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ABSTRACT. A relationalstructureAsatisfiesthe
���

n � k � propertyif when-
everthevertex setof A is partitionedinto n nonemptyparts,thesubstruc-
tureinducedby theunionof somek of thepartsis isomorphicto A � The���

2 � 1� propertyis just the pigeonholeproperty,
��� � , introducedby P.

Cameronin [5], andstudiedin [2] and[3]. We classify the countable
graphs,tournaments,andorientedgraphswith the

���
3 � 2� property.

1. INTRODUCTION

Vertex partition propertiesof relationalstructureshave beenstudiedby
numerousauthors;seefor example,[2], [3], [5], [7], [8], [10], [11] and
[12]. Onesuchpropertythat hasreceived someattentionrecentlyis the
pigeonholeproperty, �	��
 : a relationalstructureA has �	��
 if for every par-
tition of thevertex setof A into two nonemptyparts,thenthesubstructure
inducedby someoneof thepartsis isomorphicto A. Thispropertywasin-
troducedby P. Cameronin [5], who in Proposition3.4of [6] classifiedthe
countablegraphswith �	��
 ; remarkably, thereareonly four: K1, Kℵ0 � Kℵ0 �
and R, the countablyinfinite randomgraph. The countabletournaments
with �	��
 wereclassifiedin [3]; in this case,thereareℵ1 many suchtour-
naments:thecountableordinalpowersof ω andtheir reversals,andT∞, the
countablyinfinite randomtournament.(As notedin [3], the classification
of thecountableorientedgraphswith �	�
 is open.Theproblemreducesto
classifyingorientationsof R with ����
 .)

A naturalgeneralizationof �	��
 is to allow for partitionsof thevertex set
into n nonemptyparts,andinsist that for some1 � k � n, thesubstructure
inducedby the union of somek of the partsis isomorphicto the original
structure.We call this propertythe ��� n � k 
 property. (Then �	�
 becomes
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the ��� 2 � 1
 property.) This propertywasdiscoveredin thesummerof 2000
by P. Cameron,andis similar to thepropertyof p-indivisibility (see[12]).

At aconferencein thesummerof 2000in honourof Fräısśe’s80thbirth-
day, P. Cameronaskedwhichcountablegraphshave ��� 3 � 2
�� (SeealsoProb-
lem26of P. Cameron’sproblemwebpage:
http://www.maths.qmw.ac.uk/� pjc/oldprob.html.) In this article,we givea
completeanswerto this problem(seeSection2), andfurthermore,we give
acompleteclassificationof all orientedgraphswith ��� 3 � 2
 .

In Section2wegivetheclassificationof thecountablegraphswith ��� 3 � 2
 .
In contrastto the casefor the ��� 2 � 1
 property, Theorem1 implies that R
doesnot satisfythe ��� n � n � 1
 propertyif n � 2. In Section3 we give the
classificationof thecountablelinearorders(thatis, transitive tournaments)
with ��� 3 � 2
 . Theclassificationbreaksdown into two cases:whenthereis
afirst or lastelement(seeTheorems3 and4) or whenthereis neitherafirst
nor lastelement(seeTheorem5). In Section4 weprovein Theorems6 and
7 thatacountable��� 3 � 2
 tournamentmustbeascattered linearorder(that
is, it doesnot containa densesuborder).This result,alongwith theresults
of Section3, give a completeclassificationof the countabletournaments
with ��� 3 � 2
 . Thecaseof countableorientedgraphswith ��� 3 � 2
 is covered
in Section5, which makesuseof the resultsfrom all of the previous sec-
tions. SeeTheorem8. We closewith a brief sectioncontainingsomeopen
problems.

Unlessotherwisestated,all structures(thatis, graphsor orientedgraphs)
are countable,nonempty, anddo not have loopsor multiple edges. If A
is a structure,V � A
 is the setof verticesof A � E � A
 is the setof edgesof
A if A is a graph,andthe arcs(or directededges)of A if A is an oriented
graph.If B � V � A
 , we write A � B for thesubstructureinducedon B; if C
is aninducedsubstructureof A wewrite C � A � We write A �� B if A andB
areisomorphic.If A is a structureandX � V � A
 , thenthestructureA � X
resultsby deletingX andall edgesor arcsincidentwith a vertex in X � If
X ��� x � thenwesimplywrite A � X � A � x. If G is agraphandx � V � G
 ,
thenthe neighboursetof x, denotedN � x
 , is the setof verticesjoined to
x; the elementsof N � x
 arethe neighbours of x. The co-neighboursetof
x, denotedNc � x
 , is thesetof verticesthatareneitherjoined nor equalto
x; the elementsof Nc � x
 arethe non-neighbours of x. If O is an oriented
graph,thegraphof O is thegraphwith verticesV � O
 andwith edgesetthe
symmetricclosureof E � O
 .

ω is thesetof naturalnumbers(consideredasanordinal),andℵ0 is the
cardinalityof ω � The properclassof ordinalsis denotedON � The order-
typeof therationalsis η. Weassumefamiliarity with basicresultson linear
orders. We refer the readerto Rosenstein[9] throughoutthe article for
specificresultson linearorders.
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Theclique(or completegraph)of cardinalityα is denotedKα � Thecom-
plementof a graphG is denotedG; theconverseof anorientedgraphO is
denotedO� (if O is an order, we saythat O� is the reversal of O). Given
two graphsG � H � the join of G andH � written G  H � is thegraphformed
by addingall edgesbetweenverticesof G andH; the disjoint union of G
andH is written G ! H � If α is a cardinal,thegraphαG consistsof α dis-
joint copiesof G. The(linear)sumof (linear)orders � Li : i � I 
 is denoted
∑i " I Li ; thesumof two ordersL andM is denotedL # M.

2. THE GRAPHS WITH ��� 3 � 2

In this section,thegraphswith ��� 3 � 2
 areclassified.In orderto accom-

plish this,we mustfirst introducesometerminology. Recallfrom [1] thata
graphis n-existentiallyclosedor n-e.c. if for eachn-subsetSof vertices,and
eachsubsetT of S(possiblyempty),thereis avertex not in Sjoinedto each
vertex of T andno vertex of S$ T � R is theuniquegraphthatis n-e.c.for all
n % 1. An extensionof asubsetX � V � G
 is avertex znot in X joinedto the
verticesof X in somefixedway; we saythatz extendsX � X is r-extendable
if onecanextendX in G in r differentways. If X is 2 &X & -extendable,we
saythatX is extendable. Eachn-subsetof V � G
 is extendableif andonly
if G is n-e.c. Our first stepin theclassificationof the ��� 3 � 2
 graphsis the
following theorem.

Theorem 1. For each n � 2, there is no � n � 1
 -e.c. ��� n � n � 1
 graph.

Proof. Supposethat G is an � n � 1
 -e.c. ��� n � n � 1
 graph. Fix a setof n
verticesof G, X �'� a1 � �(�(� an � . PartitionV � G
 into partsA1 � �(�(� An sothat

Ai
�'� ai �*) Si �

whereSi is the setof verticesy joined to every a j , where j � � 1 � �(�+� � n �,$� i � i � 1 � , andy is not joinednorequalto ai - 1 (wheretheindicesareordered
cyclically modn). EachsetSi is nonemptyby hypothesis.Theremaining
verticesof G belongto A1.

Fix i � � 1 � �(�(� � n � . If we considerthe graphH � G �.� V � G
/$ Ai 
 , then
thereis novertex in H thatis joinedto theverticesin X $ � ai � ai - 1 � , andnot
joinednorequalto ai - 1. ThiscontradictsthatG is � n � 1
 -e.c.

Observe that Theorem1 implies, perhapssurprisingly, that the random
graphR doesnot have ��� n � n � 1
 , whenn % 3.

A vertex x � V � G
 is isolated if it hasno neighbours,anduniversal if
it is isolatedin G. A pair of vertices � x � y � of G is an interval if for every
z � V � G
0$ � x � y � , x is joinedto z if andonly if y is joinedto z; it is ananti-
interval if for every z � V � G
1$ � x � y � , x is joinedto z if andonly if y is not
joinedto z. In addition,if xy is anedgeof G, wesayis eithera full interval
or full anti-interval.
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Theorem 2. Thecountable ��� 3 � 2
 graphsare the one-vertex graph, the
two-vertex andℵ0-vertex cliquesandtheir complements,andthegraphs

K1 ! Kℵ0 � K1  Kℵ0 � Kℵ0  Kℵ0 � Kℵ0 ! Kℵ0 � Kℵ0 ! Kℵ0 � Kℵ0  Kℵ0 �
Proof. We leave theproof of sufficiency asanexercisefor the reader. For
necessity, let G bean infinite ��� 3 � 2
 graph.We mayassumethatG is not
2-e.c.,by Theorem1. Wenotefirst thatif G hasexactlyoneisolatedvertex
x, thenG � x is a ��� 2 � 1
 graph.R ! K1 doesnot have ��� 3 � 2
 . To seethis,
fix y � V � R
 , considerthepartition � x � y � � N � y
 � Nc � y
/2 V � R
 , andusethe
factsthatR � y �� R, andthatR hasno universalor isolatedvertex. Hence,
G � x mustbeKℵ0, andthecharacterizationholds.Thecaseif G hassome
uniqueuniversalvertex is similar.

Let usnow prove thatG hasan interval. Let V � V � G
3� If G hasmore
thanoneisolated(or universal)vertex, thenit certainlyhasaninterval (any
two isolatedverticesor any two universalvertices). So we can assume,
without lossof generality, thatG hasno isolatednoruniversalvertices.

By Theorem1, G hasa non-extendablepair x � y of vertices. Partition
V $ � x � y � into four subsets

S00 � S01 � S10 � S11 �
whereS00 containstheverticesnot joined to x andy, S01 containsthever-
ticesnot joinedto x andjoinedto y, S10 containstheverticesjoinedto x but
noty� andS11 containstheverticesjoinedto bothx andy�

Supposefirst that � x � y � is 3-extendable.
Case1. S11

� /0. We partitionV into � x �4) S01, � y �4) S10 andS00. Since
G is a ��� 3 � 2
 graph,the subgraphinducedby the union of two of these
subsetsis isomorphicto G. Two casesgive isolatedvertices,andwe must
haveG �� G �5� � x � y �6) S01 ) S10
 in which � x � y � is 2-extendable;therefore,
thereis a2-extendablepair of distinctverticesin G.

Case2. S10
� /0. WepartitionV into � x �.) S00, � y �.) S11 andS01. SinceG

is a ��� 3 � 2
 graph,thesubgraphinducedby theunionof twoof thesesubsets
is isomorphicto G. Two casesgiveanisolatedor auniversalvertex, andwe
musthaveG �� G �/� � x � y �4) S00 ) S11
 in which � x � y � is 2-extendable.

Theothercasesareequivalent.If now � x � y � is1-extendable,weconclude
thatG hasa universalor anisolatedvertex, or that � x � y � is aninterval.

Finally considerthe casewhen there exists a pair � x � y � which is 2-
extendableand,to obtaina contradiction,assumethat thereis no interval.
The pair � x � y � must then be an anti-interval. By taking complementsif
necessary, we canassumethat � x � y � is a full anti-interval. Enumeratenow
thefull anti-intervalsof G as

� x1 � y1 � � � x2 � y2 � � �(�(�
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If two full anti-intervalsintersect,thenaninterval is created,soweassume
thatall thesepairsaredisjoint.

Denoteby X theunionof thexi ’s,byY theunionof theyi ’s andby S the
setV $7� X ) Y 
 . We show first thatS is empty. Otherwise,by considering
thepartitionX � Y� Sof G, we deducethatG is isomorphicto its restriction
on,say, X ) S(andnotonX ) Y, sincein thiscase,everyvertex of G would
becontainedin a full anti-interval). Thecrucial fact is now thatevery full
anti-interval of G restrictedon X ) S is alsoa full anti-interval of G, and
this is impossible.Therefore,S � /0; in particular, the full anti-intervalsof
G form a perfectmatching(that is, a setof pairwisenon-incidentedges).
Now thepartition

� x1 � � � y1 � � V $ � x1 � y1 �
givesacontradiction.

ThusG hasaninterval, andby takingcomplementsif necessary, we can
assumethatthereexistsa full interval � x � y � . Therelation

x � y if andonly if � x � y � is a full interval,

is anequivalencerelation. Namethepartitionof G into its � -equivalence
classesa full partition, with its classesnamedfull classes. Notethatthefull
classesarecliques.It is routineto checkthatif aninducedsubgraphH of G
hasat leastonevertex in eachfull classof G, thenthefull partitionof H is
therestrictionof thefull partitionof G. Suppose,to obtaina contradiction,
thata full class� x � y � of G containsexactly two vertices.Thenthepartition� x � � � y � � V $ � x � y � impliesthatsomefull classesof G aresingletons.Now
enumeratethefull classesof G whichhaveexactly two elements

� x1 � y1 � � � x2 � y2 � � �(�(�+�
ThepartitionX � Y� S� whereX is theunionof thexi ’s,Y is theunionof the
yi ’s,andS is thesetV $8� X ) Y 
 � givesacontradiction.

If onefull classof G is finite andhasexactly threeverticesx � y� z, thenthe
partition

� x � � � y � � V $ � x � y �
givesa full classwith two elements.More generallyonecanprove that
thereare no full classeswith exactly n elements,wheren % 3. We may
thereforesupposethatevery full classhas1 or ℵ0 many vertices.If there
existsat leasttwo infinite full classesX � Y thenG �� G �9� X ) Y 
 . To seethis
fix � x � x:;��� X � � y� y:<�� Y� andconsiderthepartition

V $=� X ) Y 
 � � x � x: �*) Y $ � y� y: � � � y� y: �*) X $ � x � x: �>�
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of V � G
 . In thiscaseG or G is Kℵ0 ! Kℵ0: sinceX andY arefull classes,if
onevertex of X is joinedto avertex of Y, theneveryvertex of X is joinedto
everyvertex of Y. We thereforehaveG is oneof Kℵ0  Kℵ0 or Kℵ0 ! Kℵ0 �

Assumethat G hasexactly one infinite full classC. By a partition ar-
gument,we canassumethatC is joinedor not joined to all theverticesof
V $ C. To seethis, let W bethesetof verticesnot in C. Eachvertex in W
is either joined to eachvertex of C or to no vertex of C. Let A be the set
of verticesin W joinedto eachvertex of C, andlet B bethesetof vertices
in W joined to no vertex of C. Assumethat both A andB arenonempty.
ConsiderthepartitionA � B � C of V. If G �.� C ) X 
 �� G, whereX � � A � B �
thenweobtainedthedesiredconclusion.SupposethatG �� G �/� A ) B
 via
an isomorphismf . Then f � C 
 � C: is an infinite full classin H � G � W.
If C: is containedentirely in A or B, thenC: is alsoa full classin G, which
givesa contradiction.Hence,C: 2 X ?�'@ , whereX � � A � B � . Thenoneof
C: 2 A or C: 2 B is infinite; supposethatC: 2 A is infinite (theothercaseis
similar). Thenit is straightforwardto checkthatany pair � x � y � of distinct
verticesin C: 2 A is a full interval in G, which givesacontradiction.

SupposethatG � C ! W. Fix apartitionA � B of W. As wehavediscussed
above, G ?�� G �*� A ) B
 . Hence,by the ��� 3 � 2
 property, we must have
G �� G �5� C ) X 
 , whereX � � A � B � , via anisomorphismf . It is nothardto
seethat f � C 
 � C. Fromthis it follows thatH � G � W musthave ��� 2 � 1
 .
Theonly casethatdoesnot give a contradictionis for H to beeitherK1 or
Kℵ0.

The final caseis when G � C  W. By taking complements,we may
thereforeassumethatG hasinfinitely many isolatedvertices,andG � I ! W
whereI is thesetof isolatedverticesof G. (In fact,G � I ! Wc. For easeof
notation,wewrite W ratherthanWc.)

If onevertex of W is universalin W, the conclusionfollows: partition
V � G
 into thesetU of universalverticesin W, thesetV � W 
0$ U , andV � I 
 .
ThenG �� G �5� U ) V � I 
(
 andsoG �� Kℵ0 ! Kℵ0.

Wethereforesupposefor acontradictionthatnovertex of W is universal.
We prove first thatG hassomeverticeswith degree1. Supposethat there
existsx � V � W 
 suchthatW � x is isomorphicto G via anisomorphismf .
Then f � I 
 is a setof isolatedverticesin W � x. Sinceno vertex is isolated
in W (by choiceof I ), it followsthateachvertex of f � I 
 is of degree1 in G.

Now supposethatthereis nox � V � G
 sothatW � x is isomorphicto G.
Fix x � V � W 
 . Then,by hypothesis,A � N � x
8A V � W 
 andB � Nc � x
B2
V � W 
 arenonempty, with CA CD% 2.

Fix a � A. Considerthepartition

V � I 
0) � x � � A $ � a � � B ) � a �
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of V � G
 . If V � I 
5) � x � is deleted,thenwe areleft with W � x, which by
hypothesis,is not isomorphicto G. Now supposethat G �� G �4� V � I 
E)� x �F) A $ � a �G
 via anisomorphismf . Then f � I 
 � I and f � W 
 � G �9� � x �H)
A $ � a �G
 . But x is universalin G �E� � x �,) A $ � a �G
 which would imply the
contradictionthatW alsohasauniversalvertex. Hence,

G �� G �/� V � I 
1) � x �4) B ) � a �G
 � H;

but x hasdegree1 in H, andsosomevertex of G hasdegree1.
Therefore,G hassomeverticesof degree1, andsomeverticeswith de-

gree0. Definethereductionof a graphG to bethegraphG: obtainedfrom
G by deletingtheverticesof G with degree0 and1. (NotethatG: maybe
empty.)

We may iteratethe numberof reductions(possiblytaking transfinitely
many reductions)until either the empty graphis obtained,or we obtain
a graphwith no vertex of degree0 or 1. In the latter case,the induced
subgraphobtainedis unique. We call this unique inducedsubgraphthe
nucleusof G, andis denotedNu � G
 . We leave it asan exerciseto check
thattheverticesnot in Nu � G
 inducea forest(thatis, agraphwith no finite
circuits).

Supposefirst thatNu � G
 is empty. ThenG is a forest,with someisolated
vertices. If all verticesare isolated,we are done. If not all verticesare
isolated,let X be the setof non-isolatedvertices. SinceH � G � X is 2-
colourablewith no isolatedvertex, we maypartitionH into two nonempty
independentsetsA � B which correspondto the two colours. The partition,
A � B � I of V � G
 givesa contradiction: deletingeither A or B leaves only
isolatedvertices,anddeletingV � G
1$8� A ) B
 leavesno isolatedvertices.

Supposenow thatNu � G
 is not empty. Either thereis anedgebetween
Nu � G
 andG $ V � Nu � G
(
 or not. Supposethatthereis no suchedge.Then
G is thedisjoint unionof Nu � G
 anda forestF. Fix some2-colouringof F
into nonemptyindependentsetsA andB. Considerthepartition

V � Nu � G
(
 � A � B �
DeletingV � Nu � G
(
 leavesa graphwith anemptynucleus;deletingA or B
resultsin agraphwith no vertex of degree1.

The only remainingcaseis that Nu � G
 is not emptyandthereis some
edgebetweena vertex of Nu � G
 andsomevertex of V � G
5$ V � Nu � G
(
 . In
this casewe denoteby O thesetof verticesof V � G
5$ V � Nu � G
(
 joined to
somevertex of Nu � G
 . Thepartition

V � I 
 � O � V � G
0$=� O ) V � I 
(

givesa contradiction. To seethis, note that deletingV � I 
 leavesa graph
with no isolatedvertex; deletingO leavesa graphwith thesamenucleusas
G but with novertex outsidethenucleusjoinedto thenucleus;anddeleting
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V � G
>$�� O ) V � I 
(
 leavesa forestwhichaswehavedeterminedabove,must
beacomplementof aclique.This contradictioncompletestheproof.

3. L INEAR ORDERS WITH ��� 3 � 2

We divide the classificationof the ��� 3 � 2
 linear ordersinto casesde-

pendingonwhetherthereareendpoints.Wewill makeuseof thefollowing
propertyof orientedgraphs.

Principle of Directional Duality: For eachpropertyof orientedgraphs,
thereis acorrespondingpropertyobtainedby replacingeveryconcept
by its converse.

Sincethe only finite orientedgraphswith ��� 3 � 2
 are the oneand two
elementlinearorders,we will consideronly infinite linearorders.

3.1. The case when there is a source or sink. We first considerthecase
of thewell-orderswith ��� 3 � 2
3�
Theorem 3. Thecountableordinalswith ��� 3 � 2
 are

L � ωαm # ωβn �
where α � β � m� n arecountableordinalsand0 � m # n � 2 � α # β � 0 �
Proof. SupposethatL is anordinal thatsatisfies��� 3 � 2
3� By Cantor’s nor-
mal form theorem(seeTheorem3.46of [9]), thereareordinalsα1 �JI(I+IK�
αk for k � ω � � 0 � � andn1 � �(�+� � nk � ω � � 0 � suchthat

L � ωα1n1 #LI(I(IM# ωαknk �
By the ��� 3 � 2
 property, k � 2 � Otherwise,considerthepartition

ωα1n1 � ωα2n2 � ωα3n3 #LI(I(IM# ωαknk

to obtainacontradiction.In asimilar fashion,we haven1 # n2 � 2 �
For sufficiency, considerthe casewhenm � n � 1 (the othercasesare

similar). Supposethat the verticesof L � ωα # ωβ are partitionedinto
A � B � C � Define Xi

� X 2 ωi whereX � � A � B � C � and i � � α � β �>� By the
��� 2 � 1
 property, there are Y� Z � � A � B � C � so that the suborderson Yα
andZβ areisomorphicto ωα andωβ � respectively. If Y � Z � choosesome
W � � A � B � C �G$ � Y �>� Now ωi � ωi �>� Yi ) Wi 
6� ωi sothatωi �� ωi �>� Yi ) Wi 
 .
(Weuseherethepropertythatif two ordinalsaremutuallyembeddablethey
areisomorphic;seeTheorem3.14of [9]). Hence,L �K� Y ) W 
 �� L � If Y ?� Z �
by asimilar argument,L �5� Y ) Z 
 �� L �
Remark 1. Since ��� 3 � 2
 is preservedby takingreversals,Theorem3 clas-
sifiesthereversalsof ordinalswith ��� 3 � 2
 .
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To completethe classificationof the ��� 3 � 2
 linear orderswith an end-
pointweprove thefollowing theorem.

Theorem 4. Thecountablelinear orders L with ��� 3 � 2
 with an endpoint
andwith thepropertythatL � L � ?� ON, are

ωα #N� ωβ 
 � �
where α � β arenonzero countableordinalssatisfyingα # β � 0 �
Proof. Theargumentfor sufficiency usesthefactsthatωα and � ωβ 
 � satisfy
��� 2 � 1
 . Sincethedetailsaresimilar to theproofof sufficiency of Theorem
3, they areomitted.

For necessity, supposethatL satisfiesthehypothesesof thetheorem.By
theprincipleof directionalduality, wecanassume,without lossof general-
ity, thatL hasafirst element0 � By hypothesis,wemayassumethatL is not
awell-order.

Wewrite L � � A � C 
 , whereL � A # C andA is themaximalinitial section
of L which is well-ordered.Since0 � A, A is nonempty. It is nothardto see
that if L is isomorphicto anorderL : � � A: � C: 
 , thenA is isomorphicto A:
andC is isomorphicto C: .

WeclaimthatbothA andC satisfy ��� 2 � 1
 . Oncetheclaimis proven,the
proof of the theoremwill follow. Partition A into nonemptypartsA1 and
A2, andpartitionC into nonemptypartsC1 andC2. Assume,for instance,
for ��� 3 � 2
 , thatL �� L �1� A1 ) C 
 andL �� L �1� A ) C1 
 . SinceL �0� A1 ) C 
 �
� A1 � C 
 , we have A1

�� A andso A satisfies��� 2 � 1
 . Supposefor property
��� 3 � 2
 thatL �1� A ) C1 
 �� L. SetL �1� A ) C1 
 � � A: � C:O
 , notingthatA � A: .
Since � A � C 
 �� � A: � C: 
 , we have A � A: , andthusC �� C: � C1. Thus,C
satisfies��� 2 � 1
 .
3.2. The linear orders with ��� 3 � 2
 without endpoints. In thecasewhen
therearenoendpointswehave thefollowing classificationof thecountable
��� 3 � 2
 linearorders.

Theorem 5. Thecountable��� 3 � 2
 linear orderswithoutendpointsare the
following linear orders and their converses: � ωα 
(�H# ωβ, where α � β are
nonzero ordinals,and ωγ I ω �E# ωδ for someordinals satisfying0 � γ and
0 � δ.

Proof. Let L bea ��� 3 � 2
 linearorder. Wedefinetheequivalencerelation P
on L: x P y if theinterval Q x � yR of L is finite. (For moreon this equivalence
relation,seeSection4.2 of [9].) We first prove that every P -classof L is
infinite. To seethis, notethat ��� 3 � 2
 implies thatevery finite P -classis a
singleton.Indeed,if thereexistsafinite P -classwith exactlyn elements,for
somen � 1, thenpartitionV � V � L 
 into A � B � C, whereA containsexactly
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oneelementin all the P -classeswith exactly n elements,B containsthe
otherelementsin the P -classeswith exactlyn elements,andC containsthe
elementsnot in A ) B. This partition eitheryields singleton P -classes,or
forceseach P -classto have exactly n elements;a suitablepartitionproves
thelattercaseto beimpossible.

Denoteby S the setof singleton P -classes.Supposefor contradiction
that thereexists two elementsx andy in S. Without lossof generality, we
mayassumethatx � y. We write L � A # x # B # y # C. Choosea � V � A

andc � V � C 
 . Weclaim thatthepartition

� V � A
0$ � a �G
1) � x � � � V � C 
1$ � c �G
1) � y � � V � B
0) � a �4) � c �
violates ��� 3 � 2
 . To seethis, note that the only casethat doesnot have
endpointsis L �� L � V � L 
9$=� V � B
9) � a �*) � c �G
 . But thiscaseis alsoimpos-
sible sincex � y is now a P -class. If S hasexactly oneelementx, we may
write L � A # x # B, with A andB nonempty(otherwise,L would have an
endpoint)into A � � x � � B to obtainacontradiction.

Therefore,every P -classis infinite. Wenext provethatfor everypartition
into two summandsL � A # B, eitherA is the reverseof an ordinal or B
is an ordinal. Assumethat this is not the case,andsomefixed partition
A # B doesnot satisfythis. Thereexistsan initial sectionSA in A with no
maximumandafinal sectionSB in B withoutminimum.Wefirst provethat
we cansupposethat L � SA # C # SB with C nonempty. On the contrary,
assumethatL � SA # SB andfix avertex a � SA andb � SB. We partitionL
into

V � X 
 � � a �4) V � Y 
0) � b � � V � Z 
 �
whereL � X # a # Y # b # Z. ThesetsV � X 
 � V � Z 
 arenonemptyto avoid
endpoints. To avoid endpointsand to satisfy ��� 3 � 2
 , we musthave L ��
L �*� V � X 
B) V � Z 
(
 � L : . SinceL � SA # SB, we canfind in L : an initial
sectionS:A without a maximumanda final sectionS:B without a minimum
so that L : � S:A # S:B. If S:A � X and S:B � Z then we may chooseC �
a # Y # b. Supposenow thatS:A S X. (ThecasewhenX S S:A is similarand
soomitted.) Let S: � S:A andS:T: � SB. ThenS: is an initial sectionwith no
maximumandS:U: is a final sectionwith no minimum,andwe maychoose
(thenonemptyset)C to betheverticesgreaterthanS: but lessthanS:T: .

Thus,thereexistsa partitionSA # C # SB with C nonempty. Fix a � SA,
b � SB andc � C. By consideringthefollowing partitionfor ��� 3 � 2


� SA $ � a �G
0) � c � � � a �*)V� V � C 
0$ � c �G
0) � b � � SB $ � b � �
we obtaineitheranendpoint,or c asan P -class.Eachcasegivesa contra-
diction.

WemaythereforeassumethatL � A # O whereA is a linearorderandO
is anordinal(which is a limit ordinalsinceL hasno greatestelement).
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Case1. SupposethatL � � O: 
 � # A: , for someordinalO: andsomelinear
orderA: .

ThenO: is a limit ordinal(sinceL hasnoleastelement),andL � � O: 
 � #
A:T: # O, whereA:U: is a linearorder. If A:T: is nonempty, wemaythenconsider
thepartition � O: 
 � $ � x � � A:T: ) � x � y � � O $ � y � , wherex �W� O: 
 � andy � O, to
reduceto thecasewhenA:T: � /0. Thechoiceof � O: 
 � andO areuniquein
this notation,andthus � O: 
 � andO have ��� 2 � 1
 . So L � � ωα 
 � # ωβ, for
someordinalsα � β � 0.

Case2. No initial sectionof L is thereverseof anordinal,andsoevery
properfinal sectionof L mustbeanordinal.

Write L � A # B, whereB is theleastnon-zeroordinalwith thisproperty.
It is straightforward to checkthat B has ��� 2 � 1
 , and is thereforeinfinite
(sinceL hasnoendpoints).ThelinearorderB, which is acountableordinal
powerof ω, hasthepropertythatO # B � B whenO is anordinalsatisfying
O � B.

Case2.1.Supposethatthereis adecompositionL � A # C # B, whereC
is anordinalsatisfyingC � B.

Hence,thereis anordinalC: sothatC � B # C: sothatL � X # B1 # C: #
B2, whereX is somelinearorder, andB1 � B2

�� B. Partition L into

V � X 
0) V � B1 
 � V � C: 
0) � x � � V � B2 
0$ � x � �
where x � V � B2 
 . Deleting V � X 
.) V � B1 
 leaves an ordinal. Deleting
V � B2 
F$ � x � leaves a last element. Therefore,L �� L �X� V � X 
E) V � B1 
F)
V � B2 � x
(
 . SinceB is ��� 2 � 1
 , B2 � x �� B2, soL �� X # B # B.

Applying this argumentinductively giveseither that L �� Z # B I ω � or
L �� Z # B I n, whereZ hasno properfinal sectionequalto B andn % 1.
This lastcasegivesdirectlyby ��� 3 � 2
 thatn � 1, soL �� Z # B. Recallthat
L �� X # B1 # B2, whereB1 � B2

�� B. SupposethatZ # B is isomorphicto X #
B1 # B2 via anisomorphismf . By thechoiceof Z, f � B
 properlycontains
B2. SinceB # B � B, f � B
 cannotproperlycontainB1 # B2. Therefore,there
arenon-zeroordinalsα � β sothatB1

� α # β and f � B
 � β # B2. It follows
that β ?�� B, andso by ��� 2 � 1
 , α �� B. But then f � Z 
 �� X # α �� X # B,
whichcontradictsthatZ hasno final sectionequalto B.

Thus,L � Z # B I ω � , whereZ hasno final sectionequalto B. Fix z �
V � Z 
 . Thenthefinal section� x : x % z� containsω � whichis acontradiction
sincewearein Case2. Hence,L � B I ω � � andsoL hasthedesiredstructure.

Case2.2.EverypartitionL � A # C # B satisfiesC � B, andthus,C # B �
B.

Thus,every properfinal sectionof L is isomorphicto B, whereB � ωδ

for somenonzeroordinal δ. An elementx of L is a bad cut if, writing
L � L1 # x # R, theorderL1 hasthepropertythatall its properfinal sections
are isomorphic. If x is a bad cut, then we claim that every properfinal
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sectionof L1 is isomorphicto ωγ, for somecountableγ � ON. To seethis,
fix aproperfinal sectionSof L1. SinceS # x # R is afinal sectionof L, S is
anordinal. If S � α # β, whereβ ?� 0, thenβ is a properfinal sectionof L1
andsoequalsS. TheordinalS is thereforeadditively indecomposableand
theclaimfollows. (SeeExercise10.4(6) of [9].) Wesaythatthetypeof the
badcut x is γ.

If x � y arebadcuts,andx � y in L, thetypeof x is certainlystrictly smaller
thanthetypeof y; andfrom this,if thereis abadcut,thereexistsaminimum
badcutb. In otherwords,for everyy � b, writing L � Ly # y # R, theorder
Ly canbepartitionedin auniquewayinto Ly

� X # Y, whereY is anordinal
andeveryproperfinal sectionof X is greateror equaltoY. (Notethatevery
properfinal sectionof X is a suborderof a properfinal sectionof L, andso
is anordinal.)

If thereareno badcuts,choosey to be any elementof L. Otherwise,
choosey � b. We decomposeL asfollows. Let L � L1 # y # R andL1

�
L2 # A1, whereA1

�� ωα1, is theuniquepartitionof L1 suchthateveryproper
final sectionof L2 hasordinaltypegreateror equalto ωα1. Moregenerally,
wedefineLi

� Li Y 1 # Ai , whereAi
�� ωαi , astheuniquepartitionof Li such

thatevery properfinal sectionof Li Y 1 hasordinal typeat leastωαi . By this
decomposition,wemaywrite

L � X # ∑
i " ω Z ω

αi

with α0
� δ, theorder-typeof B. Sinceeveryproperfinal sectionof L is an

ordinal,X is empty.
Theincreasingordinalsequence

α1 � α2 � α3 � α4 � �+�(�
is denotedby s� y
 . If thereis a badcut andy� y: � b, or thereis no bad
cut andy� y: arearbitrary, thenthesequencess� y
 ands� y: 
 areequalafter
somefinite numberof terms.To seethis,supposethaty:0� y andy: belong
to Ai in thedecompositionof L which startsat y. Thenthesequences� y: 
 ,
up to its first termsis equalto αi Y 1 � αi Y 2 � �(�(� . So two decompositionsof
L � ∑i " ω Z ωαi , whereαi � α j , for every 0 � i � j, mustbethesameup to
afinite numberof terms.

If in additionL is ��� 3 � 2
 , we claim that for every decomposition,the
sequence� αi 
 is constantafter a finite numberof terms. Otherwise,the
partitionO � E � ωα0, whereO is theunionof theωαi with i odd,andE is the
unionof theωαi , with i � 0 even,violates��� 3 � 2
 . To seethis,notefirst that
sincewe arein Case2 � 2, we cannot have L �� L �E� O ) E 
 . Now suppose
thatL �� L �E� O ) ωα0 
 � L : (theothercaseis similar). L : givesrise to the
sequence

β � � βi 
 � � α0 � α1 � α3 � �(�(�[
3�
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Let α be the sequence� αi : i � ω 
 . By the last sentenceof the previous
paragraph,we musthave thereis a k0 � ω sothat for k � k0, βk

� αk. But
thenweobtaintheequalities

α \ 2k0 - 1]<Y 2 j
� αk0 Y j �

where j � 0. But sinceα is increasing,theseequalitiesimply that α is
constantafterαk0.

Hence,
L � ωγ I ω � # ωαk0 #L�(�(�M# ωα1 # ωα0 �

for someγ suchthat0 � α0 �J�(�(�>� αk0 � γ. The ��� 3 � 2
 propertyimplies
that

L � ωγ I ω � # ωδ �
whereδ � α0.

4. TOURNAMENTS WITH ��� 3 � 2

The notionsof an r-extendableset of verticesin a tournamentand an

n-e.c. tournamentaresimilar to thecorrespondingnotionsfor graphs,and
so we omit the definitions. The randomtournament, T∞, is the unique
tournamentthatis n-e.c.for all n % 1.

Thefollowing definitionsapplyin any orientedgraph.The in-neigh-
boursof vertex x aretheverticesy sothat � y� x
 is anarc;theout-neighbours
of x aretheverticesy sothat � x � y
 is anarc. A vertex x is a source if it has
no in-neighbours,anda sink if it hasno out-neighbours.If � x � y
 is anarc,
wesaythatx dominatesy andy is dominatedbyx.

Following the proof of Theorem1, no 2-e.c. ��� 3 � 2
 tournamentexists.
Theproof of this is nearlyidenticalto theproof of Theorem1 andis there-
foreomitted.Whatremainsis to classifythe ��� 3 � 2
 tournamentswhichfail
to be 2-e.c. We prove in the following theoremthat every ��� 3 � 2
 tourna-
mentis a linearorder. Theorems3, 4, 5 and6 finish theclassificationof the
��� 3 � 2
 tournaments.For nonemptysetsof verticesA andB, the notation
A ^ B meansthateachvertex of A dominateseachvertex of B.

Theorem 6. Thetournamentswith ��� 3 � 2
 are linear orders.

Proof. Let T bea ��� 3 � 2
 tournament.WemayassumethatT is infinite. As
in theproofof Theorem2, wefirst provethatT hasaninterval: two distinct
verticesx � y with thesameout-neighbourhoodin V � T 
0$ � x � y � .

If T hasasourcex, thenweprove thereis aninterval. (ThecasewhenT
hasasink followsby directionalduality.) Picky in V � T 
>$ � x � andpartition
V � T 
/$ � x � y � into theout-neighboursA of y, andthe in-neighboursB of y
differentfrom x. Considerthepartition � x � y � � A � B �

If T �� T �B� A ) � x � y �G
 , then � x � y � is aninterval, sowe mayassumethat
B ?� /0. In that case,eitherfor A � /0 or for ��� 3 � 2
 we have that T �� T �
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� B ) � x � y �G
 � X. Theny is asink in X. Weclaim thataninterval exists.To
seethis,considerthepartition � x � � � y � � B � It followsthatX �9� � z�H) B
 �� X,
wherez is eitherx or y. If X �B� � x �X) B
 �� X, thensinceX �� T, it follows
thatX �F� � x �,) B
 hasa sink, s, which mustbe in B. But then � y� s� is an
interval in X, andtherefore,thereis aninterval in T. If X �B� � y �X) B
 �� X,
thensinceX �� T, X �F� � y �_) B
 hasa source,t, which mustbe in B. But
then � x � t � is aninterval in X, andweconcludethatthereis aninterval in T.

Thefinal caseis if T �� T �0� A ) B
 ; thenthereexistsasourcex: in A ) B.
If x: belongto B, thenx: dominatesevery vertex in T save x, thus � x � x: � is
aninterval in T. If x: � A, thenpartitionT into

� x � � � A $ � x: �G
0) � y � � B ) � x: �>�
Now deletingB ) � x:`� givestheinterval � x � y � . Deleting � x � givesasource
s in T � x. Since � y� x: 
 is anarc,s ?� x: . Sincex: dominateseachvertex of
� A ) B
a$ � x:`� , wemusthaves � y. Hence,B � /0. Thus, � x � y � is aninterval.
Finally, deleting � A $ � x: �G
1) � y � givesthat � x � x: � is aninterval.

Next, we assumethatT hasneithera sourcenor a sink. Fromthe tour-
namentanalogueof Theorem1, it follows thatT hasanon-extendablepair
of vertices.If x � y is onesuchpair of non-extendableverticesin V � T 
 � V,
thenpartitionV $ � x � y � into four subsets

S00 � S01 � S10 � S11 �
whereS00 is the setof verticesdominatingx andy, S01 is the setvertices
dominatingx andnot y, S10 is the setthe verticesdominatingy but not x,
andS11 is thesettheverticesdominatedby x andy.

Supposefirst thatx � y is 3-extendable.
Case1. S11

� /0. We partitionV into � x �4) S01, � y �4) S10 andS00. Since
T is a ��� 3 � 2
 tournament,the inducedsubtournamenton theunionof two
of thesesubsetsis isomorphicto T. Two casesgive sinks,so the solere-
mainingcaseis T �/� � x � y �4) S01 ) S10 
 �� T in which x � y is 2-extendablein
the inducedsubtournament,andso thereis a 2-extendablepair of vertices
in T.

Case2. S10
� /0. We partitionV into � x �X) S00, � y �X) S11 andS01. Two

casesfor ��� 3 � 2
 give a sourceor a sink, so thesoleremainingcaseis T �
� � x � y �4) S00 ) S11
 �� T in which � x � y � is aninterval.

Theothercasesaresimilar. If x � y is 1-extendable,then � x � y � is aninter-
val or ananti-interval: a pair of vertices� a � b � suchthatwhenever � a � z
 is
anarc,then � z� b
 is anarc,wherez ?� a � b.

Considerthefinal casewhenthereexistsapairx � y whichis 2-extendable
andassumethat � x � y � is neitheran interval nor an anti-interval. The sole
casethen(by directionalduality) is whenS01 andS11 arenonempty. The
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partition
� x � � S01 ) � y � � S11

then giveseither a sourceor an anti-interval. If we obtain a source,we
obtainaninterval by previousarguments.

To provethatwehaveaninterval, it is enoughnow to show thattheexis-
tenceof ananti-interval � a � b � in T givesa contradictionor aninterval. By
directionalduality, wemaysupposethat � a � b
 is anarc.Throughout,when
speakingaboutan interval or an anti-interval � a � b � , it will be implicitly
assumedthat � a � b
 is anarc.

If T hastwo distinctanti-intervals � a � b � , � c � d � which intersect,thenif
b � d, then � a � c � is an interval. A similar conclusionholdswhena � c.
We canthereforeassumethat b � c or a � d. Without lossof generality,
supposeb � c andso � d � a
 is anarc.Thesetof vertices

V � T 
1$ � a � b � d �
admitsa partition into A theout-neighboursof a not equalto b, andB the
in-neighboursof a notequalto d. ObservethatA ^ b ^ B andB ^ d ^ A.
ThepartitionA ) � a � � � b � � B ) � d � giveseithertheinterval � a � d � , or b asa
sourceor sink. In any casewehaveaninterval.

Thus,we canassumethat theanti-intervalsaredisjoint. Enumeratethe
anti-intervalsof T as

� x1 � y1 � � � x2 � y2 � � �(�(�
Denoteby X the union of the xi ’s, by Y the union of the yi ’s, andby S

thesetV $�� X ) Y 
 . Wefirst reduceto thecasewhenS is empty. Otherwise,
by consideringthepartitionX � Y� Sof T, wededucethatT is isomorphicto
T �B� X ) S
 or T �B� Y ) S
 (andnot to T �B� X ) Y 
 , sincein thatcase,every
vertex of T wouldbecontainedin ananti-intervalandsoSwouldbeempty).
SupposethatT �E� X ) S
 (theothercaseis similar.) Every anti-interval of
T �5� X ) S
 is ananti-interval of T, whichgivesacontradiction.

WemaythereforeassumethatS is empty;in particular, theanti-intervals
of T form aperfectmatching(thatis, asetof pairwisenon-incidentdirected
edges).Now thepartition

� x1 � � � y1 � � T $ � x1 � y1 �
givesacontradiction.

We now concludethatT hasaninterval. Wenow introduceanextension
of the notion of interval. A chain-interval is a subsetS of V suchthat
T � S is a linear orderandevery elementoutsideof S eitherdominatesS
or is dominatedby S. An importantpropertyof chain-intervals is that a
(not necessarilyfinite) union of pairwiseintersectingchain-intervals is a
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chain-interval. Thus,usingZorn’slemma,wemayconsidermaximalchain-
intervalsof T; moreover the setof verticesof T is partitionedinto chain-
intervals. By the fact that T hasan interval, thereexists one non-trivial
chain-interval. By the ��� 3 � 2
 propertyandan argumentsimilar to onein
the proof of Theorem2, T haseither two infinite chain-intervals, which
resultsin a linear order, or a unique infinite chain-interval and possibly
somesingletonchain-intervals.

We considerthecasewhenthereis a uniqueinfinite chain-interval C. If
C � T, thenthetheoremfollows,sowe mayassumeC is a propersubtour-
namentof T. C satisfies��� 2 � 1
 by uniqueness.We assumethatC � ωα,
whereα is a non-zeroordinal. (ThecasewhenC is thereversalof anordi-
nal follows by directionalduality.) Let usdenoteby A andB thepartition
of V � T 
B$ C suchthat A ^ C andC ^ B. Now considerfor ��� 3 � 2
 the
partitionA � B � C.

If T �� T �5� A ) B
 , thenthereexistsauniqueinfinite chaininterval C: in
A ) B. Let T : � T �B� A ) B
 . Denoteby A: andB: theintersectionof A and
B with C: , respectively. SinceC is the uniqueinfinite chain-interval, and
hasorder-typeωα, in orderto avoid in C: aninterval of T (which wouldbe
disjoint from C, andthusviolateour hypothesisthatthereis auniquechain
interval in T), it is necessarythatthesuccessorandthepredecessorin C: (if
any) of an elementof A: areelementsof B: , andconverselythe successor
andthepredecessorof anelementof B: areelementsof A: . In particular, the
order-typeof A: andB: is exactly theorder-typeof C: , which is theorder-
type of C. (We areusing the crucial fact herethatC hasorder-type ωα.)
Considernow thepartition

A: � B: � A ) B $8� A: ) B: 

of V � T :O
 . If T : �� T :H�b� A:c) B:d
 wearedone,sinceT : andhence,T, arelinear
orders.If T : �� T :e�E� V � T :d
5$ B:d
 , thenA: andC areinfinite chain-intervals
of T. Sincethereexists at most one infinite chain-interval in T, A: and
C mustbe containedin a larger uniqueinfinite chain-interval of T, which
mustbeisomorphicto C (by uniqueness).Sincetheorder-typeof A:f# C is
C # C (andthe order-type of A: is C), we violate the left-cancellationlaw
of ordinals. (SeeTheorem3.10of [9].) The samecontradictionoccursif
T �� T �*� V $ A: 
 : we would obtain the conclusionthat the order-type of
C # B: is theorder-typeof C.

We must thereforehave T �� T �4� A ) C 
 or T �� T �4� B ) C 
 . By di-
rectionalduality, we now have the following situation:T is isomorphicto
C ^ B, whereC is anordinalpowerof ω or thereversalof suchanordinal,
andB hasnonon-trivial chain-intervals.

We now prove thatthereis somevertex in B of in-degree1. Fix a vertex
x in B. We denoteby X andY the in-neighboursandout-neighboursof x
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in B, respectively. Observe that sinceC is a maximalchaininterval, X is
nonempty. Let y � X. If X $ � y � � /0, thenx hasin-degree1 in T. We may
thereforeassumethatX $ � y ��?� /0. We partitionV � T 
 into

C ) � x � � Y ) � y � � X $ � y �>�
If T �� T �B�(� C ) � x �X)g� X $ � y �G
(
 � T : , thenx is a sink in T : . Considerthe
partitionof V � T : 
 into

C � X $ � y � � � x �>�
DeletingX $ � y � leavesC ^ x, which is a linear order. If T : �� T : � X $� y �_) � x �G
 � T :T: , then T :T: hasa chain interval C:T: isomorphicto C. It is

not hard to seethat C:T: is a chain interval of T : , and by the maximality
anduniquenessof C, we musthave thatC andC:T: arecontainedin a chain-
interval of T : isomorphictoC. If C is anordinalpowerof ω thisviolatesthe
left-cancellationlaw for ordinals. If theorder-typeof C is � ωα 
 � for some
nonzeroordinalα, thenwe mayusethe fact that � ωα 
(�h^ � ωα 
(�eij� ωα 
(�
to obtainacontradiction.

This forcesthatT : �� T : � x, which is impossible:T : � x would contain
a sink x: , which in turn, with x, would be a nontrivial chain-interval in T :
disjoint from C, whichasbeforewouldgiveacontradiction.

If T �� T �1�(� X ) Y 
>$ � x �G
 via anisomorphismf , thentheimageunder f ,
sayC: , of C in X ) Y would alternatefrom X to Y. SupposethatC:X is the
partof C: intersectingX; C:Y is definedsimilarly. Weconsiderthepartition

C:X � C:Y � V $8� C:X ) C:Y 
3�
As in anargumentabove,this casegiveseitheracontradictionor givesthat
T is a linearorder.

Thus,T �� T �1� C ) � x �H) Y ) � y �G
 via anisomorphismg. In otherwords,
(with thenotationthatT � C ^ B) B hasavertex of in-degree1 relative to
B (thepre-imageof x underg); wedenoteit by x0.

Given a tournamentT : , the chain-reductionof T : is the operationin
which we deleteall the verticesof a maximal linear order L satisfying
T : � L ^ A. A point-reductionof T : is thetournamentobtainedfrom T by
deletingonevertex of in-degree1. A reductionof T : is obtainedby apply-
ing a chain-reductionfollowedby onepoint-reductionto T : . A tournament
which is unchangedby a reductionis reduced. Applying somenumberof
reductionsto T : (beginningwith thechain-reductionof deletingC followed
by thepoint-reductionof deletingx0; possiblytransfinitelymany reductions
mayresultafter this initial reduction),theprocesseventuallyterminatesin
theemptytournamentor a reducedtournament.In the latter case,we call
theresultingreducedtournamenta nucleusof T. (We arenot claimingthat
anucleusis unique,sincepoint-reductionsmaynot beunique.)
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The reductionprocessdefinesa linear orderL on the verticesnot in a
given nucleus:x � L y if x hasbeendeletedbeforey in the reduction,or
x andy were deletedin the samechain-reductionandx is lessthan y in
this chain. Thus,for any elementx of L, the in-degreeof x in the induced
subtournamentof T : on theset

� y � L : x � y in L �*) � x �
is at most1.

Thefirst caseis if everynucleusof T is empty. Wemakeuseof thelinear
orderL on V definedabove. Considerthe graphG of the orientedgraph
on T whosearcsare the arcswhich arenot in L. The verticesoutsidea
nucleusform aforestin G; hence,in thiscase,thegraphG itself is a forest.
The verticesin C areisolatedin G, andB givesrise to a forestF. Recall
thatT � C ^ B, with C theuniqueinfinite chain-interval of T. Considera
fixed2-colouringof B with nonemptyindependentsetsB1 � B2. Considerthe
partitionV � C 
 � B1 � B2 � DeletingV � C 
 leavesa tournamentwith no chain-
interval which is a contradiction.Finally, the inducedsubtournamentson
C ) B1 andC ) B2 arelinearorders:thelinearorderL restrictedto thesesets
coincideswith T.

The final caseis whenthereis a nucleusN of T that is nonempty. It is
straightforwardto seethatN andC aredisjoint. PartitionV � T 
 into

V � C 
 � V � N 
 � V � T 
1$8� V � C 
0) V � N 
(
3�
ThesetV � T 
5$k� V � C 
0) V � N 
(
 is not emptysinceit containsx0 (our vertex
of in-degree1 in B). If T �� T �5� V � C 
9) V � N 
(
 � T : via anisomorphismf ,
thenC is theuniquenon-trivial chaininterval of T : (this follows asabove
by left-cancellationfor ordinalsandthefactthat � ωα 
 � ^ � ωα 
 � il� ωα 
 � ).
Hence, f � B
 � N. But B hasa vertex of in-degree1, while N doesnot.
DeletingV � C 
 would resultin T �� T � B via anisomorphismh. But asde-
scribedabove,consideringtheimageof C underh givesacontradiction.We
mustthereforehave T �� T �E� V � T 
5$ V � N 
+
 � S. In this case,we consider
thegraphG of theorientedgraphon arcsof Swhich arenot in L. Deleting
N from T leavesC (sinceC is deletedin the first chain-reduction),anda
setF which is a forest in G. If F is empty, we arefinished,sincethenL
is isomorphicto C which is a linearorder. AssumethatF is nonempty. To
finish,applynow thesameargumentto Sastheoneappliedto T in thecase
wheneverynucleusof T is empty.

Theordertypeof therationalsis denotedη, andalinearorderis scattered
if it doesnotcontainη asasuborder. Althoughwedonotyetknow aclassi-
ficationof the ��� n � k 
 linearordersfor all possiblevaluesof theparameters
n � k, thefollowing theoremdoesgivesomeinsightinto their structure.
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Theorem 7. If L is a ��� n � k 
 linear order, where 1 � k � n, thenL is scat-
tered.

Proof. To every countablelinear orderL, we associatethe (countable)set
I � L 
 of intervals of L which are of ordinal order-type. Thus, there is a
minimumcountableordinal,α � L 
 , so thatno elementof I � L 
 is greateror
equalto α � L 
 .

Suppose,to obtaina contradiction,that L is not scatteredandsatisfies
��� n � k 
 . Thenwe canfind n disjoint intervals I1 � �+�(� � In of L, eachof them
containinga suborderof order-type η. Partition eachI j into A j andB j in
sucha way that both α � A j 
 andα � B j 
 aregreaterthanα � L 
 . To seethat
this is possible,weapplythefollowing claimwith β � α � L 
 , γ � α � A j 
 and
δ � α � B j 
 .

Claim: For fixedcountableβ � γ � δ � ON so that γ � δ � β, thereis a par-
tition of I j into A j andB j so that γ is an interval of A j andδ is an
interval of B j .

To provetheclaim,notethatsinceη is asuborderof I j , wemayembedγ
andδ in I j in sucha waysothattherearex � y� zsothatx � γ � y � δ � z in
theembedding.DefineA j to betheverticesof γ union � r : y � r � z� minus
theverticesof δ, anddefineB j to betheverticesof δ union � s : s � y �H) � t :
t % z� minustheverticesof γ. It is routineto checkthatγ is an interval in
thesuborderonA j andδ is aninterval in thesuborderonB j .

Let S � L $8�[m Ii 
 . Thepartition

S ) A1 ) Bn � A2 ) B1 � A3 ) B2 � �(�+� � An ) Bn - 1

of L violates ��� n � k 
 sincethe inducedsuborderon the union of any k of
thesesubsetsis a linearorderL : with α � L :d
,� α � L 
 .

5. ORIENTED GRAPHS WITH ��� 3 � 2

An orientedgraphO with ��� 3 � 2
 musthave a graphwith ��� 3 � 2
 . In

orderto characterizethe ��� 3 � 2
 orientedgraphs,we maythereforeexploit
Theorem2. Theorem8 alsoclassifiesthecountableorderswith ��� 3 � 2
 . An
orientedgraphis independentif it hasnodirectededges.

Theorem 8. Theinfinite orientedgraphswith ��� 3 � 2
 that are neitherin-
dependentnor tournamentsare (up to converses)thefollowing:

K1 ! ωα � ωα ! ωβ � ωα ! Kℵ0 � K1 ^ Kℵ0 � Kℵ0 ^ Kℵ0 � Kℵ0 ^ ωα � ωα ^ Kℵ0 �
where α andβ arecountableordinals.

Proof. Considerorientationsof theinfinite ��� 3 � 2
 graphsG thatareneither
cliquesnor complementsof cliques.Thesewill giveall theinfinite ��� 3 � 2

orientedgraphsthatareneithertournamentsnor independent.
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Case1. G � K1 ! Kℵ0.
In this case,the infinite cliquemustbe anorientationof a ��� 2 � 1
 tour-

nament,which mustbea linearorder: theinfinite randomtournament,T∞,
alongwith anisolatedvertex doesnothave ��� 3 � 2
 . To seethis, let x bethe
isolatedvertex, andfix y a vertex of T∞. Let O be the out-neighboursof
y andI the in-neighboursof y. Theconclusionfollows by consideringthe
partition � x � y � � O � I �

Case2. G � K1  Kℵ0.
Partition Kℵ0 into O, theout-neighboursof K1, andI , the in-neighbours

of K1. Sincetheorientedsubgraphinducedby O ) I hasno edges,by the
��� 3 � 2
 propertywehaveK1 is a sourceor sink.

Case3. G � Kℵ0  Kℵ0.
Denotethe join-componentsasX andY. Fix x � X. Let O be the out-

neighboursof x in Y, andlet I bethe in-neighboursof x in Y. By ��� 3 � 2
 ,
we concludethat there is a sourceor a sink. Sincex was arbitrary, we
canconcludethereexist at leasttwo sourcesor two sinks;without lossof
generality, supposethat therearetwo sourcesandthey belongboth to X.
In particular, Y is determinedby having no sources.We partitionX into its
setof sourcesS minusonecalleds, the setX $ S, andY. If we deleteS,
thenwe areleft with anorientedgraphwith exactly onesources, giving a
contradiction.To seethis,notethattherearenosourcesin Y sinces � X $ S
is asource.Any sourcein X $ Swouldbeasourcein X ) Y. If Y is deleted,
then we are left with an independentset. Therefore,the orientedgraph
inducedby S ) Y is isomorphicto theoriginal orientedgraph,which must
beKℵ0 ^ Kℵ0.

Case4. a) G � Kℵ0 ! Kℵ0, b) G � Kℵ0 ! Kℵ0.
In eithercase,write G � X ! Y, whereX � Y � � Kℵ0 � Kℵ0 � . It is straight-

forwardto seethat if X andY arecompletethenthey have ��� 2 � 1
 . In case
a),we obtainthedisjoint unionof two ��� 2 � 1
 tournaments,which mustbe
linear orders. In caseb), we obtain the disjoint union of a ��� 2 � 1
 linear
orderandaninfinite independentset.

Case5. G � Kℵ0  Kℵ0.
Namethe join-componentsX, Y, respectively. A similar argumentasin

Case4 establishesthatY has ��� 2 � 1
 , andso is a linear order. A similar
argumentas in Case3 establishesthat we must have X ^ Y or Y ^ X.
Therefore,in this case,we obtain (up to converses)L ^ I , whereL is a
��� 2 � 1
 linearorder, andI is aninfinite independentset.
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6. COMMENTS AND PROBLEMS

For agivenintegern % 2, wemayconstructseveralexamplesof ��� n � n �
1
 graphsasfollows. If G andH aregraphsandx � V � G
 , thenby substitut-
ing x in G by H wemeanexpandingx to acopy of H andthenjoining every
vertex of H to theneighboursof x in G. Fix G a graphwith n � 1 vertices.
SubstituteeitherKℵ0 or Kℵ0 for someof the verticesof G. It is not hard
to seethattheresultinggraphshave ��� n � n � 1
 ; in fact,the ��� 2 � 1
 graphs,
exceptR, areof this form, andall the ��� 3 � 2
 graphsareof this form. Un-
fortunately, thereareexamplesof ��� n � n � 1
 graphs,for eachn % 4, which
arenotof this form. For example,thegraphG � n
 definedto be

� n � 4
 Kℵ0 ! ℵ0K2 ! Kℵ0

has ��� n � n � 1
 .
The outstandingopenproblemwe presentis the oneof classifyingthe

��� n � k 
 graphs,tournaments,andorientedgraphs,whenn � 3 and1 � k �
n. Theorems1 and7 put somerestrictionson suchstructures.A related
problemis whetherthereareonly finitely many ��� n � n � 1
 graphswhen
n � 3. Theevidencesofar suggeststhisquestionwill beansweredaffirma-
tively; if so,is thereanon-constructiveproof?Anotherproblemis whether
astructurewith ��� n � n � 1
 alsosatisfies��� n # 1 � n
 whenn % 3.

The age of a graphG is the setof isomorphismtypesof inducedsub-
graphsof G. An age n haspolynomialprofile if there is a polynomial
function f : ω ^ ω sothat thenumberof n-vertex graphsin n is bounded
aboveby f � n
 . We conjecturethatanagen of acountablegraphhaspoly-
nomial profile if andonly if n is the ageof a countablegraphsatisfying
��� n � n � 1
 for somen � 2.
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