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Abstract

Let S, be the symmetric group on the sét= {1,2,.....,n}. A subsetS
of S, is intersectingf for any two permutationg andhin S, g(x) = h(x) for
somex € X (that isg andh agreeon x). M. Deza and P. Frankl [4] proved
that if SC §, is intersecting thefS < (n—1)!. This bound is met by taking
Sto be a coset of a stabilizer of a point. We show that these are the only
largest intersecting sets of permutations.

1 Introduction

The following theorem is proved by M. Deza and P. Frankl in [4]:

Theorem 1 Let S be an intersecting set of permutationgbf .., n}. Then|§ <
(n—1).

Our main result is the following:

Theorem 2 Let n> 2 and SC §, be an intersecting set of permutations such that
|S| = (n—1)!. Then S is a coset of a stabilizer of one point.

Suppose that the s8isatisfying the conditions in Theorem 2 does not contain
the identity element. Then taking a permutatioge S, S = g~!S= {g~th:
h € S} now containa and again satisfies the conditions in Theorem 2. Hence,
assuming € S, it is enough to show th&is a stabilizer of one point.
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For eachg € S,, we say that a poink is fixed by g if g(x) = x. The set
Fix(g) = {x € X : g(x) = x} is thefixed point sebf g. Moreover ifSis a subset
of §,, then FiXS) = {Fix(g) : g€ S} is a family of subsets oX.

Letx e X, g € §. We define théixing of the pointx via g to be the permutation
Ox € § such that

() If g(x) = x, thengy = g;
(i) If g(x) #x, then

X ify=x,
o(y) = { g(x) ify=gt(x),
aly) ify#x,y#g(x).

.....

Inductively we defineyy, xq O be the fixing ofy via Oxy,...xq_1- W€ also say
that a set of permutatiorfSis closed under the fixing operatiahthe following
holds:

foreachx e X andge S gy € S

UsingGAP [6], it is not difficult to establish our theoremiif< 5. So we may
assume that > 6. We now give the outline of our proof: we first show that a set
of permutations$S which satisfies the conditions in Theorem 2 is closed under the
fixing operation (Theorem 8). This implies that F8) is an intersecting family
of subsets (that is F{g) N Fix(h) # 0 for anyg, h € S): this is the statement of
Theorem 10. With these assumptions, we finally show @raust be a stabilizer
of one point in section 5.

2 Preliminary results

A graph isvertex-transitiveif any vertex can be mapped into any other by an
automorphism. A subgraph of a graph is caltdidue if any two of its vertices
are adjacent. Aocliqueis a subgraph in which no two vertices are adjacent.

Theorem 3 Letl" be a vertex transitive graph on n vertices. Suppose that T is a
subset of the vertex set, and that the largest clique contained in T ha3 §ine
Then any clique S if satisfie§S < n/m. Equality implies thatSNT| = |T|/m.



Proof Count pairs(v,g) with ve S g€ Aut(l") andg(v) € T. For eachw ¢

T there are|Aut(l")|/n choices ofg with g(v) = w; so the number of pairs is
IS - |Aut(I")|/n- |T|. On the other hand, for any automorphignwe havelg(S) N

T| <|T|/m(sinceg(S)NT is a clique inT ); so the number of pairs is at most
IT|/m- |Aut(l")|. Thus

S+ |Aut(T)[/n- [T| < [T]/m- |Aut(T)],

o)
1S <n/m.

If equality holds thenjg(S)NT| = |T|/mfor all g € Aut(l'). Takingg =1 gives
theresult.

If T is a coclique, then the largest clique it contains has size 1, so the hypoth-
esis holds witm= |T|. This gives the following:

Corollary 4 Let C be a clique and A a coclique in a vertex-transitive graph on n
vertices. TherC| - |A| < n. Equality implies thalCNA| = 1.

Theorem 5 Let S be an intersecting set of permutations ®f2, .....,n}. Then
IS < (n—1)!. If equality holds, then S contains a row of each Latin square of
order n.

Proof Form agraph on the vertex sgtby joininggandhif g(i) = h(i) for some
pointi. Itis clear that left multiplication by elements &f is an automorphism; so
the graph is vertex-transitive. Letbe the set of rows of a Latin square. Ti#is a
clique and_ is a coclique withL| = n. So, by Proposition 43 <n!/n=(n—1)!,
and equality implie$SNL| = 1. O

We need another definition before stating the next proposition. glist a
permutation irS,. We define

D(g)={we S : w(i)#9(i) Vi=1,...,n}

Proposition 6 Let n> 2k. Then, for any gdg,.....,0k € Sy, we have Dg;) N
D(g2)N.....ND(gk) # 0.



Proof A permutationh € S, belongs taD(g1) ND(g2) N...ND(gk) if and only
if it is a system of distinct representatives for the ggts .., A,, where

A ={X: x#01(i) andx # gz(i) and.....andx # gk(i) }.

Clearly |A| > n—k.

We must check the conditions of Philip Hall's Marriage Theorem.A@) =
UjesAj for 3 € {1,.....,n}. We must show thgA(J)| > |J| for all J. Clearly this
holds if |J| < n—k, so we can suppose thdt > n—k+ 1.

Takex € {1,.....,n}. Thenx & A(J) if and only if, for all j € J, there exists
ie{1,....,k} suchthak=gi(]). Butthere are at mo&tpairs(i, j) with x=g;(j),
since given, the value ofj is determined j = g(l(x)). SincelJ| > n—k+1>
k+ 1, this cannot hold for al] € J. ThusA(J) = {1,.....,n} and|A(J)| = n > |J|.
O

Remark If the permutationsy, .....,gk are pairwise non-intersecting then the
conditionn > 2k can be weakened to> k+ 1. Hence ank x n Latin rectangle

(set of pairwise non-intersecting permutations) can be extended to a Latin square:
this is the result of Marshall Hall (Theorem 7). L@, ...,0« be the rows of a

Latin square of ordek, extended to fix the points+ 1,...,n. Any permutation

in D(g1) N...ND(gk) must have symbols from the set-1,...,n in positions
1,...,k; soifn<2k—1, then no such permutation can exist.

Theorem 7 [M. Hall 1945] Every kx n latin rectangle can be extended to some
nx n latin square.

3 Closure under fixing operation

Letg e S, andA C X. If g(A) = A, then the permutatiog restrictedto A, de-
noted byg|a, is a bijection fromA to itself, and so it is an element in SyA).
However, in generaly|a, being a bijection betweeli\-subsets oK, is apartial
permutation

Theorem 8 Let SC S, be an intersecting set of permutations such thatS and
|S = (n—1)! where n> 6. Then S is closed under the fixing operation.

Proof Assume thaBis not closed under the fixing operation. Then there exists
somex € X andg € Ssuch thag(x) # xandgy ¢ S. Now letg=ajay.....a...8y...an
whereay # X, ay = X. SO



We consider the following cases:

(i) ax=y
Let X\ {x,y} = A. Thenl =1|s andg = g|a = gx|a are elements in Sy(A).
By Proposition 6, there existsc D(1) N D(g) sincen—2 > 4. Now con-
struct a permutatioh on X as follows:

hi) ificA,
hii)=qy if i =X,
X ifi=y.

- -

> SlQa
X< 0 B B< X

L2 c@c
< xEEE X<

Ox

Thengy andh form a 2x n latin rectangle. By Theorem 7, there exists a
nx n latin square containingx andh. But observe that for any rowin
this latin square other thagy andh, we must have € D(gx) "D(h) and
hencer € D(g), that isr andg agree on no points iX. Sor ¢ Ssince

g € SandSis intersecting. Moreoveln andi also agree on no points in
X by construction and thus ¢ Ssincel € SandSis intersecting. Further
Ox € Sby assumption. Hence no rows in this latin square li&.ifBut this
contradicts Theorem 5.

(i): ax=z#y
Let A= X\ {x,z}. Sol = |4 is the identity in SynjA). Now define another
permutatiorg on A as follows:

() = {g(i) iti £y,

g(z) ifi=y.



But |[A| =n—22> 4, and so by Proposition 6, there exist a permutation
h e D(1)ND(g) € SynA). We now construct a permutatidn on X as

follows:
h(i) ificA
h*(i)—{z if i =X,

X fi=z
We further construct a permutatitron X as follows:

h.(i) ifi#y,z
h(i) = {h*(z)_x ifi=y,
h.(y) ifi=z

[ X u y z
g z ay X ay
U ] u y ]
g u ay ay u
h ] by by ]
h, z by by X
h z by X by
Ox X ay z az

We claim thatgy andh form a 2x n latin rectangle. It is readily checked that
gx andh do not agree on all the points X except perhaps om But h(z) =
h.(y) = h(y) andh € D(g) and thereforéa(z) # g(y) = g(2) = gx(2). This proves
the claim. By Theorem 7, there existe & n latin square containingy andh.

Now observe that a rowin this latin square, other thagy andh, if regarded
as permutation, does not agree wilat any point inX. Moreovergy ¢ S by
assumption. So we are left to checki& S. By our construction, ih andi were
to agree on some pointtheni # x, y, z. But this would imply thah andi must
agree on some point. But this is a contradiction simeeD(T). Henceh ¢ S. But
this shows that no rows in this latin square lieSoontradicting Theorem 5.

Hence the theorem is proved.

4 Fixed point sets intersect

Lemma 9 Let g, he S,. Suppose that for some xgyX where @x) = h(x) and
g(y) # h(y). Then g(y) # h(y).



Proof If g(y) = x thengx(y) = 9(x) = h(x) # h(y). If g(y) = x thengy(y) =
gly) #h(y). o

Theorem 10 Let SC §, be an intersecting set of permutations which is closed
under the fixing operation. Thdfix(S) is an intersecting family.

Proof We claim that ifg,h € Sare such thag(x) = h(x) andg(y) # h(y) then
ox(Y) # h(y) andgx € S This follows immediately from Lemma 9 and the fact
thatSis closed under the fixing operation.

Assume that Fi§S) is not intersecting. Then there age# h € S such that
Fix(g) NFix(h) = 0. LetB= {xe€ X :g(x) =h(x)}. SinceSis intersecting,
B = {x1,...,%} for some positive integex.

Letw = gy,..x. BY the first paragraphw(y) # h(y) for everyy € X\ B, and
we S If w(x;) were equal tdn(x;) for somei, we would have; = w(x) = h(x) =
g(xi), where the lastinequality follows from € B. But then Fixg) NFix(h) # 0, a
contradiction. Hence/(x) # h(x) for everyx € X. However, this is a contradiction
withwhe S 0

5 Proof of Theorem 2
We need the following well known results in extremal set theory:

Proposition 11 [LYM Inequality]
Let 4 be an antichain of subsets of an n-set X. Then

S AN (n—|A) < nl.
Ac4a

Proposition 12 [Erdés-Ko-Rado]f {A1, Az, .....,An} is an intersecting family of
k-subsets of an n-set X such that/2, then

m< ("1
—\k-1/
Lemma 13 If 4 is an antichain of subsets of ar-get X such thafA| > k for all
Ac A4, then

z (n—|A)! <nl/kK.
AcA



Proof

'N — AN = nl /K,

2 (A 5

AcAa

by applying the LYM Inequality.

We now give some observations.

LetY C X andG = Sym(X) = S,. We defineG v, to be the set of all permuta-
tionsg € §, such thag(y) =yforally € Y. ClearlyG ) is the stabilizer of the
pointx and|Gy,| = (n—[Y|)!. Now if gis a permutation iswith the fixed point
set FiXg) = F, theng € G(r). Hence we deduce that

S< Y IGel= T (-[F]

FeFix(S) FeFix(S)

But we can do better. Observe thatAfC B for someA,B € Fix(S), then
Ge) € Ga)-
Hence taking

F ={F € Fix(S) : F is a minimal element in the posgix(S), <)},

we now have
S< Y (n—F)L
FeF

Proof of Theorem 2
Assuming € S, we want to show tha8is a stabilizer of a point. We first note that
the theorem is true fon < 5. This can be proved by hand or by computer using
GAP [6]. (We are looking for cliques in the graph used in Theorem 5, which can
be found using the clique finder in tli@AP packageGRAPE.) Letn > 6. By
Theorem 8 and 10, we can now assume that3jiis intersecting. LetfF be the
subset of FixS) as defined above. Thefi now is an intersecting antichain of
subsets oK and it is not empty.

Obviously® ¢ F since is intersecting. Moreover note that if a permutation
g fixes more tham — 2 points, then it must be the identity, and|$ax(g)| #n—1
forall g € S in particular,|F| #n—1forallF € #. Also X ¢ ¥ sincef is an
antichain. Hence we have<d |F| <n—2forallF € ¥.

Suppose that F{6) contains an element of size 1, sgx}. Then by the in-
tersection property of Fig§), all permutations irss fix the pointx. Since|S| =
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(n—1)!, Snow must be the stabilizer of So we can assume thgiix(g)| > 2
for allg € Sand henceF| > 2 forallF € 7.

Moreover we can assume thag .  F = 0, for otherwise, by the definition of
¥ , this implies thaf\rcrixg F # 0, and hence all permutations&fix a common
point and the result again follows.

Having made the above simplifications, our aim is to derive a contradiction by
showing thatS| < (n—1)!. We achieve this by considering the following cases:

Case (I) |F| > 3forallF € ¥, thatis, 7 has no element of size 2.

In this case, we have

S < (n—[F)!
FeF
= Y (=Fp+ Y (n—IF])

FeF FeF
1<[n/2] IF\>[n/2]

/2 | o
< 2 A=l e

by Lemma 13, wherey is the number of elements i having the sizé.
Then

< n—k!+ ————
5= 3 (ko0) 09 G
by the Erdds-Ko-Rado Theorem. So

2 g n!
S < (”‘1)!;3 k-1 " (/2 +1)
n!
= VS

sincey, ’ n/2 ® 11), <e-2<¢g Whereels the natural exponent.

Hence it is enough to show tbtﬁ‘l/ZHl)' < (- ) . But this is true fom > 8.
Forn=6,7, itis readily checked fromi1) that|Sl < (n=1)N

We conclude that iff has no element of size 2, thé¢§ < (n— 1)! for all
n> 6.




Case (Il) F contains an element of size 2.
Let ob={FeF : |F|=2}.

Subcase (i) geg F = 0.

Without loss of generality, we can assume thit 2}, {1,3},{2,3}} C
F2 by the intersection property. L& € F\{{1,2},{1,3},{2,3}}.
SinceF N{2,3} # 0, we have either 2 F or 3¢ F. So this implies
that 1¢ F for otherwise{1,2} C F or {1,3} C F contradicts the an-
tichain property off. But nowFN{1,2} #0 andFN{1,3} #0
implies that{2,3} C F contradicting that7 is an antichain. Hence
F = F2and we deduce the® < S (N—|F|)! =Spcq (n—|F))! =
3(n—2)! < (n—1)! for n> 6.

Subcase (i) ges, F # 0.
Without loss of generality, we can assume tfigt= {{1,i}|2 <i <c}
for somec € {2,3,...,n}.
Now let

D = {FeF\F : 1&F},
E = {FeF\% : 1leF}.

If gis a permutation with its fixed point set K containingF for
someF € D, then FiXg) contains{2,3,...,c} since¥ is intersecting.
So0g € G23,..c))-

If c=n, thenD is empty for otherwis¢2,3,.....,n} CF foranyF € D
would imply that|F| > n— 2 which is a contradiction. Hencg =
F2UE and so alF in F must contain 1, that i$ ). » F # 0. But this
again contradicts our earlier assumption.cSon—1.

If F € £, then{1,x,y} C F for somex,y ¢ {2,3,.....,c} since¥ is an
antichain. Hence there are at m¢/si°) choices for the unordered pair
{x,y}. If gis a permutation with its fixed point SE{g) containingF
for someF € Z, theng € G;1 xy1). We now deduce that

S < > (= [F)'+|G(2s...chl+ Z 1G13um)]
FER BE(X\ 12,...., c})
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< (c—l)(n—2)!+(n—c+l)!+(ngc)(n—B)!.
Assuming 3< c<n—2, we havgS < f(c) wheref(c) =c(n—2)! +
("59) (n—3)!. But ;¢ < n— 2 implies that

(n—c)(n—c—1)
2
sincen—c—1>0. So

<(n—-2)(n—c—-1),

(”;C)(n—s)! < (n—2)(n—c—1)
f(c) < (n=1)!,

and hencéS < (n—1)!forn>6.

If c=n—1, then

S< S (n=IFD! +[G(2a
Feh

foralln> 6.

We can now assume th&b = {{1,2}} forn>6. Then¥ = F, U
B, U By, Wwhere

-1l =(=2)(n=2)! +2<(n-1)!

gerenny

B = {FET\,‘}}Z].GF}
B = {(FEF\%:2€F}

Observe thatB; N B, = 0 since ¥ is an antichain. Also for eadh=
1,2, if F € B;, thenF contains the sefti, a,b} wherea, b € X\ {1,2}.
Hence

S < > =FD+ > IGqrabplt D> IG(2anpl
FER {a,b}e(x\{zl‘z}) {a,b}e(x\{zl*z})

< (n—2)1+2. (”;2) (n—3)!
< (n=2)(n—2)! < (n—1)L.

We conclude that iff has an element of size 2, thi$ < (n—1)! for n> 6.

Hence the result follows.
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6 Open problems

Problem 1 What is the cardinality of the largest intersecting subs&,afhich
is not contained in a coset of the stabilizer of a point, and what is the structure of
such a set of maximum cardinality?

Consider the following set of permutations (for 4):
S'={ge S :9(1) =1,9(i) =i for somei > 2} U{t},

wheret is the transposition interchanging 1 and 2. TIs&is clearly intersecting
and is not contained in a coset of the stabilizer of a point. Mored&ers a
maximal intersecting set. It satisfies

IS|=(n-1)!—d(n-1)—d(n—-2)+1~ (1—e H(n—-1),

whered(m) is the number of derangementsSg.

We conjecture that, fan > 6, an intersecting subset not contained in a coset
of a point stabiliser has size at m@st— 1)! —d(n—1) —d(n—2)+1, and that a
set meeting this bound has the fog8'h for someg,h € S,. Computation using
GAP [6] shows that this is true fan = 6.

A weaker conjecture is that there exists- 0 such that any intersecting set
SC Sywith |§ > (1—c)(n—1)!is contained in a coset of the stabiliser of a point.

Problem 2 Givent > 1, is there a numbemp(t) such that, ifn > ng(t), then a
t-intersecting subset &, has cardinality at mogin—t)!, and that a set meeting
the bound is a coset of the stabilizertgfoints? (A seS of permutations is said
to bet-intersecting ifl{x: g(x) = h(x)}| >t for anyg,h € S)

Deza and Frankl [4] showed that the boufrd—t)! holds if there exists a
sharplyt-transitive set of permutations é1i,...,n}. (This is an immediate con-
sequence of Corollary 4.) This holds, for examplé =f2 andnis a prime power.
Even in this special case, however, our argument for identifying a set meeting the
bound fails, because there is no analogue of Hall's theorem for sHhatmaigsitive
sets witht > 1.
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