual [12, Chapter 17] if there is a bijection ∗ from the classes of Q to the strata
of Q∗ and from the strata of Q to the classes of Q∗ such that

C∗(e∗, i∗) = nC−1(e, i) (6.1)

for all (i, e) in K × E , where C and C∗ are the character tables of Q and Q∗
respectively. Note that Equation (17.14) of [12] shows that

C−1(e, i) = C(i, e)re/(nvi), (6.2)

where re is the rank of Se and vi is the valency of Ci.
Suppose that Q has such a dual, and that F is an inherent partition in Q with

RF =
∑
i∈LAi = kF

∑
e∈H Se. Then∑
i∈L

Ai = kF
∑
e∈H

∑
j∈K

C−1(e, j)Aj

so
∑
e∈H C

−1(e, j) is equal to 1/kF if j ∈ L and to zero otherwise. Hence, in Q∗,∑
e∈H

Ae∗ =
∑
e∈H

∑
i∈K

C∗(e∗, i∗)Si∗ =
∑
i∈K

∑
e∈H

nC−1(e, i)Si∗ =
n

kF

∑
i∈L

Si∗ .

Therefore
∑
e∈HAe∗ is the relation matrix of an inherent partition F ∗ in Q∗ whose

parts have size n/kF . We may call F ∗ the inherent partition dual to F .
To proceed, we need to give more explicit results about the character table of a

quotient scheme than we have used so far. The conclusion of Theorem 5 enables
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us to change the notation used in its proof so that AiRF = tiDσ(i) for i in K.
Moreover, Dσ(i) =

∑
j∈σ−1σ(i)Aj . Then vikF = tidσ(i) and dσ(i) =

∑
j∈σ−1σ(i) vj .

Lemma 8. Let C̄ be the character table of the quotient scheme Q̄ of Q by F .
Then C̄(σ(i), e) = C(i, e)/ti and C̄−1(e, σ(i)) = kFC

−1(e, i) for e in H and i in K.

Proof. The primitive idempotents of Q̄ are τ(Se) for e in H, and the adjacency
matrices are the distinct τ(k−1

F Dσ(i)). Now

τ(k−1
F Dσ(i)) = τ(t−1

i Aik
−1
F RF )

= τ(t−1
i Ai)τ(k−1

F RF )

= τ(t−1
i

∑
e∈E

C(i, e)Se)× I

=
∑
e∈E

C(i, e)
ti

τ(Se)

so C̄(σ(i), e) = C(i, e)/ti.
The valency vσ(i) of τ(Dσ(i)) is just vi/ti, so Equation (6.2) shows that if there

are n points in the scheme Q then

C̄−1(e, σ(i)) =
C̄(σ(i), e)re
(n/kF )vσ(i)

=
C(i, e)kF re
tin(vi/ti)

= kFC
−1(e, i).

The second part of this lemma shows that if σ(i) = σ(j) then C−1(e, i) =
C−1(e, j) for all e in H. Hence if Equation (6.1) holds then C∗(e∗, i∗) = C∗(e∗, j∗)
for all e in H, so i∗ ∼ j∗. Conversely, if i∗ ∼ j∗ and Equation (6.1) holds then
Ai
∑
e∈H Se is a scalar multiple of Aj

∑
e∈H Se, so σ(i) = σ(j).

Incidentally, this lemma also shows that if Q is formally dual to Q∗ and F is
inherent inQ then the quotient scheme ofQ by F is formally dual to the subschemes
of Q∗ induced on each part of F ∗.

Theorem 9. For r = 1, 2, suppose that Fr is an inherent partition in the
association scheme Qr on a set of size nr, and that Q∗r is formally dual to Qr.
Then the crested product Q∗ of Q∗1 and Q∗2 with respect to F ∗1 and F ∗2 is formally
dual to the crested product Q of Q2 and Q1 with respect to F2 and F1.

Proof. The adjacency matrices of Q are Ai ⊗ Dm, for i in K1 \ L and m in
σ(K2), and Ai⊗Bj , for i in L and j in K2, while the strata are We⊗Vf for e in E1
and f in H, and U[e] ⊗ Vf for equivalence classes of ∼ on E1 and f in E2 \ H. The
adjacency matrices of Q∗ are labelled by (f∗, σ(e∗)) for f in E2 \ H and e in E1,
and by (f∗, e∗) for f in H and e in E1, while its strata are labelled by (j∗, i∗) for j
in K2 and i in L, and by ([j∗], i∗) for j in K2 and i in K1 \ L1.

Let C and C∗ be the character tables ofQ andQ∗. We use Theorem 7 to obtain C,
then Equation (6.2) to obtain C−1, and show that it satisfies Equation (6.1) by using
Theorem 7 for Q∗.

First, take i in L, j inK2, e in E1 and f inH. Then C((i, j), (e, f)) = C1(i, e)C2(j, f).
The valency of Aj ⊗Bj is vivj , so

C−1((e, f), (i, j)) =
C1(i, e)C2(j, f)rerf

n1n2vivj
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= C−1
1 (e, i)C−1

2 (f, j)

=
C∗1 (e∗, i∗)C∗2 (f∗, j∗)

n1n2

= (n1n2)−1C∗((f∗, e∗), (j∗, i∗).

Secondly, take i in K1 \ L, j in K2, e in E1 and f in H. Then

C((i, σ(j)), (e, f)) = C1(i, e)kF2C̄2(σ(j), f) = C1(i, e)kF2C2(j, f)/tj .

The valency of Ai ⊗Dσ(j) is vivjkF2/tj , so

C−1((e, f), (i, σ(j)) =
C1(i, e)kF2C2(j, f)rerf

n1n2vivjkF2

= C−1
1 (i, e)C−1

2 (j, f)

=
C∗1 (e∗, i∗)C∗2 (f∗, j∗)

n1n2

= (n1n2)−1C∗((f∗, e∗), (j∗, i∗)).

Thirdly, take i in L, j in K2, e in E1 and f in E2 \ H. Then C((i, j), ([e], f)) =
C1(i, e)C2(j, f). Now the dimension of the stratum is rf

∑
g∈[e] rg. However,∑

g∈[e]

rg =
∑
g∈[e]

vg∗ =
∑

g∗∈σ−1σ(e)

vg∗ = kF∗1 ve∗/te∗ = kF∗1 re/te∗ ,

so

C−1(([e], f), (i, j)) =
C1(i, e)C2(j, f)kF∗1 rerf

n1n2vivjte∗

=
C−1

1 (e, i)C−1
2 (f, j)kF∗1
te∗

=
C∗1 (e∗, i∗)kF∗1 C

∗
2 (f∗, j∗)

n1n2te∗

=
C∗2 (f∗, j∗)kF∗1 C̄

∗
1 (e∗, i∗)

n1n2

= (n1n2)−1C∗((f∗, σ(e∗)), (j∗, i∗)).

Finally, take i in K1\L, j in K2, e in E1 and f in E2\H. Then C((i, σ(i)), ([e], f)) =
0 and so C−1(([e], f), (i, σ(j))) = 0. However, [e] = σ(e∗) and [j∗] = σ(j), and
C∗((f∗, σ(e∗), ([j∗], i∗)) = 0.

7. Products of permutation groups

In this section we define the crested product of two permutation groups. We write
permutations on the right, in contrast to other functions. We also warn of another
source of confusion. We use GΩ to denote the set of functions from Ω to G, not (as
often in permutation group theory) the permutation group induced on the set Ω by
the group G.

For r = 1, 2, let Gr be a transitive permutation group on Ωr. We recall the
definition of the wreath product G2 oG1, which is a permutation group on Ω1×Ω2

generated by the following two subgroups:
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(a) the base group B = GΩ1
2 , acting by the rule

(α1, α2)φ = (α1, α2φ(α1))

for φ ∈ GΩ1
2 ;

(b) the top group T = G1, acting by the rule

(α1, α2)g = (α1g, α2)

for g ∈ G1.
Note that T normalizes B, so the two groups generate their product; and B∩T = 1,
so the product is semi-direct.

If we replace the base group B by its subgroup G2, embedded diagonally (that
is, as the group of constant functions), we obtain the direct product G1 ×G2.

Now suppose that, for r = 1, 2, we have a partition Fr of Ωr which is invariant
under Gr. We need to make a further assumption: suppose that there is a normal
subgroup N of G2 such that F2 is the orbit partition of N . Now we may as well
assume that N consists of all elements of G2 which fix all parts of the partition F2.
We use Fr also to denote the set of parts of the partition Fr.

The base group B of the simple crested product is the group generated by NF1

and G2. Here NF1 is embedded in GΩ1
2 as the set of functions which are constant on

the classes of F1 and take values in N ; and G2 is embedded diagonally, as before.
Clearly G2 normalizes NF1 , so their product is a group; and the intersection is N
(embedded diagonally). The top group is G1, which normalizes B; so the crested
product is again a semi-direct product of B by G1. Its order is |N ||F1|−1 · |G1| · |G2|.
Clearly it contains the direct product and is contained in the wreath product of G2

and G1. Moreover, as usual, we see that it is equal to the direct product if F2 = E2

or if F1 = U1, and is equal to the wreath product if F2 = U2 and F1 = E1.
There are two concepts of an automorphism of an association scheme. In this

paper we shall use the strong sense: a permutation of the underlying set that pre-
serves all the classes of the scheme.

Theorem 10. With the notation as above, suppose that Qr is an association
scheme on Ωr admitting the group Gr, and that Fr is an inherent partition in Qr,
for r = 1, 2. Then the crested product of the two groups preserves the crested product
of the two association schemes (relative to the partitions F1 and F2 in each case).

Proof. Since Q1 ×Q2 refines the crested product and is preserved by G1 ×G2,
we only have to show that the group NF1 preserves the crested product. To show
this we consider separately the two types of relation which might hold between two
pairs (α1, α2) and (β1, β2), and apply an element φ in NF1 to both pairs.

If the matrix of the relation is Ai ⊗ Bj where i ∈ L, then F1(α1) = F1(β1), and
so the same element of N is applied to α2 and β2, so the Bj-relation they satisfy is
preserved.

If the matrix is of the form Ai ⊗ Dm, then the permutations φ(α1) and φ(β1)
do not change the F2-parts of α2 and β2 respectively; but the Dm-relation depends
only on these F2-parts.

We could have achieved Theorem 10 by being parsimonious about which permu-
tations are included in the crested product of G1 and G2. The next result suggests
that our definition is precisely the right one.
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Theorem 11. Suppose that, for r = 1, 2, the classes of Qr are the orbits of
Gr on Ωr × Ωr. Let F1 be an inherent partition in Q1 and N a normal subgroup
of G2. Let F2 be the orbit partition of N on Ω2. Then F2 is inherent in Q2, and
the classes of the crested product Q of Q1 and Q2 with respect to F1 and F2 are the
orbits of the crested product G of G1 and G2 on (Ω1 × Ω2)× (Ω1 × Ω2).

Proof. Since G2 centralizes RF2 , the corresponding relation is a union of classes
in Q2, so F2 is inherent in Q2. Thus the crested product of the association schemes
is defined. Even though N need not be the whole partwise stabilizer of F2, the
crested product of the groups is defined. Now Theorem 10 shows that each class of
Q is a union of orbits of G, so we have to show that G is transitive on each class.

Suppose that ((α1, α2), (β1, β2)) and ((γ1, γ2), (δ1, δ2)) are in the same class of Q.
Then (α1, β1) and (γ1, δ1) are in the same class of Q1, so there is an element of the
top group G1 taking α1 to γ1 and β1 to δ1. Hence we may assume that α1 = γ1

and β1 = δ1.
If the class of Q has relation matrix Ai⊗Bj then (α2, β2) and (γ2, δ2) are in the

same class of Q2. The crested product contains G2 acting diagonally, and there is
an element of G2 taking (α2, β2) to (γ2, δ2).

Otherwise, the class of Q has relation matrix Ai ⊗ Dm for i not in L, so α1

and β1 are not in the same part of F1. There is some j in K2 for which Dm is a
scalar multiple of BjRF2 . Hence there are points ε and ζ in Ω2 such that (α2, ε)
and (γ2, ζ) are in the Bj-relation while (ε, β2) and (ζ, δ2) are pairs in the same
parts of F2. There is an element φ0 in G2 taking (α2, ε) to (γ2, ζ), and elements h1

and h2 in N with εh1 = β2 and ζh2 = δ2. Since α1 and β1 are in different parts
of F1, there are elements φ1 and φ2 of NF1 with φ1(α1) = φ2(α1) = 1, φ1(β1) =
h−1

1 and φ2(β1) = h2. Now G contains φ1φ0φ2 and ((α1, α2), (β1, β2))φ1φ0φ2 =
((α1, α2), (β1, ε))φ0φ2 = ((α1, γ2), (β1, ζ))φ2 = ((α1, γ2), (β1, δ2)).

Remark. In fact, we can prove something a little stronger. A homogeneous co-
herent configuration [14] is a generalization of association scheme in which the sym-
metry condition is weakened to the condition that the transpose of every adjacency
matrix is also an adjacency matrix. The crested product of homogeneous coherent
configurations can be defined in just the same way as for association schemes. If Gr
is transitive on Ωr then the orbits of Gr on Ωr ×Ωr form a homogeneous coherent
configuration. The proofs of Theorems 10 and 11 show that the orbit partition of
the crested product of two transitive groups is the crested product of the orbit
partitions of the two groups.

Remark. If the groups G1 and G2 have regular abelian subgroups A1 and A2,
then the condition (implicit in Theorem 10) that the inherent partition F2 is the
orbit partition of a normal subgroup of G2 is automatically satisfied. Also, the
crested product has a regular abelian subgroup A1 ×A2. In particular, the associ-
ation scheme has a dual [13]. Theorem 9 shows that this is the crested product in
reverse order of the duals of the two schemes (using the dual inherent partitions).

Remark. There is another similar permutation group, obtained by taking in-
stead the base group to be the product of NΩ1 and GF1

2 . Their intersection is NF1 ,
and again the top group normalizes the base group. The new group is equal to
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the direct product if F2 = E2 and F1 = U1, and is equal to the wreath product
if F2 = U2 or if F1 = E1. This suggests that there might be a different sort of
crested product of association schemes, so that the analogue of the preceding the-
orem holds. In Section 8 we define a more general product which has both of these
as special cases.

8. A more general product of association schemes

Let F be a set of inherent partitions of Q1 which contains U1 and is closed under
∧ and ∨ (except that we do not require that F contain the empty supremum E).
For each F in F , let LF be the set of indices in K1 such that Ai is a component
relation of RF . Use Möbius inversion to obtain JF as the set of i such that F is
minimal subject to i ∈ LF . The sets JF , for F in F , partition K1, because F
contains U1 and is closed under ∧. Write F0 for the unique minimal partition in F .

Further, suppose that ψ is a map from F to the set of inherent partitions of Q2

with the properties that ψ(F0) = E2 and ψ preserves order and suprema. Note that
ψ need not be one-to-one nor preserve infima. For F in F , write DF for the set of
adjacency matrices of the ideal partition ϑ(ψ(F )).

The adjacency matrices of the extended crested product Q of Q1 and Q2 with
respect to F and ψ are

Ai ⊗D for i in JF and D in DF

for all F in F . Clearly they are all symmetric. Since
∑
D∈DF D = JΩ2 , their sum is∑

i∈K1
Ai⊗ JΩ2 , which is JΩ1×Ω2 . We have IΩ1 = A0 ∈ JF0 and IΩ2 = B0 ∈ DF0 =

{Bj : j ∈ K2} because ψ(F0) = E2, so Q contains IΩ1×Ω2 . If G 4 F then ψ(G) 4
ψ(F ) so A2|ψ(F ) 6 A2|ψ(G) and therefore the span A of the adjacency matrices is∑
F∈F

[
A1|F ⊗A2|ψ(F )

]
. Consider partitions F and G in F . The subalgebras of the

subschemes are ordered in the same way as the inherent partitions, so A1|FA1|G ⊆
A1|F∨G. Also A2|ψ(F )A2|ψ(G) is the ideal of A2 generated by Rψ(F )Rψ(G), which
is proportional to Rψ(F )∨ψ(G), which is Rψ(F∨G), so A2|ψ(F )A2|ψ(G) = A2|ψ(F∨G).
Hence A is closed under multiplication and so Q is an association scheme.

Here are some special cases of the extended crested product.

(1) F = {U1}, ψ(U1) = E2 gives the direct product.
(2) F = {E1, U1}, ψ(X1) = X2 for X ∈ {E,U} gives the wreath product.
(3) F = {F1, U1}, ψ(F1) = E2, ψ(U1) = F2 gives the simple crested product.
(4) F = {E1, F1, U1}, ψ(X1) = X2 for X ∈ {E,F,U} gives the product hinted

at in the final remark in Section 7.

It is curious that the ‘non-standard’ crested product has a neater definition in
these terms than the ‘standard’ one does.

This more general version of the crested product still has E1×U2 as an inherent
partition whose subschemes are isomorphic to Q2 and whose quotient scheme is
isomorphic to Q1. Nonetheless, there are, in general, many extensions of Q2 by Q1

that do not arise as crested products. Any Latin square of order n is an extension
of n by n but is not a crested product. See [18] for many more examples.

If Qr is the association scheme of an orthogonal block structure Gr for r = 1, 2
then the extended crested product of Q1 and Q2 with respect to F and ψ is the



16 r. a. bailey and peter j. cameron

association scheme of the orthogonal block structure⋃
F∈F
{H1 ×H2 : H1 ∈ G1, H2 ∈ G2, H1 4 F, H2 < ψ(F )} .

It is not immediately obvious that this is closed under ∧. However, suppose that
H1 4 F ∈ F , K1 4 G ∈ F , ψ(F ) 4 H2 and ψ(G) 4 K2. Then H1 ∧K1 4 F ∧G ∈
F , and ψ(F ∧ G) 4 ψ(F ) ∧ ψ(G) 4 H2 ∧ K2, because ψ preserves order: hence
(H1 ∧K1)× (H2 ∧K2) is in the orthogonal block structure.

Example 5. Take four association schemes Qrs for r, s in {1, 2}. For r = 1, 2,
the direct product Qr1×Qr2 has inherent partitions Er1×Er2, Er1×Ur2, Ur1×Er2
and Ur1 ×Ur2. Take ψ(X1s × Y1s) = X2s × Y2s for s in {1, 2} and X, Y in {E,U}.
Then the extended crested product of Q11 ×Q12 and Q21 ×Q22 with respect to ψ
is (Q11/Q21)× (Q12/Q22), so this construction does seem to precisely capture the
idea of putting F above ψ(F ) but no more.

Example 6. For r = 1, 2, let Qr be the association scheme of the Latin square
orthogonal block structure whose non-trivial partitions are Rr, Cr and Lr. Put
F = {E1, L1, U1} and ψ(X1) = X2 for X in {E,L,U}. The extended crested
product is shown in Figure 3.
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E1 × E2

U1 × U2

E1 × C2

C1 × U2

E1 × U2

E1 × L2

L1 × L2

L1 × U2

Figure 3. Extended crested product of two Latin squares

As before, the height of the lattice of the extended crested product of two ortho-
gonal block structures is the sum of the original two heights. Examination of the
small number of possible cases shows that the orthogonal block structure in Fig-
ure 3 cannot be attained from smaller structures by the simple crested product.
Hence the extension gives something genuinely new.
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9. A more general product of permutation groups

We can make a similar definition of the extended crested product of two permu-
tation groups (G1,Ω1) and (G2,Ω2).

Let F be a set of G1-invariant partitions of Ω1.
LetN be a set of normal subgroups of G2, closed under intersection (in particular,
N contains the empty intersection G2), and let ρ be an order-preserving map from
F onto N . For N in N , let F (N) be the orbit partition of N . If N1 and N2 are
in N then F (N1) is orthogonal to F (N2) and F (N1)∨F (N2) is the orbit partition
of N1N2. Even if Ni is the whole partwise stabilizer of F (Ni) for i = 1, 2, the
partwise stabilizer of F (N1) ∨ F (N2) may be larger than N1N2, so in general we
do not insist on this condition.

Now the base group B of the extended crested product is defined to be the group
generated by the subgroups ρ(F )F for F ∈ F . (As usual, ρ(F )F is embedded in
GΩ1

2 as the set of functions constant on parts of F and taking values in ρ(F ).)
The extended crested product is generated by the base group and the group G1

acting coordinatewise, as before. It is clear that each subgroup ρ(F )F is normalized
by G1, so we do have a semi-direct product; but the structure of the base group is
less clear.

Example 7. Let Ω1 be 2× 2 and let G2 be the dihedral group

〈a, b: a4 = b2 = 1, bab = a−1〉

acting on the corners of a square. Take F1 and F2 to be the partitions of Ω1 into
rows and columns respectively, with ρ(F1) = 〈a2, b〉 and ρ(F2) = 〈a2, ab〉.

Figure 4 shows elements φi in ρ(Fi)Fi for i = 1, 2, and their product φ1φ2. It
is readily checked that there are no elements φ′i in ρ(Fi)Fi for i = 1, 2 such that
φ′2φ

′
1 = φ1φ2. Hence these two subgroups do not commute, so their product is not

a group.

φ1 =
1 1

b b
φ2 =

1 ab

1 ab
φ1φ2 =

1 ab

b a3

Figure 4. Non-commuting subgroups of the base group in Example 7

Nonetheless, we can indeed prove that the base group B is the product, in a
suitable order, of all the subgroups that generate it. We use the fact that every
partial order can be embedded in a total order.

Theorem 12. Suppose that |F| = n. Relabel the partitions in F by 1, . . . , n
such that i 6 j whenever Fi 4 Fj. Put Ni = ρ(Fi) and Bi = NFi

i for i = 1, . . . , n.
Then B1B2 . . . Bn is a group.

Proof. Assume for induction that
(a) B1B2 . . . Bi is a group Ci;
(b) Ci commutes with Bj whenever i < j 6 n.
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These statements are both true when i = 0, for then Ci is the trivial group.
Assume that both are true for all non-negative integers less than i. Statement (b)

for i− 1 shows that Ci−1Bi is a group, so that (a) is true for i.
Consider the product CiBj , where i < j 6 n. If Fi 4 Fj then Bj normalizes

Bi so BiBj = BjBi. Otherwise, since N is meet-closed and ρ is onto, there is
some k with 1 6 k 6 i − 1 and Fk 4 Fi ∧ Fj and ρ(Fk) = Ni ∩ Nj . If φi ∈ Bi
and φj ∈ Bj then φi and φj take constant values (in Ni and Nj respectively)
throughout each part of Fk, and these values commute modulo Ni ∩ Nj , which
is Nk. Hence BkBiBj = BkBjBi. Use of (b) for i − 2, i − 3, . . . , k shows that
Ci−1 = B1B2 . . . Bi−1 = Bi−1Bi−2 . . . Bk+1B1B2 . . . Bk. Therefore

CiBj = Ci−1BiBj = Bi−1Bi−2 . . . Bk+1B1B2 . . . BkBiBj

= Bi−1Bi−2 . . . Bk+1B1B2 . . . BkBjBi

= Ci−1BjBi.

In both cases, CiBj = Ci−1BjBi, which is equal to BjCi−1Bi by (b) for i−1, which
is BjCi. Thus statement (b) is true for i.

Now it is easily checked that both crested products of groups mentioned in Sec-
tion 7 are indeed produced by this construction: for the simple crested product
F = {F1, U1}, ρ(F1) = N and ρ(U1) = G2; while the ‘alternative’ crested product
is obtained when F = {E1, F1}, ρ(E1) = N and ρ(F1) = G2. Also, the extended
crested product contains the direct product and is contained in the wreath product.

At first sight it seems strange that, for the group construction, F does not need
to be closed under ∨ and ∧. However, suppose that F1 and F2 are incomparable
partitions in F . Then NFi

i contains NF1∨F2
i for i = 1, 2 and so the base group

contains (N1N2)F1∨F2 . The orbits of N1 ∩ N2 may be smaller than the parts of
F (N1) ∧ F (N2) but there is some k with Fk 4 F1 ∧ F2 and Nk = N1 ∩N2, so the
base group contains (N1 ∩ N2)Fk , which contains (N1 ∩ N2)F1∧F2 . Thus including
F1∨F2 and F1∧F2 in F and putting ρ(F1∨F2) = N1N2 and ρ(F1∧F2) = N1∩N2

still satisfies all the conditions but adds nothing to the base group.

10. Linking the groups to the schemes

It is rather curious that the conditions on F and ψ needed to ensure that the
extended crested product of association schemes is indeed an association scheme
are slightly different from those on F and ρ which we require to ensure that the
base group of the extended crested product of permutation groups is the product
of its generating subgroups.

In order to link the extended crested product of permutation groups to the ex-
tended crested product of association schemes, we need to introduce an interesting
operator on semi-lattices. If F is a meet-closed poset, define F⊥, for F in F , to
be the infimum of all those K in F for which K 64 F . By convention, the empty
infimum is the relevant maximal element, so that if F consists of partitions and
F is uniquely maximal in F then F⊥ = U , while if F consists of normal subgroups
of a group G and F is uniquely maximal in F then F⊥ = G. The map F 7→ F⊥

preserves order and infima and has the property that, for any F1, F2 in F , either
F1 4 F2 or F⊥2 4 F1. However, this map need not be one-to-one.

Dually, if F is join-closed then define F>, for F in F , to be the supremum of
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all those K in F for which K 6< F . Then the map F 7→ F> preserves order and
suprema, and either F1 4 F2 or F2 4 F>1 .

Lemma 13. Let F be a lattice.
(a) If F ∈ F and F 64 F> then F>⊥ = F .
(b) If F is distributive and F ∈ F and F is join-irreducible then F 64 F>.

Proof.
(a) For K in F , if K 64 F> then F 4 K. Hence F 4 F>⊥. If F 64 F> then

F>⊥ 4 F . Therefore F>⊥ = F .
(b) By definition, F> =

∨
{K : K 6< F}, so distributivity implies that F ∧F> =∨

{F ∧K : K 6< F}. If K 6< F then F ∧ K 6= F , so
∨
{F ∧K : K 6< F}

cannot be equal to F , because F is join-irreducible. Hence F ∧F> 6= F , and
so F 64 F>.

In order that the extended crested product of groups preserve the extended
crested product of the association schemes, we need the sets of conditions for the
two products to be defined, and a link between ψ and ρ. We obtain the link by ap-
plying the operator ⊥ to the set of normal subgroups of G2 which are the partwise
stabilizers of the partitions ψ(F ).

Theorem 14. Suppose that Fr is a set of inherent partitions in the association
scheme Qr on Ωr, and that the permutation group Gr preserves the classes of Qr,
for r = 1, 2. Suppose that F1 contains U1 and is closed under ∧ and ∨, and that
ψ is a map from F1 to F2 which preserves order and suprema and which carries
the unique minimal element F0 of F1 to E2. For F in F1, suppose that there exists
a normal subgroup Nψ(F ) of G2 whose orbit partition is ψ(F ), and let ρ(F ) be the
intersection of the Nψ(H) for H in F1 with H 64 F . Then the crested product of G1

and G2 with respect to ρ preserves the classes of the crested product of Q1 and Q2

with respect to ψ.

Proof. Put N = ρ(F1). Then G2 = ρ(U1) ∈ N and ρ(F )∩ ρ(H) = ρ(F ∧H) for
F , H in F1, so ρ satisfies the conditions to define the crested product of permutation
groups.

The argument for preserving the association scheme is similar to that for the
simple crested product. Suppose that the pairs (α1, α2) and (β1, β2) satisfy the
relation with matrix Ai ⊗D, where i ∈ JF and D ∈ DF , and take φ in (ρ(H))H ;
we must show that (α1, α2φ(α1)) and (β1, β2φ(β1)) satisfy the same relation.

If F 4 H, then φ(α1) = φ(β1), which is in G2 and preserves the D-relation.
On the other hand, if F 64 H, then ρ(H) stabilizes ψ(F ) partwise; however, the
D-relation depends only on the ψ(F )-classes.

We now consider some examples.
In the case where F1 is a chain, so that ρ(F ) is the partwise stabilizer of the

partition immediately above ψ(F ) for F 6= U , we see that if F1 4 F2 then (ρ(F2))F2

normalizes (ρ(F1))F1 , so the base group is their product. We have seen that the
simple crested product and the modified version in Section 7 are examples.
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Example 8. In these examples, we assume that the set of partitions in each of
Q1 and Q2 satisfy the appropriate order and meet relations in one of the diagrams
in Figure 5. Moreover, we have partitions Fi for each label i in the diagram for Q1,
partitions Ki for each label i in the diagram for Q2, and Ni is a normal subgroup
of G2 whose orbit partition is Ki. We also assume that K1 = E1 in each case, so
that N1 = 1, and that the coarsest partition shown is U .

First, take Q1 and Q2 both to have the inherent partitions in Figure 5(a), with
the obvious isomorphism ψ. Then ρ(Fi) = N⊥i = N1 for all i 6= 5, while N⊥5 = G2.
Therefore the extended crested product of the groups is just the direct product,
even though the extended crested product of the association schemes is not.

v

v
v v v

@
@
@
@

@
@
@
@

�
�
�
�

�
�
�
�

1

2 3 4

5

v

v

v v v
v v v

@
@
@

@
@
@

@
@

@
@
@

@
@
@

@
@

�
�
�
�

�
�
�
�

�
�
�
�

�
�
�
�

1

2 3 4

5 6 7

8

Figure 5. Examples of extended crested products of groups

Secondly, we can take Q1 and Q2 to be as in Figures 5(b) and (a) respectively,
with ψ(Fi) = Ki for i = 1, 2, 3, 4 and ψ(Fi) = U otherwise. Then the base group
of the extended crested product of the groups is just the product of GF5

2 , GF6
2 and

GF7
2 : the partitions F2, F3, F4, K2, K3, and K4 contribute nothing to the group

even though they play a role in the association scheme.
If we reverse the roles of Q1 and Q2 then we can take ψ(Fi) = Ki+3 for i = 2,

3, 4 and find that the base group of the extended crested product of the groups is
generated by (N6 ∩ N7)F2 , (N5 ∩ N7)F3 , (N5 ∩ N6)F4 and GU2 ; the subgroups N5,
N6 and N7 do not appear in the expression for the base group.

However, if we take both Q1 and Q2 to be as in Figure 5(b), with the obvious
isomorphism ψ, then, as we shall show in the next theorem, the group and the
association scheme match perfectly, and we obtain a generalization of Theorem 11.

Theorem 15. Suppose that, in addition to the hypotheses of Theorem 14, the
following hold:

(i) F is distributive,
(ii) ψ is a lattice isomorphism,
(iii) Nψ(F1) ∩ Nψ(F2) = Nψ(F1)∧ψ(F2) and Nψ(F1)Nψ(F2) = Nψ(F1)∨ψ(F2), for all

F1 and F2 in F , and
(iv) the orbits of Gr on Ω1 × Ω2 are the classes of Qr for r = 1, 2.

Then the orbits of G on Ω× Ω are the classes of Q.
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Proof. Since we have already shown that G preserves the classes of Q, all we
need to do is show that each class of Q is a single orbit of G on Ω× Ω.

Consider the class with adjacency matrix Ai ⊗ D, where i ∈ JF and D ∈ DF
for some F in F . Suppose that ((α1, β1), (γ1, δ1)) and ((α2, β2), (γ2, δ2)) are both in
this class. There is an element of the top group which takes α1 to α2 and γ1 to γ2,
so we may suppose that α1 = α2 = α and γ1 = γ2 = γ.

If F is the minimal element of F then ψ(F ) = E2 so D is just an adjacency
matrix for Q2 and so there is some g in G2 with (β1, δ1)g = (β2, δ2).

If F is not the minimal element of F then there is a positive integer n and
join-irreducibles H1, . . . , Hn in F such that F = H1 ∨ . . . ∨ Hn. For m = 1,
. . . , n, Lemma 13(b) shows that Hm 64 H>m. Write Nm for Nψ(Hm). Because ψ and
the map ψ(K) 7→ Nψ(K) are both lattice isomorphisms, Lemma 13(a) shows that

ρ(H>m) = Nm, so that the base group contains NH>m
m .

Since (β1, δ1) and (β2, δ2) are both in the D-relation, there is some j in K2 and
points ε1, ε2 in Ω2 such that (β1, ε1) and (β2, ε2) are in the Bj-class of Q2 while εr
is in the same part of ψ(F ) as δr for r = 1, 2. Now, ψ(F ) = ψ(H1) ∨ . . . ∨ ψ(Hn),
and the matrices Rψ(Hm) commute pairwise, so there are elements ζr0, ζr1, . . . , ζrn
in Ω2, for r = 1, 2, such that εr = ζr0, δr = ζrn, and ζr,m−1 and ζr,m are in the
same part of ψ(Hm) for m = 1, . . . , n.

The extended crested product G of the groups contains G2 acting diagonally, so
it contains an element φ0 taking (β1, ε1) to (β2, ε2).

If α and γ are in the same part of H>m, then the definition of JF shows that
H>m < F < Hm, which contradicts Lemma 13(b) for Hm. Hence α and γ are in
different parts of H>m for m = 1, . . . , n. For r = 1, 2 and m = 1, . . . , n there is
an element grm in Nm such that ζr,m−1grm = ζr,m. Hence there are elements φ1m

and φ2m in NH>m
m such that φ1m(α) and φ2m(α) are the identity, φ1m(γ) = g−1

1m and
φ2m(γ) = g2m for m = 1, . . . , n. Now β1φ1n(α) . . . φ11(α)φ0φ21(α) . . . φ2n(α) = β2

and δ1φ1n(γ) . . . φ11(γ)φ0φ21(γ) . . . φ2n(γ) = δ2.

11. Remarks and problems

We have not attempted to calculate the character table of a generalized crested
product, or to give conditions for the generalized crested product to have a formal
dual.

Another generalization of direct and wreath product in the literature is that of
the generalized wreath product [4, 5]. We do not define this here; but note that it
is a product of a family of association schemes (or permutation groups) indexed
by a partially ordered set, that it reduces to direct or wreath product in case the
partially ordered set is a two-element antichain or chain respectively, and that the
generalized wreath product of trivial association schemes is the scheme derived from
a poset block structure (using the same poset).

One could now try to combine the two constructions. There are two possible
ways in which this combination could take place. First, we could take the (ex-
tended) crested product of generalized wreath products. As noted above, a gener-
alized wreath product of trivial schemes is a poset block structure, and we have
already seen that a crested product of poset block structures is a poset block struc-
ture (so at least in this case we obtain nothing new).
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The other possible combination is far more speculative. Thinking of a general-
ized wreath product as built from the ingredients “direct product” and “wreath
product”, applied to schemes whose indices are incomparable or comparable re-
spectively, we could try to replace these ingredients by the more general notion of
crested product. It is not even clear what kind of mathematical structure should
replace the poset on the index set of the association schemes in order to describe
such a construction!

An important question we have not considered is that of counting orbits of per-
mutation groups on n-tuples of points (or more generally, of calculating the cycle
index of permutation groups). We refer to [10] for the cycle index of the direct
and wreath products (the first of these is, of course, well known). Also, in the
paper [16], the number of orbits on n-tuples of a generalized wreath product of
symmetric groups is calculated. There are many open problems here.
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