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Abstract

Let Sn be the symmetric group on the setX = {1,2, .....,n}. A subsetS
of Sn is intersectingif for any two permutationsg andh in S, g(x) = h(x) for
somex∈ X (that isg andh agreeon x). M. Deza and P. Frankl [4] proved
that if S⊆ Sn is intersecting then|S| ≤ (n−1)!. This bound is met by taking
S to be a coset of a stabilizer of a point. We show that these are the only
largest intersecting sets of permutations.

1 Introduction

The following theorem is proved by M. Deza and P. Frankl in [4]:

Theorem 1 Let S be an intersecting set of permutations of{1, . . . ,n}. Then|S| ≤
(n−1)!.

Our main result is the following:

Theorem 2 Let n≥ 2 and S⊆ Sn be an intersecting set of permutations such that
|S|= (n−1)!. Then S is a coset of a stabilizer of one point.

Suppose that the setSsatisfying the conditions in Theorem 2 does not contain
the identity elementι. Then taking a permutationg ∈ S, S′ = g−1S= {g−1h :
h ∈ S} now containsι and again satisfies the conditions in Theorem 2. Hence,
assumingι ∈ S, it is enough to show thatS is a stabilizer of one point.
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For eachg ∈ Sn, we say that a pointx is fixed by g if g(x) = x. The set
Fix(g) = {x∈ X : g(x) = x} is thefixed point setof g. Moreover ifS is a subset
of Sn, then Fix(S) = {Fix(g) : g∈ S} is a family of subsets ofX.

Let x∈X, g∈Sn. We define thefixingof the pointx via g to be the permutation
gx ∈ Sn such that

(i) If g(x) = x, thengx = g;

(ii) If g(x) 6= x, then

gx(y) =


x if y = x,
g(x) if y = g−1(x),
g(y) if y 6= x , y 6= g−1(x).

Inductively we definegx1,...,xq to be the fixing ofxq via gx1,...,xq−1. We also say
that a set of permutationsS is closed under the fixing operationif the following
holds:

for eachx∈ X andg∈ S,gx ∈ S.

UsingGAP [6], it is not difficult to establish our theorem ifn≤ 5. So we may
assume thatn≥ 6. We now give the outline of our proof: we first show that a set
of permutationsSwhich satisfies the conditions in Theorem 2 is closed under the
fixing operation (Theorem 8). This implies that Fix(S) is an intersecting family
of subsets (that is Fix(g)∩Fix(h) 6= /0 for anyg, h∈ S): this is the statement of
Theorem 10. With these assumptions, we finally show thatSmust be a stabilizer
of one point in section 5.

2 Preliminary results

A graph isvertex-transitiveif any vertex can be mapped into any other by an
automorphism. A subgraph of a graph is calledclique if any two of its vertices
are adjacent. Acocliqueis a subgraph in which no two vertices are adjacent.

Theorem 3 Let Γ be a vertex transitive graph on n vertices. Suppose that T is a
subset of the vertex set, and that the largest clique contained in T has size|T|/m.
Then any clique S inΓ satisfies|S| ≤ n/m. Equality implies that|S∩T|= |T|/m.
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Proof Count pairs(v,g) with v ∈ S, g ∈ Aut(Γ) and g(v) ∈ T. For eachw ∈
T there are|Aut(Γ)|/n choices ofg with g(v) = w; so the number of pairs is
|S| · |Aut(Γ)|/n· |T|. On the other hand, for any automorphismg, we have|g(S)∩
T| ≤ |T|/m ( sinceg(S)∩T is a clique inT ); so the number of pairs is at most
|T|/m· |Aut(Γ)|. Thus

|S| · |Aut(Γ)|/n· |T| ≤ |T|/m· |Aut(Γ)|,

so
|S| ≤ n/m.

If equality holds then|g(S)∩T| = |T|/m for all g∈ Aut(Γ). Takingg = ι gives
the result. �

If T is a coclique, then the largest clique it contains has size 1, so the hypoth-
esis holds withm= |T|. This gives the following:

Corollary 4 Let C be a clique and A a coclique in a vertex-transitive graph on n
vertices. Then|C| · |A| ≤ n. Equality implies that|C∩A|= 1.

Theorem 5 Let S be an intersecting set of permutations of{1,2, .....,n}. Then
|S| ≤ (n− 1)!. If equality holds, then S contains a row of each Latin square of
order n.

Proof Form a graph on the vertex setSn by joiningg andh if g(i) = h(i) for some
point i. It is clear that left multiplication by elements ofSn is an automorphism; so
the graph is vertex-transitive. LetL be the set of rows of a Latin square. ThenSis a
clique andL is a coclique with|L|= n. So, by Proposition 4,|S| ≤ n!/n= (n−1)!,
and equality implies|S∩L|= 1. �

We need another definition before stating the next proposition. Letg be a
permutation inSn. We define

D(g) = {w∈ Sn : w(i) 6= g(i) ∀i = 1, ...,n}

Proposition 6 Let n≥ 2k. Then, for any g1,g2, .....,gk ∈ Sn, we have D(g1)∩
D(g2)∩ .....∩D(gk) 6= /0.

3



Proof A permutationh∈ Sn belongs toD(g1)∩D(g2)∩ . . .∩D(gk) if and only
if it is a system of distinct representatives for the setsA1, . . . ,An, where

Ai = {x : x 6= g1(i) andx 6= g2(i) and.....andx 6= gk(i)}.

Clearly|Ai | ≥ n−k.
We must check the conditions of Philip Hall’s Marriage Theorem. LetA(J) =⋃

j∈J A j for J⊆ {1, .....,n}. We must show that|A(J)| ≥ |J| for all J. Clearly this
holds if |J| ≤ n−k, so we can suppose that|J| ≥ n−k+1.

Takex ∈ {1, .....,n}. Thenx 6∈ A(J) if and only if, for all j ∈ J, there exists
i ∈ {1, .....,k} such thatx= gi( j). But there are at mostk pairs(i, j) with x= gi( j),
since giveni, the value ofj is determined (j = g−1

i (x)). Since|J| ≥ n− k+ 1≥
k+1, this cannot hold for allj ∈ J. ThusA(J) = {1, .....,n} and|A(J)|= n≥ |J|.
�

Remark If the permutationsg1, .....,gk are pairwise non-intersecting then the
conditionn≥ 2k can be weakened ton≥ k+ 1. Hence anyk×n Latin rectangle
(set of pairwise non-intersecting permutations) can be extended to a Latin square:
this is the result of Marshall Hall (Theorem 7). Letg1, . . . ,gk be the rows of a
Latin square of orderk, extended to fix the pointsk+ 1, . . . ,n. Any permutation
in D(g1)∩ . . .∩D(gk) must have symbols from the setk+ 1, . . . ,n in positions
1, . . . ,k; so if n≤ 2k−1, then no such permutation can exist.

Theorem 7 [M. Hall 1945] Every k×n latin rectangle can be extended to some
n×n latin square.

3 Closure under fixing operation

Let g ∈ Sn andA⊆ X. If g(A) = A, then the permutationg restrictedto A, de-
noted byg|A, is a bijection fromA to itself, and so it is an element in Sym(A).
However, in general,g|A, being a bijection between|A|-subsets ofX, is apartial
permutation.

Theorem 8 Let S⊆ Sn be an intersecting set of permutations such thatι ∈ S and
|S|= (n−1)! where n≥ 6. Then S is closed under the fixing operation.

Proof Assume thatS is not closed under the fixing operation. Then there exists
somex∈X andg∈Ssuch thatg(x) 6= xandgx 6∈S. Now letg= a1a2.....ax...ay...an

whereax 6= x, ay = x. So
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gx = a1.....ax−1ayax+1.....ay−1axay+1.....an.

We consider the following cases:

(i): ax = y

Let X \{x,y}= A. Thenι = ι|A andg = g|A = gx|A are elements in Sym(A).
By Proposition 6, there existsh∈ D(ι)∩D(g) sincen−2≥ 4. Now con-
struct a permutationh onX as follows:

h(i) =

h(i) if i ∈ A,
y if i = x,
x if i = y.

ι : · · · x · · · u · · · y · · ·
g : · · · y · · · au · · · x · · ·
ι : · · · · · · u · · · · · ·
g : · · · · · · au · · · · · ·
h : · · · · · · bu · · · · · ·
h : · · · y · · · bu · · · x · · ·
gx : · · · x · · · au · · · y · · ·

Thengx andh form a 2×n latin rectangle. By Theorem 7, there exists a
n× n latin square containinggx andh. But observe that for any rowr in
this latin square other thangx andh, we must haver ∈ D(gx)∩D(h) and
hencer ∈ D(g), that is r andg agree on no points inX. So r 6∈ S since
g ∈ S andS is intersecting. Moreoverh and ι also agree on no points in
X by construction and thush 6∈ Ssinceι ∈ SandS is intersecting. Further
gx 6∈ Sby assumption. Hence no rows in this latin square lie inS. But this
contradicts Theorem 5.

(ii): ax = z 6= y

Let A = X \{x,z}. Soι = ι|A is the identity in Sym(A). Now define another
permutationg onA as follows:

g(i) =
{

g(i) if i 6= y,
g(z) if i = y.
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But |A| = n− 2 ≥ 4, and so by Proposition 6, there exist a permutation
h ∈ D(ι)∩D(g) ⊆ Sym(A). We now construct a permutationh∗ on X as
follows:

h∗(i) =

h(i) if i ∈ A,
z if i = x,
x if i = z.

We further construct a permutationh onX as follows:

h(i) =

h∗(i) if i 6= y,z,
h∗(z) = x if i = y,
h∗(y) if i = z.

ι : · · · x · · · u · · · y · · · z · · ·
g : · · · z · · · au · · · x · · · az · · ·
ι : · · · · · · u · · · y · · · · · ·
g : · · · · · · au · · · az · · · · · ·
h : · · · · · · bu · · · by · · · · · ·
h∗ : · · · z · · · bu · · · by · · · x · · ·
h : · · · z · · · bu · · · x · · · by · · ·
gx : · · · x · · · au · · · z · · · az · · ·

We claim thatgx andh form a 2×n latin rectangle. It is readily checked that
gx and h do not agree on all the points inX except perhaps onz. But h(z) =
h∗(y) = h(y) andh∈ D(g) and thereforeh(z) 6= g(y) = g(z) = gx(z). This proves
the claim. By Theorem 7, there exists an×n latin square containinggx andh.

Now observe that a rowr in this latin square, other thangx andh, if regarded
as permutation, does not agree withg at any point inX. Moreovergx 6∈ S by
assumption. So we are left to check ifh∈ S. By our construction, ifh andι were
to agree on some pointi, theni 6= x, y, z. But this would imply thath andι must
agree on some point. But this is a contradiction sinceh∈ D(ι). Henceh 6∈ S. But
this shows that no rows in this latin square lie inScontradicting Theorem 5.

Hence the theorem is proved. �

4 Fixed point sets intersect

Lemma 9 Let g, h∈ Sn. Suppose that for some x, y∈ X where g(x) = h(x) and
g(y) 6= h(y). Then gx(y) 6= h(y).
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Proof If g(y) = x then gx(y) = g(x) = h(x) 6= h(y). If g(y) = x then gx(y) =
g(y) 6= h(y). �

Theorem 10 Let S⊆ Sn be an intersecting set of permutations which is closed
under the fixing operation. ThenFix(S) is an intersecting family.

Proof We claim that ifg,h ∈ S are such thatg(x) = h(x) andg(y) 6= h(y) then
gx(y) 6= h(y) andgx ∈ S. This follows immediately from Lemma 9 and the fact
thatS is closed under the fixing operation.

Assume that Fix(S) is not intersecting. Then there areg 6= h ∈ S such that
Fix(g)∩ Fix(h) = /0. Let B = {x ∈ X : g(x) = h(x)}. SinceS is intersecting,
B = {x1, . . . ,xk} for some positive integerk.

Let w = gx1...xk. By the first paragraph,w(y) 6= h(y) for everyy∈ X \B, and
w∈S. If w(xi) were equal toh(xi) for somei, we would havexi = w(xi) = h(xi) =
g(xi), where the last inequality follows fromxi ∈B. But then Fix(g)∩Fix(h) 6= /0, a
contradiction. Hencew(x) 6= h(x) for everyx∈X. However, this is a contradiction
with w,h∈ S. �

5 Proof of Theorem 2

We need the following well known results in extremal set theory:

Proposition 11 [LYM Inequality]
Let A be an antichain of subsets of an n-set X. Then

∑
A∈A
|A|!(n−|A|)! ≤ n!.

Proposition 12 [Erdős-Ko-Rado]If {A1,A2, .....,Am} is an intersecting family of
k-subsets of an n-set X such that k≤ n/2, then

m≤
(

n−1
k−1

)
.

Lemma 13 If A is an antichain of subsets of an n−set X such that|A| ≥ k for all
A∈ A , then

∑
A∈A

(n−|A|)! ≤ n!/k!.
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Proof

∑
A∈A

(n−|A|)! ≤ ∑
A∈A

|A|!
k!

(n−|A|)! = n!/k!,

by applying the LYM Inequality. �

We now give some observations.
LetY⊆ X andG = Sym(X) = Sn. We defineG(Y) to be the set of all permuta-

tionsg∈ Sn such thatg(y) = y for all y∈Y. ClearlyG({x}) is the stabilizer of the
pointx and|G(Y)|= (n−|Y|)!. Now if g is a permutation inSwith the fixed point
set Fix(g) = F , theng∈G(F). Hence we deduce that

|S| ≤ ∑
F∈Fix(S)

|G(F)|= ∑
F∈Fix(S)

(n−|F |)!.

But we can do better. Observe that ifA ⊆ B for someA,B ∈ Fix(S), then
G(B) ⊆G(A).

Hence taking

F = {F ∈ Fix(S) : F is a minimal element in the poset(Fix(S),⊆)},

we now have
|S| ≤ ∑

F∈F
(n−|F |)!.

Proof of Theorem 2
Assumingι∈S, we want to show thatSis a stabilizer of a point. We first note that
the theorem is true forn≤ 5. This can be proved by hand or by computer using
GAP [6]. (We are looking for cliques in the graph used in Theorem 5, which can
be found using the clique finder in theGAP packageGRAPE.) Let n≥ 6. By
Theorem 8 and 10, we can now assume that Fix(S) is intersecting. LetF be the
subset of Fix(S) as defined above. ThenF now is an intersecting antichain of
subsets ofX and it is not empty.

Obviously /0 6∈ F sinceF is intersecting. Moreover note that if a permutation
g fixes more thann−2 points, then it must be the identity, and so|Fix(g)| 6= n−1
for all g∈ S, in particular,|F | 6= n−1 for all F ∈ F . Also X 6∈ F sinceF is an
antichain. Hence we have 1≤ |F | ≤ n−2 for all F ∈ F .

Suppose that Fix(S) contains an element of size 1, say{x}. Then by the in-
tersection property of Fix(S), all permutations inS fix the pointx. Since|S| =
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(n−1)!, S now must be the stabilizer ofx. So we can assume that|Fix(g)| ≥ 2
for all g∈ Sand hence|F | ≥ 2 for all F ∈ F .

Moreover we can assume that
⋂

F∈F F = /0, for otherwise, by the definition of
F , this implies that

⋂
F∈Fix(S) F 6= /0, and hence all permutations inSfix a common

point and the result again follows.
Having made the above simplifications, our aim is to derive a contradiction by

showing that|S|< (n−1)!. We achieve this by considering the following cases:

Case (I) |F | ≥ 3 for all F ∈ F , that is,F has no element of size 2.

In this case, we have

|S| ≤ ∑
F∈F

(n−|F |)!

= ∑
F∈F

3≤|F |≤[n/2]

(n−|F |)! + ∑
F∈F

|F |≥[n/2]+1

(n−|F |)!

≤
[n/2]

∑
k=3

ak(n−k)! +
n!

([n/2]+1)!
,

by Lemma 13, whereak is the number of elements inF having the sizek.

Then

|S| ≤
[n/2]

∑
k=3

(
n−1
k−1

)
(n−k)! +

n!
([n/2]+1)!

by the Erd̋os-Ko-Rado Theorem. So

|S| ≤ (n−1)!
[n/2]

∑
k=3

1
(k−1)!

+
n!

([n/2]+1)!

≤ (n−1)! · 4
5

+
n!

([n/2]+1)!
,

since∑[n/2]
k=3

1
(k−1)! < e−2< 4

5 wheree is the natural exponent.

Hence it is enough to show that n!
([n/2]+1)! <

(n−1)!
5 . But this is true forn≥ 8.

For n = 6,7, it is readily checked from(1) that|S|< (n−1)!.

We conclude that ifF has no element of size 2, then|S| < (n−1)! for all
n≥ 6.
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Case (II) F contains an element of size 2.

Let F2 = {F ∈ F : |F |= 2}.

Subcase (i)
⋂

F∈F2
F = /0.

Without loss of generality, we can assume that{{1,2},{1,3},{2,3}}⊆
F2 by the intersection property. LetF ∈ F \{{1,2},{1,3},{2,3}}.
SinceF ∩{2,3} 6= /0, we have either 2∈ F or 3∈ F . So this implies
that 1 6∈ F for otherwise{1,2} ⊆ F or {1,3} ⊆ F contradicts the an-
tichain property ofF . But now F ∩ {1,2} 6= /0 and F ∩ {1,3} 6= /0
implies that{2,3} ⊆ F contradicting thatF is an antichain. Hence
F = F2 and we deduce that|S| ≤∑F∈F (n−|F |)! = ∑F∈F2

(n−|F |)! =
3(n−2)! < (n−1)! for n≥ 6.

Subcase (ii)
⋂

F∈F2
F 6= /0.

Without loss of generality, we can assume thatF2 = {{1, i}|2≤ i ≤ c}
for somec∈ {2,3, . . . ,n}.
Now let

D = {F ∈ F \F2 : 1 6∈ F},
E = {F ∈ F \F2 : 1∈ F}.

If g is a permutation with its fixed point set Fix(g) containingF for
someF ∈D, then Fix(g) contains{2,3, . . . ,c} sinceF is intersecting.
Sog∈G({2,3,...,c}).

If c= n, thenD is empty for otherwise{2,3, .....,n}⊆F for anyF ∈D
would imply that|F | > n− 2 which is a contradiction. HenceF =
F2∪E and so allF in F must contain 1, that is,

⋂
F∈F F 6= /0. But this

again contradicts our earlier assumption. Soc≤ n−1.

If F ∈ E , then{1,x,y} ⊆ F for somex,y 6∈ {2,3, .....,c} sinceF is an
antichain. Hence there are at most

(n−c
2

)
choices for the unordered pair

{x,y}. If g is a permutation with its fixed point setF(g) containingF
for someF ∈ E , theng∈G({1,x,y}). We now deduce that

|S| ≤ ∑
F∈F2

(n−|F |)! + |G({2,3,.....,c})|+ ∑
B∈(X\{1,2,.....,c}

2 )
|G({1}∪B)|
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≤ (c−1)(n−2)! +(n−c+1)! +
(

n−c
2

)
(n−3)!.

Assuming 3≤ c≤ n−2, we have|S| ≤ f (c) where f (c) = c(n−2)! +(n−c
2

)
(n−3)!. But n−c

2 < n−2 implies that

(n−c)(n−c−1)
2

< (n−2)(n−c−1),

sincen−c−1> 0. So

(
n−c

2

)
(n−3)! < (n−2)!(n−c−1)

f (c) < (n−1)!,

and hence|S|< (n−1)! for n≥ 6 .
If c = n−1, then

|S| ≤ ∑
F∈F2

(n−|F |)! +|G({2,3,.....,n−1})|= (n−2)(n−2)! +2< (n−1)!

for all n≥ 6.
We can now assume thatF2 = {{1,2}} for n≥ 6. ThenF = F2∪
B1∪B2, where

B1 = {F ∈ F \F2 : 1∈ F}
B2 = {F ∈ F \F2 : 2∈ F}

Observe thatB1∩B2 = /0 sinceF is an antichain. Also for eachi =
1,2, if F ∈ Bi , thenF contains the set{i,a,b} wherea, b∈ X \{1,2}.
Hence

|S| ≤ ∑
F∈F2

(n−|F |)! + ∑
{a,b}∈(X\{1,2}

2 )
|G({1,a,b})|+ ∑

{a,b}∈(X\{1,2}
2 )
|G({2,a,b})|

≤ (n−2)! +2·
(

n−2
2

)
· (n−3)!

≤ (n−2)(n−2)! < (n−1)!.

We conclude that ifF has an element of size 2, then|S|< (n−1)! for n≥ 6.

Hence the result follows. �
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6 Open problems

Problem 1 What is the cardinality of the largest intersecting subset ofSn which
is not contained in a coset of the stabilizer of a point, and what is the structure of
such a set of maximum cardinality?

Consider the following set of permutations (forn≥ 4):

S∗ = {g∈ Sn : g(1) = 1,g(i) = i for somei > 2}∪{t},

wheret is the transposition interchanging 1 and 2. ThenS∗ is clearly intersecting
and is not contained in a coset of the stabilizer of a point. Moreover,S∗ is a
maximal intersecting set. It satisfies

|S∗|= (n−1)!−d(n−1)−d(n−2)+1∼ (1−e−1)(n−1)!,

whered(m) is the number of derangements inSm.
We conjecture that, forn≥ 6, an intersecting subset not contained in a coset

of a point stabiliser has size at most(n−1)!−d(n−1)−d(n−2)+1, and that a
set meeting this bound has the formgS∗h for someg,h∈ Sn. Computation using
GAP [6] shows that this is true forn = 6.

A weaker conjecture is that there existsc> 0 such that any intersecting set
S⊆Sn with |S| ≥ (1−c)(n−1)! is contained in a coset of the stabiliser of a point.

Problem 2 Given t ≥ 1, is there a numbern0(t) such that, ifn≥ n0(t), then a
t-intersecting subset ofSn has cardinality at most(n− t)!, and that a set meeting
the bound is a coset of the stabilizer oft points? (A setSof permutations is said
to bet-intersecting if|{x : g(x) = h(x)}| ≥ t for anyg,h∈ S.)

Deza and Frankl [4] showed that the bound(n− t)! holds if there exists a
sharplyt-transitive set of permutations of{1, . . . ,n}. (This is an immediate con-
sequence of Corollary 4.) This holds, for example, ift = 2 andn is a prime power.
Even in this special case, however, our argument for identifying a set meeting the
bound fails, because there is no analogue of Hall’s theorem for sharplyt-transitive
sets witht > 1.
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