A DESCENT PRINCIPLE IN MODULAR SUBGROUP ARITHMETIC

PETER J. CAMERON AND THOMAS W. NJLLER

ABSTRACT. We establish and comment on a surprising relationship between the behaviour
modulo a primep of the numbeis,(&) of indexn subgroups in a grou, and that of the
corresponding subgroup numbers for a subnormal subgropgpofver index in&. One of

the applications of this result presented here concerns the explicit determination npodulo
of s,(®) in the case whei® is the fundamental group of a finite graph of finjiegroups.

As another application, we extend one of the main results of the second author’s paper [16]
concerning thep-patterns of free powerG*9 of a finite groupG with q a p-power to groups

of the more general forrHl «+ G*9, whereH is any finite p-group.

1. INTRODUCTION

For a group® and a positive integem, denote bys,(&) the number of index subgroups

in &.1 We call® an FSGgroupif s,(®) is finite for all n; for instance, finitely generated
groups and groups of finite subgroup rank have this property. Modular subgroup arithmetic,
a chapter in the theory of subgroup growth, deals with divisibility properties of the sequence
{sn(®)},>, or related subgroup counting functions and their connection with the algebraic
structure of the underlying grou; cf. the recent book [10] by Lubotzky and Segal for more
background information.

In general, divisibility properties of subgroup counting functions appear to be rather peculiar
to the particular group under investigation, and (unlike their growth behaviour) tend to be
severely distorted when passing to a subgroup of finite index.

Example. Consider the cartesian map from the modular gréup PSL,(Z) = C, *C; onto
C, x C; = C,. By atheorem of Nielsen, the kernel of this map is free of rank 2; cf. [11] and
[17]. Moreover, by a theorem of Stothers [20],

s(PSL(Z)) =1 mod 2 <= n=2°"1—-3 or n=2(2°" - 3) for someo > 1.

On the other hand, it follows from M. Hall's recursion formula ([8, Theorem 5.2])

sF)=n) ™t — ¥ (n-w) Ps(R), (1>25(R)=1)

o<u<n
thatsy(F,) is always odd.

Against this background it is rather surprising that a non-trivial positive result in this direction
does in fact exist (see Theorem 1 below). Given a prprand an FSG-group, define the

The reader should be warned that, in the literature on subgroup gre@), often denotes the number of
subgroups i® of index at mosh, that is, the summatory function &f(®) in our notation.
1
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p-pattern(P) (&) of & to be the family of sets

NP (e) = {ngm(es),ngm(es),... ,né@l(qs)},

where

ngp)(eﬁ) = {neN: s () = j mod p}, 0o<j<p;
in particular,y = I'I(12>(®) is theparity patternof &. The main purpose of this paper is to
draw attention to the following remarkable result.

Theorem 1 (Descent Principle)Let p be a prime® an FSGgroup, and let$ <t <& be a
subnormal subgroup of indexX.pThen

nP@=pnPEu U PPenn-py), 0<j<p @
0<p<r
Equivalently, if )gw(z) denotes the mod p projection of the serlggzosnﬂ((%)z”, and if

Xs Io(z) is the corresponding Gfp)-series for the group, then, under our assumptions,

r

r—1

_ 1_ _

Xe o2 =5 277X, @) + 5 2 IXP ). (2)
p=0 p=0

Theorem 1 follows quickly from the main result of [15], where the conclusions (1) and (2)
are established under the extra hypothesessiiathormal in®, and that /$) is cyclic; cf.

Section 2 for more details. As the above example demonstrates, the assumption in Theorem 1
that(® : $) be a prime power cannot be weakened.

In Sections 3 and 4, we present two applications of Theorem 1. First, consider the fundamen-
tal group® of a finite graph(&(—),Y) of finite p-groups. If& contains a free subnormal
subgroup of indexmy =lcm{|&(v)| : ve V(Y)}, thens,(&) is periodic modulap, and its
p-pattern is determined completely by thatsfF); cf. Theorem 2. Existence of such a free
subnormal subgrouf is not guaranteed, and we provide various sufficient conditions, one
of which involves homogeneity; we use the classification of finite homogeneous groups due
to Cherlin and Felgner [3]. As another application, we extend one of the main results of [16]
concerning thep-patterns of free powerG*? of a finite groupG with q a p-power to groups

of the more general forrAl « G*9, whereH is any finitep-group; cf. Theorem 3.

We thank the referee, whose comments have improved both the substance and the presenta-
tion of the material in Section 3.

2. REMARKS ON THE PROOF OFTHEOREM 1

We concentrate on Equation (1); the equivalence of (1) and (2) was already established in
[15] (see the end of Section 2 in that paper). First note that Theorem 1 has a straightforward
reduction to the case of prime index. Indeed, suppose that feSahgroup® and a normal
subgroupH) <& of index p (a prime), we know that

niP(®) =pniP(H)u (NP (H)N(N-pN)), 0<j<p. 3)
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Let
ﬁ:ﬁoﬂf)lﬂ“'ﬂﬁr:

be a normal series fah with (; : $, ;) = pforall 1 <i <r (such a normal series exists
since, by Frobenius’ generalization of Sylow’s third theorent[8, Theorem ], every non-
trivial finite p-group contains a normal subgroup of ind@x Then, by (3), we have

NP (9) = pniP (9, u(MP(9_YN(N-pN)) (1<i<r0<j<p)., (@)

and, using (4), an immediate induction ioshows that, for Ki <rand 0< j < p,
nP(s) =pn®P@ u (J e (nP@nn-pN).
0<p<i
whence (1).

Validity of Equation (1) in the case whefe<® and(® : §) = p follows immediately from

[15, Theorem 1]. Here, we briefly sketch an alternative proof of (3) generalizing an argument
in [14]. As in the proof of [14, Prop. 4] one observes that a subg®up & is of indexn in

& and not contained i if, and only if,

e |J &%),
(9:9)=n
where

It follows that

~ S (5;))7 p| n
&) = S n/p 5
$(®) (ME):”| (9)| + {07 otn (5)

Fix an element with & = (9, ). Given a subgroug of indexn in § and a right transversal
1="by,bq,...,b,_4 for $Hin §, then the elements

Qu,v = buCV, 0<u<n0<v<p)
form a right transversal fo in &. A subgroup® € 6(~) must be of the form

~

6= u—ﬁgooU U ﬁgu,,
0<j<p

with some vector

B= (Mg, lps - By 1) €{0,1,... n—1}P1
and such a seb, C & is a member of5($) if, and only if, &, is a subgroup of5. The
necessary and sufficient condition for the last assertion to hold is that

9y..j 59#.@ = Hg 0<j,k<p

Bl +K

with i, := 0 and reduction (indicated by an overstroke) being mogulio follows from this
analysis that the cardinality of the sﬁ(ﬁ) _equals the number of subgroupsNg () 7)/$ of
orderp, which are not contained iN ( )/ﬁ Applying Frobenius’ theorefconcerning the

2Ct. [5, pp. 984-985] and [6].
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number of solutions of the equatiof” = 1 in a finite groupG in the case whem = p and
G =Ng($)/9 orG=Ng(H)/$, we deduce that

~ 1 N, () : 6 d N () : H
|6(sa>|z{ - PINa(8):9) and pt(No(9):8)
0, otherwise
which, in conjunction with (5), yields
s , n
$(6) =[Qn| + { o P modp, (6)
0, pfn

where
Qni={H<5: (9:5)=n p| (No(5):H). pt (Ny(H): 5) }.

Denote byily($) the set of subgroups of indexin $. Then, making use of the action by
conjugation off) on Qn and that of on i, () \ Qn, we find that

s(9), pin
1Qn| = {
0, pln
which, when combined with (6), gives

$(®) = Sn/(mp)(ﬁ) modp,

mod p,

whence (3).

3. DIVISIBILITY PROPERTIES DETERMINED BY FREE NORMAL SUBGROUPS

The category of graphs used in this section is described in Serre’s book [18% ed,Y)

be a finite graph of finite groups with fundamental grafig= 7,(&(—-),Y), and letp be a
prime. Moreover, denote By(Y) andE(Y) the set of vertices respectively (geometric) edges
of Y, and letm, be the least common multiple of the orders of the finite subgrougs that

is,

Mg = lcm{|&(v)|: veV(Y)}.

Thefree ranku(®) of & is defined as the rank of a free subgroupsirof indexm, (such
subgroups always exist; cf., for instance, [18, Lemmas 8 and 10]). It is connected with the
rational Euler characteristjg(®) of & via

u(®) + mg x(6) =1, (7)

and the latter quantity can be computed in terms of the graph of g@ups),Y) by means
of the formula

1 1
x(6) = i It (8)
o BV 2y, T
cf. [1, Chap. IX, Prop. 7.3] or [19, Prop. 14]. & has a free subnormal subgrogmf index
m,, a p-power, then every vertex grow(v) must be ofp-power order; and if (&) <0, then
any free subnormal subgrogpof indexm,, has rank rk§) = u(®) > 1, and, by Theorem 1,
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the p-pattern of® is determined via (1) by thp-pattern of§. Consequently, all conclusions
of [15, Theorem 2] remain valid in this more general situation, and we obtain the following.

Theorem 2. Let p be a prime(&(—),Y) a finite graph of groups all of whose vertex groups
are of p-power order, and lab be its fundamental group. Letgn= p', and suppose thab
contains a subnormal free subgroup of index,rand thaty (&) < 0. Then

() the function §(®) is periodic modulo p

(i) for p=2we havel, =N,

(iii) for p=3andu(®) odd we haveél(¥ (&) =N,

(iv) for p=3andu(®) even, §(®) is periodic moduld with period8- 3. More precisely,
in this case §®) = 1 mod 3if and only if n is congruentnod 8- 3" to one of theg"+1
numbers
0,371,3,831 3+ 11.3-116.31,17.31,19.-3 1, 3°(1+241),8-3°(1+
31),3°(11+241),8-3°(2+31), 3?(17+241), 3°(19+ 244)
with0<p <r—land0< A < 3—P~1;
and $(®) = 2 mod 3if and only if n is congrueninod 8 3' to one of the8"*! numbers
4.3-1,5.3-1,7.3-1,4.3,13.3-1,5.3,20.31,7.3,23.3"1,4.3°(1+61),
4.3°P(5+61), 3 (5+241), F(7+241), 3 (13+241), 3 (23+241)
with0<p <r—land0<A <3 P1

The usefulness of Theorem 2 depends on our being able to verify the hypothest that
contains a subnormal free subgroup of inaex. The remainder of this section is devoted

to this last problem. Rather than attempt to state a very general result here, we isolate the
essential part of the argument in the next two lemmas, followed by several applications.

Lemma 1. Let (&(—),Y) be a finite tree of finite groups, and sét= x,(&(—),Y) and
m=m,. Forec E(Y), and a vertex v in the boundary of e, tmge_v) be the embedding of

&(e) into &(v) given by the tree of grouds(—),Y). Assume that there is a vertexe&/V (Y)
with the property that® (v,)| = m. Set G= &(v,), and denote b = W(&(—),Y) the set of
all homomorphismg : & — G such that the restriction af to any vertex-group is injective.
Then the following hold:

(i) W is non-empty if and only if there is a famifyy, : &(v) — G}
momorphisms such that, for everg & (Y), we have

vev(y) of injective ho-
Wlaevse = Wlaev)ser (9)

where v and Vare the two vertices bounding e.
(i) The number of free normal subgroups having index & is |¥|/| Aut(G)|.

Proof. (i) Forv e V(Y), definey, to be 1//\@(\/), for all ve V(Y). Then Equation (9) follows
from the definition of a tree of groups.

Conversely, if the homomorphismg, exist and satisfy Equation (9), then there is a homo-
morphismy : & — G whose restriction t@ (V) is y,; by definition,y € W.
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(i) Aut(G) acts naturally o via
y-a:=aoy (yeW acAut(G)),
and, since eacly € W is surjective, this action is free; thus
W/AUL(G)| = |W|/|Aut(G)].

Now let§ be a free normal subgroup &f of indexm. Then&(vy) N = 1 and®(v,)§ = &,
so8/F = G, and the canonical projection mapfrom & to G belongs to¥. Sendingg to
[x], the orbit ofr under AutG), gives a well-defined map

@: {316 : Ffree (6:F) =m} — W/Aut(G).

Moreover, the kernel of any membwgrof W is a free normal subgroup @f of indexm (see,
for instance, [4, Chapter Il, Theorem 1.3]), and the projection map — & /ker(y) = G
differs from y only by an automorphism dg, so[r| = [y], ande is surjective. Finally, if
two free normal subgrougds;, §, of & of indexm have projections : & — &/F; = G only
differing by an automorphism ds, theng, = §,, S0 is a bijection. [

Definition. For a group® and a subgroup) < &, we define the centralizerAgt(®)(53) of $
in Aut(®) to be

C

ut(e) () = {aeAut(®): a(h)=h forall he H}.

Lemma 2. Let the hypotheses and notation be as in Lerdim&uppose that &) is non-
empty and that the s&¢ in Lemmal is also non-empty. Chooséteo be a terminal vertex
of Y different from y. Let Y, be the subtree of Y induced or(¥) — {V'}, and let¥, =
W(@(—)|YO,YO). Let € be the edge containing,vand let V € V(Y;) be the other vertex

bounding & For y, € W, let Sy,) be the set of injective homomorphisms: (V) — G
for which w]a(e,’\/)qj(d) = wo\a(e,7\/,)®(e,). (This set may be empty). Then

W= S ISl

VoW,

Proof. Let &, = nl(®(—)|YO,YO). We have® = Go*g(e) &(V), the amalgamation being with

respect to the canonical embeddingssd¥) in &, and® (V) respectively. The number of
elements of¥ which restrict toy, is equal to|S(y)|. O

The results of these two lemmas are most easily applied when the vertex groups are homoge-
neous, a concept we discuss next.

A group & is termedhomogeneousd every isomorphism between finitely generated sub-
groups is induced by an automorphism®f This concept arose (for arbitrary first order
structures) in model theory in connection with quantifier elimination. For instance, it is
known that a finite group is homogeneous if and only if its first order theory has quanti-
fier elimination; cf. [9, Cor. 8.4.2]. The finite homogeneous groups have been classified by
Cherlin and Felgner; cf. [2] and [3]. In particular, a finpiegroupG is homogeneous if and
only if one of the following holds:
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() G=Cy & ®Cy for somer,s€ Ny =NU{0};
~—_———

scopies

(i) G=Q, the quaternion group of order 8;
(i) G= Q™.

Here,Q* is a certain group of order 64, class 2, and exponent 4, which arises for instance as
the Sylow 2-subgroup of P%laflz); cf. [2, Sect. 2] for more details.

Proposition 1. Let p be a prime. Let®(—),Y) be a finite tree of groups such that

(i) every vertex groug(v) is a finite homogeneous p-group; and
(ii) there is a vertexy< V(Y) such that every vertex group is isomorphic to a subgroup of

Set® = 7, (6(—),Y). Then the number of free normal subgroups of indgx=1G| in & is

Aut Ge ’ / I_! Aut GV
veV (Y

where G and G are subgroups of G isomorphic ®(v) and®(e) respectively, for & V(Y)
and ec E(Y).

eeE

Proof. The proof is by induction ofE(Y)|. (The induction hypothesis, in conjunction with
Lemma 1, asserts th@¥| is equal to] Aut(G)| times the quantity in the Proposition.)

If E(Y) =0, thenV(Y) = {v,}, and the formula gives/1C AUL(G (G)| =1, which is correct;
so|W| = |Aut(G)| in this case.

Suppose thaE(Y) # 0. Choose/ to be a terminal vertex of not equal tov,, let € be the
edge containing’ and letv’ be the other vertex in the boundaryedf Sinceo(€/,V) & (€) =
a(€,V')6(€), the setS(y,) appearing in Lemma 2 are all non-empty.

Let G be a finite homogeneous group.Hf < G, then the number of extensions of a given
embeddingd — G to an automorphism dg is |C AUL(G )(H)| Hence, ifK <H < G, then the
number of extensions of an embedditg- G to an embeddingl — Gis|C AUt(G ( )|/IC AUL(G ( ).
Hence, in Lemma 2, we have

o)l = [Caut(e)(Ce) I/ ICau(e) (Cu)s

independent ofy,, and so

W] =%l - [Cautc) (Ce) I/ ICaut(c) (Gy)-

On the other hand, the induction hypothesis asserts that
Wol =1AWG)|- [ Caey(@e)l/ [] Caue

ecE(Yy) veV(Yy)

and combining the last two equations, and applying Lemma 1 again, gives the desired result,
sinceV(Y) =V(Yy) U{V} andE(Y) = E(Y,) U{€}. O
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Corollary 1. Let p be a prime(&(—),Y) a finite tree of groups all of whose vertex groups
are of p-power order$ = 7, (6(—),Y), and let m, = p'.

(i) If all vertex groups®(v) are cyclic, then® contains precisely
Mueviy) @(8M))

Mecery) (6(€))

free normal subgroups of index nwhereg is Euler’s totient function.

(M)

(i) If all vertex groups®(v) are elementary abelian, thefi contains exactly
Necey) [[6(&)%|GL,_g ()]
Mvevy) [[&W)[~H|GL, 4, (P)]]
free normal subgroups of index nwhere ¢ = dimp& (o), o € V(Y)UE(Y).

Proof. The hypotheses of Proposition 1 are satisfied in both cases.

1%

Note that, ifG is a finite homogeneous group ard subgroup oG, then we havé\, ;5 (H)/Cp i (H)
Aut(H), and hence

_ |Aut(G)|
Caue) H)I = #(G,H) - |Aut(H)|’
where
Nayt(e) (H) = {aeAut(G): a(H)=H},

and with #G,H) = |Aut(G)\/]NAut(G)(H)] the number of subgroups Gfisomorphic toH.

For (i), we have Aut(G)| = ¢(|G|) and #G,H) = 1 wheneve is a cyclic group anti < G.
Proposition 1 shows that the number of free subgrou of indexm,; is

Mecery) @(My)/@(16(€)))

Myevir) @(Mg)/@(|B(V)])’

which is equal to the value claimed, sindgY)| = |E(Y)|+ 1. (Note that this result is also
proved in [15, Lemma 1].)

For (ii), if G is elementary abelian of ordef, andH is a subgroup of ordgr®, then we have

|Aut(G)| = |GL (p)| = (p" = 1)(p" = p)-- (P —p )
and

T _ (P =-9FE -p--(-p"
#G,H) = = :
(GH) H o (PP=1)(p°—p)-(p°—p 1)
Hence, if|G| = p", H < G, and|H| = p°, then
Chutia) (M) = [GL_s(p)|- B = [GL,_g(p)| - [H|~*.
Hence, the result follows from Proposition 1. [
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Corollary 2. (i) If, in Propositionl, all the vertex groups are isomorphic to-6Q then
& contains preciselp4%(®) . 4°®) free normal subgroups of indexyr= 8, where

a(®):=[{ecE(Y): |&(e)| <4} and HB):=[{ecE(Y): |&(e)| =4}

(i) If, in Proposition1, all the vertex groups are isomorphic to-6Q*, the number of free
normal subgroups i® of index ny, = 64 equals

15360(®) . 5120(®) . 256(F(®) . 256(®) . 128%®) . 321(®) . 169(8) . g(®)

where
a(B):=|{ecE(Y): 6(e) =1},
b(®):=[{ecE(Y): [6(e)| =2},
o(®) :=[{e€ E(Y): 6(e)2C,x Gy},
d(&):=[{ecE(Y): &(e)=C,},
e(®):={ecE(Y): |&(e)| =8},
f(8):={e€E(Y): 6(e)=C,xC,}],
9(8) :=[{ecE(Y): &(e) =Hyg},
h(®) :=|{ecE(Y): |&(e)| =32}|.

Here, Hg=(abla*=b*=1a"=a1).

Proof. Since all vertex groups are isomorphid@pwe havei:Aut(G) (Gy)=1forallve V(Y).

The assertions of the corollary follow immediately from Proposition 1, once the orders of the
corresponding centralize@gut(e)(Ge) are known. For the second part, these have been found

with the help of the computer algebra system GAP [7]. O

Remark. A finite group G is homogeneous if and only if, for every finite tree of groups
(&(—),Y) with all vertex stabilizers isomorphic t&, & = 7,(&(—),Y) contains a free
normal subgroup of inder. Indeed, the forward implication follows immediately from
Lemma 1. If, on the other han€; is not homogeneous, then there exists an isomorphism
between two subgroups, ,H, of &, which is not induced by an automorphism. We can then
form the amalgan® = G x; G, where the abstract grow is identified withH, in the left
factor and withH, in the right factor, in such a way that the isomorphism betwdgemand

H, induced by these embeddings is the given isomorphism. &hdaes not possess a free
normal subgroup of indemy = |G|. For, if § were such a subgroup, théy/g = G, and the
two embeddings ofl in & would coincide in this quotient, which (by assumption) is not the
case.

We now describe a simple example to illustrate that, even if the vertex groups are not homo-
geneous, the counting may still be possible. (&{—),Y) be a tree of groups all of whose
vertex groups are isomorphic B, the dihedral group of order 8, and [&tbe its fundamen-

tal group. Call an edgec E(Y) wild, if &(e) contains an involution which is identified with

the central involution in one of its corresponding vertex groups, and a non-central involution
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in the other. Ifeis not wild, we call itinnerif &(e) is embedded in the cyclic subgroup of
order 4 of&(v) for v on e, andouterotherwise.

Proposition 2. Let & be as above. The® has a free normal subgroup of index,m- 8 if
and only if the tree of group&%(—),Y) does not contain a wild edge. In the latter case, the
number of free normal subgroups of indey equals

_ 8
L, ete@n

&(e) inner

20(8)

where
o(®) :=|[{ecE(Y): &(e) outer}|.

Proof. Necessity of the stated existence criterion is clear. In the positive direction, the con-
dition that no edge is wild guarantees that, in the notation of Lemma 2, th&(gg{sare all
non-empty, and have cardinality 2dfs outer and 8¢ (|®(e)|) if eis inner. O

Define thetypet(®) of afinitely generated virtually free grop= 7, (&(—),Y) as the tuple
(&) = (Mg §(®),...,5c(®),... ,{m, (8)),

where the,. (&) are integers indexed by the divisorsmf, given by
Ce(®) =[{ecE(Y): [6(e)]|x}| — [{veV(Y): [6(V)]|«}]

with V(Y) andE(Y) as above. We havé, (&) > 0 for k < mg and{m, (&) > —1 with
equality occurring in the latter inequality if and onlyMfis a tree; cf. [12, Lemma 2] and [13,
Proposition 1]. It can be shown that the typ@) is in fact an invariant of the groug, that
is, independent of the particular decompositioah terms of a graph of grougs(—),Y),
and that two virtually free group®, and®,, contain the same number of free subgroups of
index n for each positive integem if and only if 7(&,) = 7(8,), cf. [12, Theorem 2]. It
follows from (8) that the Euler characteristic 6fcan be expressed in terms of the type via

2(®) =-mgh Y o(Mg/x) (). (10)

K m®

Equations (7) and (10) imply in particular that, if two virtually free groups have the same
number of free inder subgroups for each, then their Euler characteristics respectively free
ranks must coincide. For a finitely generated virtually free gréugnd a primep define the
p-rank up(®) of & by means of the formula

p(®) =1+ | P(Mg /%) Cic(B).
p| k[m,

Moreover, denote by, (&) the number of free subgroupsdnof indexAm,.

Proposition 3. Let p be a prime (&(—),Y) a finite graph of groups all of whose vertex
groups are non-trivial finite p-groups, and lét = x;(&(—),Y). Then the following asser-
tions are equivalent:

() f,(®) %0 modp,
(i) pp(®) =0,
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(i) & is afree product of the forr® = H xCpx-- -+ Cp with s> 0
H._/
scopies

and a group H of order rp.

Corollary 3. Let p be a prime, and leb = H +C;° be a free product of & 0 copies of the
cyclic group of order p and a finite p-group H. Théncontains a normal free subgroup of
index ;.

Proof. This follows from the action by conjugation &f on the set of free subgroups of index
my,, together with the implicatiotiii ) = (i) of Proposition 3. It also follows immediately
from Lemma 1. |

Proof of Proposition3. The equivalence of (i) and (ii) follows from a discussion of the

formula®
f,(B) =my kéx(®),
K|Mg 1<k<mg

(Mg K)=x

making use of facts concerning®) mentioned above. Suppose now thgt®) = 0. ThenY

is atree, and, after contracting edge¥ @orresponding to trivial amalgamations if necessary,
we may assume thats(—),Y) is normalized that is,|&(e)| # |&(v)]| for all e € E(Y) and

v € de. For a positive integem, denote bye,, v, the number of edgese E(Y) respectively
verticesv € V(Y) whose associated grou(e) respectively®(v) has ordem, define an
arithmetic functionf (n) via

v|n
and letm, = p'. Then, for 0< p <rr,
e, p=0
f(pPP)=¢-1, p=r (11)

0, otherwise,
and, by Mbbius inversion,

en—vn:Zu(v)f(n/v), n>1, (12)

vn

where u is the classical Mbius function. Since our claim (iii) holds for< 1, we may
assume that > 2. In the latter case, we find from (11) and (12) that

_e]_7 p =1
€y — Vg = 0, l<p<r (13)
-1, p=r

3Cf. formulae (3) and (11) in [12].
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Using the facts that®(—),Y) is normalized and thaf is a tree (hence, in particular, does
not contain loops), we find from (13) that

ey =0, therefore Vg =1

€y-1= 0, therefore V1= 0

€2 = 0, therefore Ve = 0

ep =0, therefore vp=eg,.

It follows that all edge groups are trivial, that 8,is the free product of its vertex groups, and
thatV (Y) contains precisely one vertey with |&(v,)| = p" ande; > 0 verticesv satisfying
&(v) = Cp, whence (iii). Since the implicatiofiii ) = (ii) is trivial, the proof of Proposition 3
is complete. O

4. THE GROUPS®(G,H,q)

For a finite grougs, a primep, and p-powersq, q with ggq > 1, let
& =6(G,H,q)=Hx*Gx---xG, (14)

g copies

whereH is of orderg. Put® = &(G,1,q) = G". It follows from the normal form theorem
applied to the free produtt « & that®(G,H, q) is a split extension of the group

H=(8":heH)=G%=¢(G,1q])

by H; in particular, the group® and$) satisfy the hypotheses of Theorem 1, and (1) yields
the reduction formula

NP(6(G,H,a) =an{P(6(6,1,a@) U | o(NP(6(G,1,68) N (N p),

olg
o<q

O<j<p. (15

Formula (15) allows us to translate results concerning the gréu@s1,q) obtained in [16]

into results for groups of the more general form (14). Since, for the most part, this translation
process is entirely straightforward, and whatever extra arguments are needed can be found in
[16, Sect. 8], we shall leave this task to the reader. As an example, we state the generalization
of [16, Theorem 12], which provides a remarkably explicit combinatorial description of the
p-patternf(P)(&(G,H, q)) under a certain assumption Gn

Theorem 3. Let G be a finite group, p a prime, let q adbe p-powers such thagg> 1,
and let H be a group of ordey. Assume that;$G) = 0 (p) for alld ¢ Nwith d# 1 (p) (that
is, G € Fin(p) in the notation 0f16]). Then we have

NP@GH.a)=Jool, . 0<i<p
ol
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where®U) _consists of all positive integers=a 1 mod poq such that the sum

gﬂﬁ
14+ (ag—1)(n—1)/(qq) [ ni
ne%g <ﬂal+(th—1><n—1>/(qd)—||n||) ﬂ(sdi(e))
d

_n-1
96,0 "= by
is congruent to j modulo p.

Here, the vectogqp € N attached to the grou@ and primep is defined as
d-1d,-1 dr—1
ng::< 1 ) 2 PR r )7
’ P P P
where 1=d, < d; < --- < dr = |G| is the collection in increasing order of those positive

integersd for which s;(G) # 0 (p). Also, if n= (n,,...,ny) is a vector of positive integers
with sum||n||, andN > ||n||, then
(o 1)
n,N—{[n]

N!
nytngt - el (N—Jlnj|)t

denotes the multinomial coefficient
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