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ABSTRACT. We establish and comment on a surprising relationship between the behaviour
modulo a primep of the numbersn(G) of index n subgroups in a groupG, and that of the
corresponding subgroup numbers for a subnormal subgroup ofp-power index inG. One of
the applications of this result presented here concerns the explicit determination modulop
of sn(G) in the case whenG is the fundamental group of a finite graph of finitep-groups.
As another application, we extend one of the main results of the second author’s paper [16]
concerning thep-patterns of free powersG∗q of a finite groupG with q a p-power to groups
of the more general formH ∗G∗q, whereH is any finitep-group.

1. INTRODUCTION

For a groupG and a positive integern, denote bysn(G) the number of indexn subgroups
in G.1 We callG an FSG-group if sn(G) is finite for all n; for instance, finitely generated
groups and groups of finite subgroup rank have this property. Modular subgroup arithmetic,
a chapter in the theory of subgroup growth, deals with divisibility properties of the sequence
{sn(G)}n≥1 or related subgroup counting functions and their connection with the algebraic
structure of the underlying groupG; cf. the recent book [10] by Lubotzky and Segal for more
background information.

In general, divisibility properties of subgroup counting functions appear to be rather peculiar
to the particular group under investigation, and (unlike their growth behaviour) tend to be
severely distorted when passing to a subgroup of finite index.

Example. Consider the cartesian map from the modular groupG = PSL2(Z)∼= C2∗C3 onto
C2×C3

∼= C6. By a theorem of Nielsen, the kernel of this map is free of rank 2; cf. [11] and
[17]. Moreover, by a theorem of Stothers [20],

sn(PSL2(Z))≡ 1 mod 2 ⇐⇒ n = 2σ+1−3 or n = 2(2σ+1−3) for some σ ≥ 1.

On the other hand, it follows from M. Hall’s recursion formula ([8, Theorem 5.2])

sn(Fr) = n(n!)r−1 − ∑
0<µ<n

(
(n−µ)!

)r−1
sµ(Fr), (n≥ 2, s1(Fr) = 1)

thatsn(F2) is always odd.

Against this background it is rather surprising that a non-trivial positive result in this direction
does in fact exist (see Theorem 1 below). Given a primep and an FSG-groupG, define the

1The reader should be warned that, in the literature on subgroup growth,sn(G) often denotes the number of
subgroups inG of index at mostn, that is, the summatory function ofsn(G) in our notation.
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p-patternΠ(p)(G) of G to be the family of sets

Π(p)(G) =
{

Π(p)
1

(G),Π(p)
2

(G), . . . ,Π(p)
p−1

(G)
}
,

where

Π(p)
j

(G) :=
{

n∈ N : sn(G)≡ j mod p
}
, 0< j < p;

in particular,ΠG := Π(2)
1

(G) is theparity patternof G. The main purpose of this paper is to
draw attention to the following remarkable result.

Theorem 1(Descent Principle). Let p be a prime,G an FSG-group, and letH��G be a
subnormal subgroup of index pr . Then

Π(p)
j

(G) = pr Π(p)
j

(H) ∪
⋃

0≤ρ<r

pρ

(
Π(p)

j
(H)∩ (N− pN)

)
, 0< j < p. (1)

Equivalently, if XG,p(z) denotes the mod p projection of the series∑n≥0sn+1(G)zn, and if
XH,p(z) is the corresponding GF(p)-series for the groupH, then, under our assumptions,

XG,p(z) =
r

∑
ρ=0

zpρ−1 XH,p(zpρ

) +
r−1

∑
ρ=0

zpρ+1−1 X(p−1)
H,p

(zpρ

). (2)

Theorem 1 follows quickly from the main result of [15], where the conclusions (1) and (2)
are established under the extra hypotheses thatH is normal inG, and thatG/H is cyclic; cf.
Section 2 for more details. As the above example demonstrates, the assumption in Theorem 1
that(G : H) be a prime power cannot be weakened.

In Sections 3 and 4, we present two applications of Theorem 1. First, consider the fundamen-
tal groupG of a finite graph(G(−),Y) of finite p-groups. IfG contains a free subnormal
subgroupF of indexmG = lcm

{
|G(v)| : v∈V(Y)

}
, thensn(G) is periodic modulop, and its

p-pattern is determined completely by that ofsn(F); cf. Theorem 2. Existence of such a free
subnormal subgroupF is not guaranteed, and we provide various sufficient conditions, one
of which involves homogeneity; we use the classification of finite homogeneous groups due
to Cherlin and Felgner [3]. As another application, we extend one of the main results of [16]
concerning thep-patterns of free powersG∗q of a finite groupG with q a p-power to groups
of the more general formH ∗G∗q, whereH is any finitep-group; cf. Theorem 3.

We thank the referee, whose comments have improved both the substance and the presenta-
tion of the material in Section 3.

2. REMARKS ON THE PROOF OFTHEOREM 1

We concentrate on Equation (1); the equivalence of (1) and (2) was already established in
[15] (see the end of Section 2 in that paper). First note that Theorem 1 has a straightforward
reduction to the case of prime index. Indeed, suppose that for anFSG-groupG and a normal
subgroupH�G of index p (a prime), we know that

Π(p)
j

(G) = pΠ(p)
j

(H)∪
(
Π(p)

j
(H)∩ (N− pN)

)
, 0< j < p. (3)
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Let

H = H0 �H1 � · · ·�Hr = G

be a normal series forH with (Hi : Hi−1) = p for all 1≤ i ≤ r (such a normal series exists
since, by Frobenius’ generalization of Sylow’s third theorem [5,§ 4, Theorem I], every non-
trivial finite p-group contains a normal subgroup of indexp). Then, by (3), we have

Π(p)
j

(Hi) = pΠ(p)
j

(Hi−1)∪
(
Π(p)

j
(Hi−1)∩ (N− pN)

)
(1≤ i ≤ r, 0< j < p), (4)

and, using (4), an immediate induction oni shows that, for 1≤ i ≤ r and 0< j < p,

Π(p)
j

(Hi) = pi Π(p)
j

(H) ∪
⋃

0≤ρ<i

pρ

(
Π(p)

j
(H)∩ (N− pN)

)
,

whence (1).

Validity of Equation (1) in the case whereH�G and(G : H) = p follows immediately from
[15, Theorem 1]. Here, we briefly sketch an alternative proof of (3) generalizing an argument
in [14]. As in the proof of [14, Prop. 4] one observes that a subgroupG̃≤G is of indexn in
G and not contained inH if, and only if,

G̃ ∈
⋃

(H:H̃)=n

S(H̃),

where

S(H̃) :=
{

G̃≤G : G̃∩H = H̃ and G̃H = G
}
.

It follows that

sn(G) = ∑
(H:H̃)=n

|S(H̃)| +

{
sn/p(H̃), p | n
0, p - n.

(5)

Fix an elementζ with G = 〈H,ζ 〉. Given a subgroup̃H of indexn in H and a right transversal
1 = h0,h1, . . . ,hn−1 for H̃ in H, then the elements

g
µ,ν := hµ ζ

ν , (0≤ µ < n, 0≤ ν < p)

form a right transversal for̃H in G. A subgroupG̃ ∈S(H̃) must be of the form

G̃ = G̃µ = H̃g0,0 ∪
⋃

0< j<p

H̃g
µ j , j

with some vector

µ = (µ1,µ2, . . . ,µp−1) ∈ {0,1, . . . ,n−1}p−1,

and such a set̃Gµ ⊆ G is a member ofS(H̃) if, and only if, G̃µ is a subgroup ofG. The
necessary and sufficient condition for the last assertion to hold is that

g
µ j , j

H̃g
µk,k

= H̃g
µ

j+k
, j+k

, 0≤ j,k< p

with µ0 := 0 and reduction (indicated by an overstroke) being modulop. It follows from this
analysis that the cardinality of the setS(H̃) equals the number of subgroups inNG(H̃)/H̃ of
orderp, which are not contained inNH(H̃)/H̃. Applying Frobenius’ theorem2 concerning the

2Cf. [5, pp. 984–985] and [6].
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number of solutions of the equationXm = 1 in a finite groupG in the case whenm= p and
G = NG(H̃)/H̃ or G = NH(H̃)/H̃, we deduce that

|S(H̃)| ≡

{
1, p | (NG(H̃) : H̃) and p - (NH(H̃) : H̃)

0, otherwise
modp,

which, in conjunction with (5), yields

sn(G)≡ |Ωn| +

{
sn/p(H), p | n
0, p - n

modp, (6)

where

Ωn :=
{

H̃≤ H : (H : H̃) = n, p | (NG(H̃) : H̃), p - (NH(H̃) : H̃)
}
.

Denote byUn(H) the set of subgroups of indexn in H. Then, making use of the action by
conjugation ofH on Ωn and that ofG onUn(H)\Ωn, we find that

|Ωn| ≡

{
sn(H), p - n

0, p | n
modp,

which, when combined with (6), gives

sn(G)≡ sn/(n,p)(H) modp,

whence (3).

3. DIVISIBILITY PROPERTIES DETERMINED BY FREE NORMAL SUBGROUPS

The category of graphs used in this section is described in Serre’s book [18]. Let(G(−),Y)
be a finite graph of finite groups with fundamental groupG = π1(G(−),Y), and letp be a
prime. Moreover, denote byV(Y) andE(Y) the set of vertices respectively (geometric) edges
of Y, and letmG be the least common multiple of the orders of the finite subgroups inG, that
is,

mG = lcm
{
|G(v)| : v∈V(Y)

}
.

The free rankµ(G) of G is defined as the rank of a free subgroup inG of indexmG (such
subgroups always exist; cf., for instance, [18, Lemmas 8 and 10]). It is connected with the
rational Euler characteristicχ(G) of G via

µ(G) + mG χ(G) = 1, (7)

and the latter quantity can be computed in terms of the graph of groups(G(−),Y) by means
of the formula

χ(G) = ∑
v∈V(Y)

1
|G(v)|

− ∑
e∈E(Y)

1
|G(e)|

; (8)

cf. [1, Chap. IX, Prop. 7.3] or [19, Prop. 14]. IfG has a free subnormal subgroupF of index
mG a p-power, then every vertex groupG(v) must be ofp-power order; and ifχ(G)≤ 0, then
any free subnormal subgroupF of indexmG has rank rk(F) = µ(G)≥ 1, and, by Theorem 1,



A DESCENT PRINCIPLE 5

the p-pattern ofG is determined via (1) by thep-pattern ofF. Consequently, all conclusions
of [15, Theorem 2] remain valid in this more general situation, and we obtain the following.

Theorem 2. Let p be a prime,(G(−),Y) a finite graph of groups all of whose vertex groups
are of p-power order, and letG be its fundamental group. Let mG = pr , and suppose thatG
contains a subnormal free subgroup of index mG, and thatχ(G)≤ 0. Then

(i) the function sn(G) is periodic modulo p,

(ii) for p = 2 we haveΠG = N,
(iii) for p = 3 andµ(G) odd we haveΠ(3)

1
(G) = N,

(iv) for p = 3 andµ(G) even, sn(G) is periodic modulo3 with period8·3r . More precisely,
in this case sn(G)≡ 1 mod 3if and only if n is congruentmod 8·3r to one of the3r+1

numbers
0, 3r−1, 3r , 8·3r−1, 3r+1, 11·3r−1, 16·3r−1, 17·3r−1, 19·3r−1, 3ρ(1+24λ ), 8·3ρ(1+
3λ ), 3ρ(11+24λ ), 8·3ρ(2+3λ ), 3ρ(17+24λ ), 3ρ(19+24λ )
with 0≤ ρ < r−1 and0≤ λ < 3r−ρ−1;
and sn(G)≡ 2 mod 3if and only if n is congruentmod 8·3r to one of the3r+1 numbers
4 ·3r−1, 5·3r−1, 7·3r−1, 4·3r , 13·3r−1, 5·3r , 20·3r−1, 7·3r , 23·3r−1, 4·3ρ(1+ 6λ ),
4·3ρ(5+6λ ), 3ρ(5+24λ ), 3ρ(7+24λ ), 3ρ(13+24λ ), 3ρ(23+24λ )
with 0≤ ρ < r−1 and0≤ λ < 3r−ρ−1.

The usefulness of Theorem 2 depends on our being able to verify the hypothesis thatG
contains a subnormal free subgroup of indexmG. The remainder of this section is devoted
to this last problem. Rather than attempt to state a very general result here, we isolate the
essential part of the argument in the next two lemmas, followed by several applications.

Lemma 1. Let (G(−),Y) be a finite tree of finite groups, and setG = π1(G(−),Y) and
m = mG. For e∈ E(Y), and a vertex v in the boundary of e, letα(e,v) be the embedding of

G(e) into G(v) given by the tree of groups(G(−),Y). Assume that there is a vertex v0∈V(Y)
with the property that|G(v0)|= m. Set G= G(v0), and denote byΨ = Ψ(G(−),Y) the set of
all homomorphismsψ : G→G such that the restriction ofψ to any vertex-group is injective.
Then the following hold:

(i) Ψ is non-empty if and only if there is a family{ψv : G(v)→ G}v∈V(Y) of injective ho-

momorphisms such that, for every e∈ E(Y), we have

ψv|
α(e,v)G(e) = ψv′|α(e,v′)G(e), (9)

where v and v′ are the two vertices bounding e.
(ii) The number of free normal subgroups having index m inG is |Ψ|/|Aut(G)|.

Proof. (i) For v∈V(Y), defineψv to beψ|
G(v), for all v∈V(Y). Then Equation (9) follows

from the definition of a tree of groups.

Conversely, if the homomorphismsψv exist and satisfy Equation (9), then there is a homo-
morphismψ : G→G whose restriction toG(v) is ψv; by definition,ψ ∈Ψ.
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(ii) Aut(G) acts naturally onΨ via

ψ ·α := α ◦ψ (ψ ∈Ψ, α ∈ Aut(G)),

and, since eachψ ∈Ψ is surjective, this action is free; thus

|Ψ/Aut(G)|= |Ψ|/|Aut(G)|.

Now letF be a free normal subgroup ofG of indexm. ThenG(v0)∩F = 1 andG(v0)F = G,
soG/F ∼= G, and the canonical projection mapπ from G to G belongs toΨ. SendingF to
[π], the orbit ofπ under Aut(G), gives a well-defined map

ϕ :
{
F�G : F free, (G : F) = m

}
→Ψ/Aut(G).

Moreover, the kernel of any memberψ of Ψ is a free normal subgroup ofG of indexm (see,
for instance, [4, Chapter II, Theorem 1.3]), and the projection mapπ : G→ G/ker(ψ) ∼= G
differs fromψ only by an automorphism ofG, so [π] = [ψ], andϕ is surjective. Finally, if
two free normal subgroupsF1,F2 of G of indexm have projectionsπ : G→G/Fi

∼= G only
differing by an automorphism ofG, thenF1 = F2, soϕ is a bijection.

Definition. For a groupG and a subgroupH≤G, we define the centralizer CAut(G)(H) of H

in Aut(G) to be

CAut(G)(H) :=
{

α ∈ Aut(G) : α(h) = h for all h∈ H
}
.

Lemma 2. Let the hypotheses and notation be as in Lemma1. Suppose that E(Y) is non-
empty and that the setΨ in Lemma1 is also non-empty. Choose v′ to be a terminal vertex
of Y different from v0. Let Y0 be the subtree of Y induced on V(Y)−{v′}, and letΨ0 =
Ψ(G(−)|Y0

,Y0). Let e′ be the edge containing v′, and let v′′ ∈ V(Y0) be the other vertex

bounding e′. For ψ0 ∈Ψ0, let S(ψ0) be the set of injective homomorphismsψv′ : G(v′)→G
for whichψ|

α(e′,v′)G(e′) = ψ0|α(e′,v′′)G(e′). (This set may be empty). Then

|Ψ|= ∑
ψ0∈Ψ0

|S(ψ0)|.

Proof. LetG0 = π1(G(−)|Y0
,Y0). We haveG = G0∗G(e′) G(v′), the amalgamation being with

respect to the canonical embeddings ofG(e′) in G0 andG(v′) respectively. The number of
elements ofΨ which restrict toψ0 is equal to|S(ψ0)|.

The results of these two lemmas are most easily applied when the vertex groups are homoge-
neous, a concept we discuss next.

A group G is termedhomogeneousif every isomorphism between finitely generated sub-
groups is induced by an automorphism ofG. This concept arose (for arbitrary first order
structures) in model theory in connection with quantifier elimination. For instance, it is
known that a finite group is homogeneous if and only if its first order theory has quanti-
fier elimination; cf. [9, Cor. 8.4.2]. The finite homogeneous groups have been classified by
Cherlin and Felgner; cf. [2] and [3]. In particular, a finitep-groupG is homogeneous if and
only if one of the following holds:
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(i) G∼= Cpr ⊕·· ·⊕Cpr︸ ︷︷ ︸
scopies

for somer,s∈ N0 = N∪{0};

(ii) G∼= Q, the quaternion group of order 8;

(iii) G∼= Q∗.

Here,Q∗ is a certain group of order 64, class 2, and exponent 4, which arises for instance as
the Sylow 2-subgroup of PSU3(42); cf. [2, Sect. 2] for more details.

Proposition 1. Let p be a prime. Let(G(−),Y) be a finite tree of groups such that

(i) every vertex groupG(v) is a finite homogeneous p-group; and
(ii) there is a vertex v0 ∈V(Y) such that every vertex group is isomorphic to a subgroup of

G = G(v0).

SetG∼= π1(G(−),Y). Then the number of free normal subgroups of index mG = |G| in G is

∏
e∈E(Y)

|CAut(G)(Ge)|
/

∏
v∈V(Y)

|CAut(G)(Gv)|,

where Gv and Ge are subgroups of G isomorphic toG(v) andG(e) respectively, for v∈V(Y)
and e∈ E(Y).

Proof. The proof is by induction on|E(Y)|. (The induction hypothesis, in conjunction with
Lemma 1, asserts that|Ψ| is equal to|Aut(G)| times the quantity in the Proposition.)

If E(Y) = /0, thenV(Y) = {v0}, and the formula gives 1/|CAut(G)(G)| = 1, which is correct;

so|Ψ|= |Aut(G)| in this case.

Suppose that|E(Y) 6= /0. Choosev′ to be a terminal vertex ofY not equal tov0, let e′ be the
edge containingv′ and letv′′ be the other vertex in the boundary ofe′. Sinceα(e′,v′)G(e′)∼=
α(e′,v′′)G(e′), the setsS(ψ0) appearing in Lemma 2 are all non-empty.

Let G be a finite homogeneous group. IfH ≤ G, then the number of extensions of a given
embeddingH→G to an automorphism ofG is |CAut(G)(H)|. Hence, ifK ≤ H ≤G, then the

number of extensions of an embeddingK→G to an embeddingH→G is |CAut(G)(K)|/|CAut(G)(H)|.
Hence, in Lemma 2, we have

S(ψ0)|= |CAut(G)(Ge′)|/|CAut(G)(Gv′),

independent ofψ0, and so

|Ψ|= |Ψ0| · |CAut(G)(Ge′)|/|CAut(G)(Gv′).

On the other hand, the induction hypothesis asserts that

|Ψ0|= |Aut(G)| · ∏
e∈E(Y0)

|CAut(G)(Ge)|
/

∏
v∈V(Y0)

|CAut(G)(Gv)|,

and combining the last two equations, and applying Lemma 1 again, gives the desired result,
sinceV(Y) = V(Y0)∪{v′} andE(Y) = E(Y0)∪{e′}.
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Corollary 1. Let p be a prime,(G(−),Y) a finite tree of groups all of whose vertex groups
are of p-power order,G∼= π1(G(−),Y), and let mG = pr .

(i) If all vertex groupsG(v) are cyclic, thenG contains precisely

∏v∈V(Y) ϕ(|G(v)|)

∏e∈E(Y) ϕ(|G(e)|)
/

ϕ(mG)

free normal subgroups of index mG, whereϕ is Euler’s totient function.

(ii) If all vertex groupsG(v) are elementary abelian, thenG contains exactly

∏e∈E(Y)

[
|G(e)|r−de |GLr−de

(p)|
]

∏v∈V(Y)

[
|G(v)|r−dv |GLr−dv

(p)|
]

free normal subgroups of index mG, where dσ = dimpG(σ), σ ∈V(Y)∪E(Y).

Proof. The hypotheses of Proposition 1 are satisfied in both cases.

Note that, ifG is a finite homogeneous group andH a subgroup ofG, then we haveNAutG(H)/CAutG(H)∼=
Aut(H), and hence

|CAut(G)(H)|= |Aut(G)|
#(G,H) · |Aut(H)|

,

where

NAut(G)(H) :=
{

α ∈ Aut(G) : α(H) = H
}
,

and with #(G,H) = |Aut(G)|/|NAut(G)(H)| the number of subgroups ofG isomorphic toH.

For (i), we have|Aut(G)|= ϕ(|G|) and #(G,H) = 1 wheneverG is a cyclic group andH ≤G.
Proposition 1 shows that the number of free subgroups ofG of indexmG is

∏e∈E(Y) ϕ(mG)/ϕ(|G(e)|)

∏v∈V(Y) ϕ(mG)/ϕ(|G(v)|)
,

which is equal to the value claimed, since|V(Y)| = |E(Y)|+ 1. (Note that this result is also
proved in [15, Lemma 1].)

For (ii), if G is elementary abelian of orderpr , andH is a subgroup of orderps, then we have

|Aut(G)|= |GLr(p)|= (pr −1)(pr − p) · · ·(pr − pr−1)

and

#(G,H) =
[
r
s

]
p

=
(pr −1)(pr − p) · · ·(pr − ps−1)
(ps−1)(ps− p) · · ·(ps− ps−1)

.

Hence, if|G|= pr , H ≤G, and|H|= ps, then

|CAut(G)(H)|= |GLr−s(p)| · ps(r−s) = |GLr−s(p)| · |H|r−s.

Hence, the result follows from Proposition 1.
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Corollary 2. (i) If, in Proposition1, all the vertex groups are isomorphic to G= Q then
G contains precisely24a(G) ·4b(G) free normal subgroups of index mG = 8, where

a(G) := |{e∈ E(Y) : |G(e)|< 4}| and b(G) := |{e∈ E(Y) : |G(e)|= 4}|.
(ii) If, in Proposition1, all the vertex groups are isomorphic to G= Q∗, the number of free

normal subgroups inG of index mG = 64equals

15360a(G) ·5120b(G) ·2560c(G) ·256d(G) ·128e(G) ·32f (G) ·16g(G) ·4h(G),

where

a(G) := |{e∈ E(Y) : G(e) = 1}|,
b(G) := |{e∈ E(Y) : |G(e)|= 2}|,
c(G) := |{e∈ E(Y) : G(e)∼= C2×C2}|,
d(G) := |{e∈ E(Y) : G(e)∼= C4}|,
e(G) := |{e∈ E(Y) : |G(e)|= 8}|,
f (G) := |{e∈ E(Y) : G(e)∼= C4×C4}|,
g(G) := |{e∈ E(Y) : G(e)∼= H16}|,
h(G) := |{e∈ E(Y) : |G(e)|= 32}|.

Here, H16 =
〈
a,b | a4 = b4 = 1, ab = a−1

〉
.

Proof. Since all vertex groups are isomorphic toG, we haveCAut(G)(Gv) = 1 for all v∈V(Y).
The assertions of the corollary follow immediately from Proposition 1, once the orders of the
corresponding centralizersCAut(G)(Ge) are known. For the second part, these have been found
with the help of the computer algebra system GAP [7].

Remark. A finite groupG is homogeneous if and only if, for every finite tree of groups
(G(−),Y) with all vertex stabilizers isomorphic toG, G = π1(G(−),Y) contains a free
normal subgroup of indexmG. Indeed, the forward implication follows immediately from
Lemma 1. If, on the other hand,G is not homogeneous, then there exists an isomorphism
between two subgroupsH1,H2 of G, which is not induced by an automorphism. We can then
form the amalgamG = G∗H G, where the abstract groupH is identified withH1 in the left
factor and withH2 in the right factor, in such a way that the isomorphism betweenH1 and
H2 induced by these embeddings is the given isomorphism. ThenG does not possess a free
normal subgroup of indexmG = |G|. For, if F were such a subgroup, thenG/F∼= G, and the
two embeddings ofH in G would coincide in this quotient, which (by assumption) is not the
case.

We now describe a simple example to illustrate that, even if the vertex groups are not homo-
geneous, the counting may still be possible. Let(G(−),Y) be a tree of groups all of whose
vertex groups are isomorphic toD4, the dihedral group of order 8, and letG be its fundamen-
tal group. Call an edgee∈ E(Y) wild, if G(e) contains an involution which is identified with
the central involution in one of its corresponding vertex groups, and a non-central involution
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in the other. Ife is not wild, we call itinner if G(e) is embedded in the cyclic subgroup of
order 4 ofG(v) for v one, andouterotherwise.

Proposition 2. Let G be as above. ThenG has a free normal subgroup of index mG = 8 if
and only if the tree of groups(G(−),Y) does not contain a wild edge. In the latter case, the
number of free normal subgroups of index mG equals

2o(G) ∏
e∈E(Y)

G(e) inner

8
ϕ (|G(e)|)

,

where

o(G) :=
∣∣{e∈ E(Y) : G(e) outer

}∣∣.
Proof. Necessity of the stated existence criterion is clear. In the positive direction, the con-
dition that no edge is wild guarantees that, in the notation of Lemma 2, the setsS(ψ0) are all
non-empty, and have cardinality 2 ife is outer and 8/ϕ(|G(e)|) if e is inner.

Define thetypeτ(G) of a finitely generated virtually free groupG∼= π1(G(−),Y) as the tuple

τ(G) =
(
mG; ζ1(G), . . . ,ζ

κ
(G), . . . ,ζmG

(G)
)
,

where theζ
κ
(G) are integers indexed by the divisors ofmG, given by

ζ
κ
(G) =

∣∣{e∈ E(Y) : |G(e)|
∣∣κ}∣∣ − ∣∣{v∈V(Y) : |G(v)|

∣∣κ}∣∣
with V(Y) andE(Y) as above. We haveζ

κ
(G) ≥ 0 for κ < mG and ζmG

(G) ≥ −1 with
equality occurring in the latter inequality if and only ifY is a tree; cf. [12, Lemma 2] and [13,
Proposition 1]. It can be shown that the typeτ(G) is in fact an invariant of the groupG, that
is, independent of the particular decomposition ofG in terms of a graph of groups(G(−),Y),
and that two virtually free groupsG1 andG2 contain the same number of free subgroups of
index n for each positive integern if and only if τ(G1) = τ(G2); cf. [12, Theorem 2]. It
follows from (8) that the Euler characteristic ofG can be expressed in terms of the type via

χ(G) =−m−1
G ∑

κ|mG

ϕ(mG/κ)ζ
κ
(G). (10)

Equations (7) and (10) imply in particular that, if two virtually free groups have the same
number of free indexn subgroups for eachn, then their Euler characteristics respectively free
ranks must coincide. For a finitely generated virtually free groupG and a primep define the
p-rankµp(G) of G by means of the formula

µp(G) = 1 + ∑
p|κ|mG

ϕ(mG/κ)ζ
κ
(G).

Moreover, denote byf
λ
(G) the number of free subgroups inG of indexλmG.

Proposition 3. Let p be a prime,(G(−),Y) a finite graph of groups all of whose vertex
groups are non-trivial finite p-groups, and letG = π1(G(−),Y). Then the following asser-
tions are equivalent:

(i) f1(G) 6≡ 0 modp,

(ii) µp(G) = 0,
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(iii) G is a free product of the formG∼= H ∗Cp∗ · · · ∗Cp︸ ︷︷ ︸
scopies

with s≥ 0

and a group H of order mG.

Corollary 3. Let p be a prime, and letG = H ∗C∗sp be a free product of s≥ 0 copies of the
cyclic group of order p and a finite p-group H. ThenG contains a normal free subgroup of
index mG.

Proof. This follows from the action by conjugation ofG on the set of free subgroups of index
mG, together with the implication(iii )⇒ (i) of Proposition 3. It also follows immediately
from Lemma 1.

Proof of Proposition3. The equivalence of (i) and (ii) follows from a discussion of the
formula3

f1(G) = mG ∏
κ|mG

∏
1≤k≤mG

(mG,k)=κ

kζ
κ
(G),

making use of facts concerningτ(G) mentioned above. Suppose now thatµp(G) = 0. ThenY
is a tree, and, after contracting edges ofY corresponding to trivial amalgamations if necessary,
we may assume that(G(−),Y) is normalized, that is,|G(e)| 6= |G(v)| for all e∈ E(Y) and
v∈ ∂e. For a positive integern, denote byen, vn the number of edgese∈ E(Y) respectively
verticesv ∈ V(Y) whose associated groupG(e) respectivelyG(v) has ordern, define an
arithmetic functionf (n) via

f (n) = ∑
ν |n

(e
ν
−v

ν
), n≥ 1,

and letmG = pr . Then, for 0≤ ρ ≤ r,

f (pρ) =


e1, ρ = 0

−1, ρ = r

0, otherwise,

(11)

and, by M̈obius inversion,

en−vn = ∑
ν |n

µ(ν) f (n/ν), n≥ 1, (12)

whereµ is the classical M̈obius function. Since our claim (iii) holds forr ≤ 1, we may
assume thatr ≥ 2. In the latter case, we find from (11) and (12) that

epρ −vpρ =


−e1, ρ = 1

0, 1< ρ < r

−1, ρ = r.

(13)

3Cf. formulae (3) and (11) in [12].
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Using the facts that(G(−),Y) is normalized and thatY is a tree (hence, in particular, does
not contain loops), we find from (13) that

epr = 0, therefore vpr = 1

e
pr−1 = 0, therefore v

pr−1 = 0

...

e
p2 = 0, therefore v

p2 = 0

ep = 0, therefore vp = e1.

It follows that all edge groups are trivial, that is,G is the free product of its vertex groups, and
thatV(Y) contains precisely one vertexv0 with |G(v0)|= pr ande1≥ 0 verticesv satisfying
G(v)∼=Cp, whence (iii). Since the implication(iii )⇒ (ii) is trivial, the proof of Proposition 3
is complete. 2

4. THE GROUPSG(G,H,q)

For a finite groupG, a primep, andp-powersq, q̄ with qq̄> 1, let

G = G(G,H,q) = H ∗G∗ · · · ∗G︸ ︷︷ ︸
q copies

, (14)

whereH is of orderq̄. PutG̃ := G(G,1,q)∼= G∗q. It follows from the normal form theorem
applied to the free productH ∗ G̃ thatG(G,H,q) is a split extension of the group

H =
〈
G̃h : h∈ H

〉∼= G∗qq̄ = G(G,1,qq̄)

by H; in particular, the groupsG andH satisfy the hypotheses of Theorem 1, and (1) yields
the reduction formula

Π(p)
j

(G(G,H,q)) = q̄Π(p)
j

(G(G,1,qq̄)) ∪
⋃
σ |q̄
σ<q̄

σ

(
Π(p)

j
(G(G,1,qq̄))∩ (N− pN)

)
,

0< j < p. (15)

Formula (15) allows us to translate results concerning the groupsG(G,1,q) obtained in [16]
into results for groups of the more general form (14). Since, for the most part, this translation
process is entirely straightforward, and whatever extra arguments are needed can be found in
[16, Sect. 8], we shall leave this task to the reader. As an example, we state the generalization
of [16, Theorem 12], which provides a remarkably explicit combinatorial description of the
p-patternΠ(p)(G(G,H,q)) under a certain assumption onG.

Theorem 3. Let G be a finite group, p a prime, let q and̄q be p-powers such that q̄q> 1,
and let H be a group of order̄q. Assume that sd(G)≡ 0 (p) for all d ∈N with d 6≡ 1 (p) (that
is, G∈ Fin(p) in the notation of[16]). Then we have

Π(p)
j

(G(G,H,q)) =
⋃
σ |q̄

σ Θ( j)
G,q,q̄

, 0< j < p,
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whereΘ( j)
G,q,q̄

consists of all positive integers n≡ 1 modpqq̄ such that the sum

∑
n∈Nr

0

dG,p·n= n−1
pqq̄

(
1+(qq̄−1)(n−1)/(qq̄)

n,1+(qq̄−1)(n−1)/(qq̄)−‖n‖

) r

∏
i=1

(
sdi

(G)
)ni

is congruent to j modulo p.

Here, the vectordG,p ∈ Nr attached to the groupG and primep is defined as

dG,p :=
(d1−1

p
,
d2−1

p
, . . . ,

dr −1
p

)
,

where 1= d0 < d1 < · · · < dr = |G| is the collection in increasing order of those positive
integersd for which sd(G) 6≡ 0 (p). Also, if n = (n1, . . . ,nr) is a vector of positive integers
with sum‖n‖, andN≥ ‖n‖, then (

N
n,N−‖n‖

)
denotes the multinomial coefficient

N!
n1! n2! · · · nr ! (N−‖n‖)!

.
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