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ABSTRACT. A relationalstructureA satisfieghe?(n,k) propertyif when-
everthevertex setof Ais partitionedinto n nonemptyparts thesubstruc-
tureinducedby the unionof somek of the partsis isomorphicto A. The
P(2,1) propertyis just the pigeonholeproperty (), introducedby P.
Cameronin [5], andstudiedin [2] and[3]. We classifythe countable
graphstournamentsandorientedgraphswith the (3, 2) property

1. INTRODUCTION

Vertex partition propertiesof relationalstructureshave beenstudiedby
numerousauthors;seefor example,[2], [3], [5], [7], [8], [10], [11] and
[12]. Onesuchpropertythat hasreceved someattentionrecentlyis the
pigeonholeproperty; (P): arelationalstructureA has(?) if for every par
tition of the vertex setof A into two nonemptyparts,thenthe substructure
inducedby someoneof the partsis isomorphicto A. This propertywasin-
troducedoy P. Cameronn [5], who in Proposition3.4 of [6] classifiedthe
countablegraphswith (?); remarkablythereareonly four: K1, Kg,, Koy,
and R, the countablyinfinite randomgraph. The countabletournaments
with () wereclassifiedin [3]; in this case thereare[11 mary suchtour-
namentsthecountableordinal powersof w andtheirreversalsandT®, the
countablyinfinite randomtournament.(As notedin [3], the classification
of the countableorientedgraphswith () is open.The problemreduceso
classifyingorientationsof Rwith (P).)

A naturalgeneralizatiorof (P) is to allow for partitionsof the vertex set
into n nonemptyparts,andinsistthatfor somel < k < n, the substructure
inducedby the union of somek of the partsis isomorphicto the original
structure.We call this propertythe ?(n,k) property. (Then(?) becomes
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the P(2,1) property) This propertywasdiscoveredin the summerof 2000
by P. Cameronandis similar to the propertyof p-indivisibility (see[12]).

At aconferencen the summerof 2000in honourof Fraiss’s 80thbirth-
day, P. Cameroraslkedwhich countablggraphshave P(3, 2). (SeealsoProb-
lem 26 of P. Camerors problemwebpage:
http://www.maths.qgmuac.ukApjc/oldprobhtml.) In this article,we give a
completeanswetrto this problem(seeSection2), andfurthermore we give
acompleteclassificatiorof all orientedgraphswith ?(3,2).

In Section2 we givetheclassificatiorof thecountablegraphswith (3, 2).
In contrastto the casefor the P(2,1) property Theoreml impliesthatR
doesnot satisfythe P(n,n— 1) propertyif n > 2. In Section3 we give the
classificatiorof the countabldinear orders(thatis, transitve tournaments)
with P(3,2). The classificatiorbreaksdown into two caseswhenthereis
afirst or lastelementseeTheorems3 and4) or whenthereis neitherafirst
norlastelement(seeTheoremb). In Section4 we provein Theorems and
7 thata countable?(3,2) tournamentnustbea scatteedlinearorder(that
is, it doesnot containa densesuborder).This result,alongwith theresults
of Section3, give a completeclassificationof the countabletournaments
with ?(3,2). Thecaseof countableorientedgraphswith ?(3,2) is covered
in Section5, which makesuseof the resultsfrom all of the previous sec-
tions. SeeTheorem8. We closewith a brief sectioncontainingsomeopen
problems.

Unlessotherwisestatedall structuregthatis, graphsor orientedgraphs)
are countable,nonempty and do not have loops or multiple edges. If A
is astructure V (A) is the setof verticesof A, E(A) is the setof edgesof
Aif Ais agraph,andthe arcs(or directededges)of A if A is anoriented
graph.If BC V(A), we write A [ B for the substructurénducedon B; if C
is aninducedsubstructur®f A we write C < A. We write A= B if AandB
areisomorphic.If Ais astructureandX C V(A), thenthe structureA — X
resultsby deletingX andall edgesor arcsincidentwith a vertex in X. If
X = {x} thenwe simplywrite A— X = A—x. If Gisagraphandx € V(G),
thenthe neighboursetof x, denotedN(x), is the setof verticesjoined to
x; the elementsf N(x) arethe neighbous of x. The co-neighboursetof
x, denotedN®(x), is the setof verticesthat are neitherjoined nor equalto
x; the elementsf N¢(x) arethe non-neighbows of x. If O is anoriented
graphthegraphof O is thegraphwith verticesV (O) andwith edgesetthe
symmetricclosureof E(O).

w is the setof naturalnumbergconsideredasan ordinal),andg is the
cardinality of w. The properclassof ordinalsis denotedON. The order
typeof therationalsis n. We assumdamiliarity with basicresultsonlinear
orders. We refer the readerto Rosenstei{9] throughoutthe article for
specificresultson linearorders.
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Thecligue (or completegraph)of cardinalitya is denotedKy. Thecom-
plementof a graphG is denotedG; the corverseof an orientedgraphO is
denotedO* (if O is anorder we saythat O* is the reversal of O). Given
two graphsG, H, thejoin of G andH, written GV H, is the graphformed
by addingall edgesbetweenverticesof G andH; the disjoint union of G
andH is written GwH. If a is a cardinal,the graphaG consistof a dis-
joint copiesof G. The (linear) sumof (linear) orders(L; : i € I) is denoted
Yier Li; thesumof two ordersL andM is denoted. + M.

2. THE GRAPHS WITH P(3,2)

In this section thegraphswith 2(3,2) areclassified.In orderto accom-
plish this, we mustfirst introducesometerminology Recallfrom [1] thata
graphis n-existentiallyclosedor n-e.c. if for eachn-subsetof vertices,and
eachsubsefl of S(possiblyempty),thereis avertex notin Sjoinedto each
vertex of T andno vertex of S\T. Ris theuniquegraphthatis n-e.c.for all
n> 1. An extensiorof asubseX C V(G) isavertex znotin X joinedto the
verticesof X in somefixedway; we saythatz extendsX. X is r-extendable
if onecanextendX in G in r differentways. If X is 2/Xl-extendable we
saythat X is extendable Eachn-subsebf V(G) is extendablef andonly
if G is n-e.c. Our first stepin the classificatiorof the P(3,2) graphsis the
following theorem.

Theorem 1. For eadhn > 2, thereis no (n— 1)-e.c. P(n,n— 1) graph.

Proof. SupposehatG is an (n— 1)-e.c.?(n,n— 1) graph. Fix a setof n
verticesof G, X = {ay,...an}. PartitionV (G) into partsAy, ... A, sothat
A={a}us,

where§ is the setof verticesy joinedto every a;, wherej € {1,...,n}\
{i,i—1}, andyis notjoinednorequalto a1 (wheretheindicesareordered
cyclically modn). EachsetS is nonemptyby hypothesis.The remaining
verticesof G belongto A;.

Fix i € {1,...,n}. If we considerthegraphH =G | (V(G) \ Ai), then
thereis novertex in H thatis joinedto theverticesin X\ {a;,a_1}, andnot
joinednorequalto ;. This contradictghatG is (n—1)-e.c. O

Obsere that Theoreml implies, perhapssurprisingly thatthe random
graphR doesnot have P(n,n— 1), whenn > 3.

A vertex x € V(G) is isolatedif it hasno neighboursanduniversal if
it is isolatedin G. A pair of vertices{x,y} of G is anintervalif for every
ze V(G)\ {x y}, xisjoinedto zif andonly if y is joinedto z it is ananti-
intervalif for everyze V(G) \ {x,y}, X is joinedto z if andonly if y is not
joinedto z. In addition,if xyis anedgeof G, we sayis eithera full interval
or full anti-interval
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Theorem 2. The countable?(3,2) graphsare the one-vert& graph, the
two-vertex and [ p-vertex cliguesandtheir complementsandthegraphs

Kiy KDO, K1V KDO, KIZIO V KDO, KDO&J KDO, KDO&J KDO, KDOV KDO-

Proof. We leave the proof of sufficiency asan exercisefor the reader For
necessitylet G be aninfinite P(3,2) graph. We may assumehatG is not
2-e.c.,by Theoreml. We notefirst thatif G hasexactly oneisolatedvertex
X, thenG —xis aP(2,1) graph.RwK; doesnothave P(3,2). To seethis,
fix y € V(R), considerthe partition {x,y},N(y),N¢(y) "V (R), andusethe
factsthatR—y = R, andthat R hasno universalor isolatedvertex. Hence,
G — x mustbeKp,, andthe characterizatiomolds. The caseif G hassome
uniqueuniversalvertex is similar.

Let usnow prove thatG hasanintenal. LetV =V(G). If G hasmore
thanoneisolated(or universal)vertex, thenit certainlyhasaninterval (ary
two isolatedverticesor ary two universalvertices). So we canassume,
withoutlossof generalitythatG hasno isolatednor universalvertices.

By Theoreml, G hasa non-etendablepair X,y of vertices. Partition
V\ {x,y} into four subsets

00, So1, S10, 311,

whereSyg containsthe verticesnot joinedto x andy, $; containsthe ver-
ticesnotjoinedto x andjoinedtoy, S containgheverticesjoinedto x but
noty, andS;1 containgheverticesjoinedto bothx andy.

Supposdirst that{x,y} is 3-extendable.

Casel. S;; = 0. We partitionV into {x} U Sp1, {y} U S10 andSyo. Since
G is a P(3,2) graph,the subgraphinducedby the union of two of these
subsetss isomorphicto G. Two casegyive isolatedvertices,andwe must
have G= G [ ({X Y} US1USo) in which {x,y} is 2-extendabletherefore,
thereis a 2-extendablepair of distinctverticesin G.

Case2. S;0= 0. WepartitionV into {x} U Sy, {y} US11 andSy;. SinceG
isa?(3,2) graphthesubgraphnducedby theunionof two of thesesubsets
isisomorphicto G. Two casegjive anisolatedor auniversalvertex, andwe
musthare G= G [ ({X,y} USoU S11) in which {x,y} is 2-extendable.

Theothercasesreequivalent.If now {x,y} is 1-extendablewe conclude
thatG hasa universalor anisolatedvertex, or that{x,y} is aninterval.

Finally considerthe casewhen there exists a pair {x,y} which is 2-
extendableand,to obtaina contradiction,assumehatthereis no interval.
The pair {x,y} mustthenbe an anti-intenal. By taking complementsf
necessarywe canassumehat{x,y} is afull anti-intenal. Enumerateow
thefull anti-intenalsof G as

{X17y1}7 {XZ; yZ}, -
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If two full anti-intenalsintersectthenaninterval is createdsowe assume
thatall thesepairsaredisjoint.

Denoteby X theunionof thex;’s, by Y theunionof they;’sandby Sthe
setV \ (XUY). We show first thatSis empty Otherwise by considering
the partition X,Y, S of G, we deducethat G is isomorphicto its restriction
on,say XUS(andnoton XUY, sincein this casegvery vertex of G would
be containedn afull anti-intenal). The crucialfactis now thatevery full
anti-intenal of G restrictedon X U Sis alsoa full anti-intenal of G, and
thisis impossible. Therefore, S= 0; in particular the full anti-intenals of
G form a perfectmatching(thatis, a setof pairwisenon-incidentedges).
Now thepartition

{X1}7 {y]_},V \ {X17 yl}

givesa contradiction.
ThusG hasaninterval, andby takingcomplementsf necessarywe can
assumehatthereexistsafull interval {x,y}. Therelation

x ~yif andonlyif {x,y} is afull interval,

is an equialencerelation. Namethe partition of G into its ~-equivalence
classes full partition, with its classe;mamedull classesNotethatthefull
classesrecliques.lt is routineto checkthatif aninducedsubgraptH of G
hasatleastonevertex in eachfull classof G, thenthefull partitionof H is
therestrictionof the full partitionof G. Supposeto obtaina contradiction,
thatafull class{x,y} of G containsexactly two vertices.Thenthepartition
{x},{y},V\ {x,y} impliesthatsomefull classeof G aresingletons.Now
enumeratehefull classe®f G which have exactly two elements

{X17y1}7 {XZ, yz}, e

ThepartitionX,Y, S whereX is theunionof thex;’s, Y is theunionof the
yi's,andSis thesetV \ (XUY), givesacontradiction.

If onefull classof G is finite andhasexactly threeverticesx, y, z, thenthe
partition

{3y VA {xy}

givesa full classwith two elements. More generallyone can prove that
thereareno full classeswith exactly n elementswheren > 3. We may
thereforesupposehatevery full classhasl or [1g mary vertices.If there
existsatleasttwo infinite full classes(,Y thenG= G | (XUY). To seethis
fix {x,xX} C X,{y,y'} CY, andconsiderthe partition

VA XUY), {xXFUY\{y,Y}1{%,y FUX\ {xx}.
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of V(G). In thiscaseG or G is Kn,wKpn,: sinceX andY arefull classesif
onevertex of X is joinedto avertex of Y, thenevery vertex of X is joinedto
every vertex of Y. We thereforehave G is oneof K, vV K, or K, WK,

Assumethat G hasexactly oneinfinite full classC. By a partition ar-
gument,we canassumehatC is joined or notjoinedto all the verticesof
V'\ C. To seethis, let W bethe setof verticesnotin C. Eachvertex in W
is eitherjoined to eachvertex of C or to no vertex of C. Let A bethe set
of verticesin W joinedto eachvertex of C, andlet B bethe setof vertices
in W joined to no vertex of C. Assumethat both A and B are nonempty
Considerthe partition A,B,C of V. If G [ (CUX) = G, whereX € {A B}
thenwe obtainedthe desiredconclusion.SupposehatG = G [ (AUB) via
anisomorphismf. Then f(C) = C' is aninfinite full classin H =G [ W.
If C' is containecentirelyin A or B, thenC' is alsoafull classin G, which
givesa contradiction.Hence,C' N X # &, whereX € {A B}. Thenoneof
C'nA or C'NBis infinite; supposeéhatC’' N A is infinite (the othercaseis
similar). Thenit is straightforvardto checkthatary pair {x,y} of distinct
verticesin C'nAis afull interval in G, which givesa contradiction.

SupposehatG = CwW. Fix apartitionA, B of W. As we havediscussed
abore, G % G | (AUB). Hence,by the P(3,2) property we must have
G= G| (CuUX),whereX € {A,B}, viaanisomorphismf. It is nothardto
seethat f(C) = C. Fromthisit followsthatH = G [ W musthave P(2,1).
Theonly casethatdoesnot give a contradictionis for H to be eitherK; or
Ko,

The final caseis whenG = C Vv W. By taking complementswe may
thereforeassumehatG hasinfinitely mary isolatedverticesandG = | yW
wherel is thesetof isolatedverticesof G. (In fact,G = | ¥ WC. For easeof
notation,we write W ratherthanWwe¢.)

If onevertex of W is universalin W, the conclusionfollows: partition
V(G) into thesetU of universalverticesin W, thesetV (W) \U, andV/(l).
ThenG= G | (UuV(l)) andsoG == Kn, W Kq,.

We thereforesupposédor a contradictiorthatno vertex of W is universal.
We prove first that G hassomeverticeswith degreel. Supposehatthere
existsx € V(W) suchthatW — x is isomorphicto G via anisomorphismf.
Thenf(l) is asetof isolatedverticesin W — x. Sinceno vertex is isolated
in W (by choiceof 1), it followsthateachvertex of f(l) is of degreelin G.

Now supposehatthereis nox € V(G) sothatW — x is isomorphicto G.
Fix x € V(W). Then,by hypothesisA = N(x) & V(W) andB = N°(x) N
V(W) arenonemptywith |A| > 2.

Fix a € A. Considetthepatrtition

vV(Hu{x},A\{a},Bu{a}
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of V(G). If V(I)U {x} is deleted thenwe areleft with W — x, which by
hypothesisjs not isomorphicto G. Now supposehatG = G | (V(l)U
{x} UA\{a}) viaanisomorphismf. Thenf(l) =1 andf (W) =G | ({x}uU
A\ {a}). Butxis universalin G | ({x} UA\ {a}) which would imply the
contradictiorthatW alsohasa universalvertex. Hence,

GG (V(HU{xtUBU{a}) = H;

but x hasdegreel in H, andsosomevertex of G hasdegreel.

Therefore,G hassomeverticesof degreel, andsomeverticeswith de-
gree0. Definethereductionof agraphG to bethegraphG' obtainedfrom
G by deletingthe verticesof G with degree0 and1. (NotethatG’ maybe
empty)

We may iteratethe numberof reductions(possiblytaking transfinitely
mary reductions)until eitherthe empty graphis obtained,or we obtain
a graphwith no vertex of degree0O or 1. In the latter case,the induced
subgraphobtainedis unique. We call this unique inducedsubgraphthe
nucleusof G, andis denotedNu(G). We leave it asan exerciseto check
thattheverticesnotin Nu(G) induceaforest(thatis, a graphwith no finite
circuits).

Supposéirst thatNu(G) is empty ThenG is aforest,with someisolated
vertices. If all verticesareisolated,we are done. If not all verticesare
isolated,let X be the setof non-isolatedvertices. SinceH = G | X is 2-
colourablewith no isolatedvertex, we may partitionH into two nonempty
independensetsA, B which correspondo the two colours. The partition,
A B, of V(G) givesa contradiction: deletingeither A or B leaves only
isolatedvertices,anddeletingV (G) \ (AUB) leavesnoisolatedvertices.

Supposenow that Nu(G) is notempty Eitherthereis anedgebetween
Nu(G) andG\ V (Nu(G)) or not. Supposehatthereis no suchedge.Then
G is thedisjointunionof Nu(G) andaforestF. Fix some2-colouringof F
into nonemptyindependensetsA andB. Considerthe partition

V(Nu(G)), A, B.

DeletingV (Nu(G)) leavesa graphwith anemptynucleus;deletingA or B
resultsin agraphwith no vertex of degreel.

The only remainingcaseis that Nu(G) is not empty andthereis some
edgebetweera vertex of Nu(G) andsomevertex of V(G) \ V(Nu(G)). In
this casewe denoteby O the setof verticesof V (G) \ V(Nu(G)) joinedto
somevertex of Nu(G). Thepartition

V(1),0,V(G)\ (OuV(l))
givesa contradiction. To seethis, note that deletingV (1) leavesa graph

with noisolatedvertex; deletingO leavesa graphwith the samenucleusas
G but with no vertex outsidethe nucleugoinedto the nucleusanddeleting
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V(G)\ (OuV(l)) leavesaforestwhich aswe have determinedibose, must
beacomplemenbf aclique. This contradictioncompletegsheproof. [

3. LINEAR ORDERS WITH P(3,2)

We divide the classificationof the P(3,2) linear ordersinto casesde-
pendingon whetherthereareendpoints We will make useof thefollowing
propertyof orientedgraphs.

Principle of Directional Duality: For eachpropertyof orientedgraphs,
thereis acorrespondingropertyobtainedoy replacingevery concept
by its corverse.

Sincethe only finite orientedgraphswith 2(3,2) are the one andtwo
elementinearorderswe will consideronly infinite linearorders.

3.1. The case when thereisa source or sink. We first considerthe case
of thewell-orderswith P(3,2).

Theorem 3. Thecountableordinalswith ?(3,2) are
L = o"m+ wPn,
whee a, 3, m,n are countableordinalsandO < m+n<2,a+( > 0.

Proof. SupposeéhatL is anordinal thatsatisfies?(3,2). By Cantors nor-
mal form theorem(seeTheorem3.460f [9]), thereareordinalsay > --- >
oy for ke w— {0}, andny,... ,ng € w— {0} suchthat

L = wng +-- -+ %kny.

By the P(3,2) property k < 2. Otherwise considerthe partition

(o]

w™1ng, w*2ny, w*3ng + - - - 4+ Wkny

to obtaina contradiction.In asimilar fashionwe haven; +n, < 2.

For sufficiengy, considerthe casewhenm = n = 1 (the othercasesare
similar). Supposethat the verticesof L = w* + w? are partitionedinto
A B,C. DefineX; = XN whereX € {A/B,C} andi € {a,B}. By the
P(2,1) property thereareY,Z € {A,B,C} so that the suborderson Yy
andZg areisomorphicto w® andwP, respectiely. If Y = Z, choosesome
W e {A B,C}H\{Y}. Now ' < o' [ (Y,UW) < & sothatw =« | (Y,UW).
(We useherethe propertythatif two ordinalsaremutuallyembeddabléhey
areisomorphic;seeTheorenB.140f [9]). HenceL [ (YUW) 2 L.If Y # Z,
by asimilaragumentL [ (YUZ) = L. O

Remark 1. Since?(3,2) is preseredby takingreversals,Theoren3 clas-
sifiesthereversalsof ordinalswith ?(3,2).



PIGEONHOLEPROPERIIES 9

To completethe classificationof the P(3,2) linear orderswith an end-
pointwe prove thefollowing theorem.

Theorem 4. Thecountablelinear orders L with P(3,2) with an endpoint
andwith the propertythatL,L* ¢ ON, are

wcx + ((JJB)*,
wheee a, 3 are nonzeo countableordinals satisfyinga + 3 > 0.

Proof. Theargumentfor sufficiengy usesthefactsthatw® and(w?)* satisfy
?P(2,1). Sincethedetailsaresimilar to the proof of sufficiency of Theorem
3, they areomitted.

For necessitysupposéhatL satisfiegshe hypothesesf thetheorem By
the principle of directionalduality, we canassumewithoutlossof general-
ity, thatL hasafirst elemen®. By hypothesisywe mayassumehatL is not
awell-order

Wewrite L = (A,C), whereL = A4C andA is themaximalinitial section
of L whichis well-ordered.Since0 € A, Ais nonemptyt is nothardto see
thatif L is isomorphicto anorderL’ = (A’,C’), thenA is isomorphicto A’
andC is isomorphicto C'.

We claimthatboth A andC satisfy?(2,1). Oncetheclaimis proven,the
proof of the theoremwill follow. Partition A into nonemptypartsA; and
Ay, andpartitionC into nonemptypartsC; andC,. Assume for instance,
for (3,2), thatL=L [ (A;UC) andL =L | (AUCy). SincelL [ (AUC) =
(A1,C), we have A; = A andso A satisfies?(2,1). Supposedor property
P(3,2) thatL | (AUCy) L. SetL | (AUCy) = (A,C'), notingthatA C A'.
Since(A,C) = (A',C'), we have A= A/, andthusC = C' = C;. Thus,C
satisfiesP(2,1). ]

3.2. Thelinear orderswith 2(3,2) without endpoints. In thecasewhen
thereareno endpointsve have thefollowing classificatiorof thecountable
P(3,2) linearorders.

Theorem 5. ThecountableP(3,2) linear orders withoutendpointsare the
following linear orders and their corverses: (w%)* + wP, whee o, are

nonzeo ordinals, and w - w* + w? for someordinals satisfying0 < y and
0<d.

Proof. LetL bea?(3,2) linearorder We definetheequivalencerelation=
onL: x=yif theintenal [x,y] of L is finite. (For moreon this equivalence
relation,seeSection4.2 of [9].) We first prove that every =-classof L is
infinite. To seethis, notethat P(3,2) impliesthatevery finite =-classis a
singleton.Indeed|f thereexistsafinite =-classwith exactlyn elementsfor
somen > 1, thenpartitionV =V (L) into A, B,C, whereA containsexactly
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one elementin all the =-classeswith exactly n elementsB containsthe
otherelementsn the=-classewith exactly n elementsandC containghe
elementsotin AU B. This partition eitheryields singleton=-classespr
forceseach=-classto have exactly n elementsa suitablepartition proves
thelattercaseto beimpossible.

Denoteby S the setof singleton=-classes.Supposdor contradiction
thatthereexiststwo elementsx andy in S. Without lossof generality we
mayassumehatx < y. We write L = A+ x+ B+y+C. Choosea € V(A)
andc € V(C). We claim thatthe partition

V(A \{a}) u{x}, (V(C)\{c}) u{y},V(B)u{a} U{c}

violates P(3,2). To seethis, note that the only casethat doesnot have
endpointdsL= L [V(L)\ (V(B)u{a} u{c}). Butthiscases alsoimpos-
sible sincex,y is now a =-class. If S hasexactly oneelementx, we may
write L = A+ x+ B, with A andB nonempty(otherwise L would have an
endpoint)into A, {x}, B to obtaina contradiction.

Thereforegvery=-classs infinite. We next provethatfor every partition
into two summandd. = A+ B, eitherA is the reverseof an ordinal or B
is an ordinal. Assumethat this is not the case,and somefixed partition
A+ B doesnot satisfythis. Thereexistsaninitial sectionSy in A with no
maximumanda final sectionSg in B without minimum. We first prove that
we cansupposédhatL = Sy + C + Sg with C nonempty On the contrary
assumehatL = Sy + Sz andfix avertex a € Sy andb € S3. We partitionL
into

V(X),{ajuV(Y)u{b},V(2),

whereL = X+a+Y +b+Z. ThesetsV(X),V(Z) arenonemptyto avoid
endpoints. To avoid endpointsandto satisfy P(3,2), we musthave L &
LT (V(X)UV(2)) =L'". SinceL = Sy+ S, we canfind in L’ aninitial
sectionS, without a maximumanda final sectionS; without a minimum
sothatl’ = S, + ;. If Sy =X andS; = Z thenwe may chooseC =
a+Y +b. Supposaow thatS, & X. (ThecasewhenX & S, is similarand
soomitted.) Let S = S, andS’ = Ss. ThenS is aninitial sectionwith no
maximumandS’ is a final sectionwith no minimum, andwe may choose
(thenonemptyset)C to betheverticesgreatetthanS but lessthanS’.

Thus,thereexists a partition Sa + C + Sg with C nonempty Fix a € Sy,
b € S andc € C. By consideringhefollowing partitionfor ?(3,2)

(Sa\{a}) u{c},{a} u(V(C) \{c}) U{b}, S\ {b},
we obtaineitheran endpoint,or c asan=-class.Eachcasegivesa contra-
diction.
We maythereforeassumehatL = A+ O whereA is alinearorderandO
is anordinal (whichis alimit ordinalsinceL hasno greatestlement).
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Casel. SupposehatL = (O')*+ A, for someordinal O’ andsomelinear
orderA.

ThenO' is alimit ordinal(sinceL hasnoleastelement)andL = (O')* +
A’ +0, whereA" is alinearorder If A” is nonemptywe maythenconsider
thepartition (O')*\ {x},A” U{x,y},0\ {y}, wherex € (O')* andy € O, to
reduceto the casewhenA” = 0. The choiceof (O')* andO areuniquein
this notation,andthus (O')* andO have P(2,1). SoL = («&*)* + P, for
someordinalsa, 3 > 0.

Case2. No initial sectionof L is thereverseof anordinal,andso every
properfinal sectionof L mustbeanordinal.

Write L = A+ B, whereB is theleastnon-zeroordinalwith this property
It is straightforvard to checkthat B has?(2,1), andis thereforeinfinite
(sinceL hasno endpoints).ThelinearorderB, whichis acountableordinal
power of w, hasthe propertythatO+ B = B whenO is anordinalsatisfying
O<B.

Case2.1. Supposehatthereis adecompositior. = A+ C+ B, whereC
is anordinalsatisfyingC > B.

Hence thereis anordinalC’ sothatC = B+C’ sothatL =X +B;+C' +
B>, whereX is somelinearorder andB;, B, 2 B. Partition L into

V(X)UV(B1),V(C)U{x},V(B2) \ {x},

wherex € V(By). DeletingV(X)UV(B;1) leaves an ordinal. Deleting
V(Bg) \ {x} leavesa last element. Therefore,L = L | (V(X)UV(B1)U
V(B2 —X)). SinceBis P(2,1), Bp—x= By, soL= X+ B+B.

Applying this argumentinductively giveseitherthatL = Z+ B- w* or
L = Z+ B-n, whereZ hasno properfinal sectionequalto B andn > 1.
Thislastcasegivesdirectly by P(3,2) thatn =1, soL = Z+ B. Recallthat
L = X+ B1+ By, whereB1, B, = B. Supposé¢hatZ+ B isisomorphicdo X +
B1 + B, via anisomorphismf. By thechoiceof Z, f(B) properlycontains
Bo. SinceB+B > B, f(B) cannofproperlycontainB; + By. Thereforethere
arenon-zeroordinalsa, 3 sothatB; = a + 3 and f (B) = B+ By. It follows
thatp3 % B, andsoby ?(2,1), a = B. Butthenf(Z) 2 X+a = X +B,
which contradictghatZ hasno final sectionequalto B.

Thus,L = Z+ B- w*, whereZ hasno final sectionequalto B. Fix z €
V(Z). Thenthefinal section{x: x> z} containsw* whichis acontradiction
sincewearein Case2. Hence L = B-w*, andsoL hasthedesiredstructure.

Case2.2. EverypartitionL = A+C+ B satisfiesC < B, andthus,C+B=
B.

Thus, every properfinal sectionof L is isomorphicto B, whereB = o®
for somenonzeroordinal 8. An elementx of L is a bad cut if, writing
L = L1+ X+ R, theorderL1 hasthepropertythatall its properfinal sections
areisomorphic. If x is a bad cut, then we claim that every properfinal
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sectionof L1 is isomorphicto «, for somecountabley € ON. To seethis,
fix aproperfinal sectionSof L. SinceS+ x+ Ris afinal sectionof L, Sis
anordinal. If S= a+ 3, wherep # 0, then[3 is a properfinal sectionof L1
andsoequalsS. Theordinal Sis thereforeadditively indecomposabland
theclaimfollows. (SeeExercisel0.4(6) of [9].) We saythatthetypeof the
badcutxisyy.

If X,y arebadcuts,andx < yin L, thetypeof xis certainlystrictly smaller
thanthetypeof y; andfrom this, if thereis abadcut, thereexistsaminimum
badcutb. In otherwords,for everyy < b, writing L = Ly +y+ R, theorder
Ly canbepartitionedin auniquewayinto Ly = X +Y, whereY is anordinal
andevery properfinal sectionof X is greateror equalto Y. (Notethatevery
properfinal sectionof X is a subordeof a properfinal sectionof L, andso
isanordinal.)

If thereare no bad cuts, choosey to be ary elementof L. Otherwise,
choosey < b. We decomposé. asfollows. LetL =L, +y+RandL; =
Lo+ Az, whereA; = w1, istheuniquepartitionof L; suchthateveryproper
final sectionof L, hasordinaltype greateror equalto w”:. More generally
wedefinel; = Lij 1 + A, whereA; = w™, astheuniquepartitionof L; such
thatevery properfinal sectionof L;. ;1 hasordinaltype atleastw®. By this
decompositionywe maywrite

L=X+§ ¥
with ag = 9, theordertype of B. Sinceevery properfinal sectionof L is an
ordinal, X is empty

Theincreasingordinalsequence

a1,02,03,04,...

is denotedby s(y). If thereis a badcut andy,y < b, or thereis no bad
cutandy,y arearbitrary thenthe sequences(y) ands(y') areequalafter
somefinite numberof terms. To seethis, supposéehaty’ < y andy belong
to A in the decompositiorof L which startsaty. Thenthe sequence(y'),
up to its first termsis equalto Qjy1,0j42,.... Sotwo decomposition®f
L = Jice WY, wherea; < aj, for every0 < i < j, mustbethe sameup to
afinite numberof terms.

If in additionL is ?(3,2), we claim that for every decompositionthe
sequencega;) is constantafter a finite numberof terms. Otherwise,the
partitionO, E, w*°, whereO is theunion of the w" with i odd,andE is the
unionof thew™, with i > 0 even,violates?(3,2). To seethis, notefirst that
sincewe arein Case2.2, we cannothave L 2 L [ (OUE). Now suppose
thatL 2 L | (OUw®) = L’ (the othercaseis similar). L’ givesriseto the
sequence

B= (Bi) = (ao,01,03,...).
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Let a be the sequencéq; : i € w). By the last sentenceof the previous
paragraphywe musthave thereis akg € w sothatfor k > Ky, Bk = ak. But
thenwe obtainthe equalities

O(2ko—1)+2j = Akotjs
where j > 0. But sincea is increasing,theseequalitiesimply thata is
constangfteray,.
Hence,
L= w4+ +. .+ +w,
for somey suchthatO < 0p < ... < ay, <y. TheP(3,2) propertyimplies
that
L= o+
whered = ap. O

4. TOURNAMENTS WITH P(3,2)

The notionsof an r-extendableset of verticesin a tournamentand an
n-ec. tournamentaresimilar to the correspondingiotionsfor graphs,and
so we omit the definitions. The randomtournament T, is the unique
tournamenthatis n-e.c.foralln > 1.

Thefollowing definitionsapplyin ary orientedgraph.Thein-neigh-
bours of vertex x aretheverticesy sothat(y, X) is anarc;theout-neighbous
of x aretheverticesy sothat(x,y) is anarc. A vertex x is asourceif it has
no in-neighboursanda sinkif it hasno out-neighbourslf (x,y) is anarc,
we saythatx dominates andy is dominatedoy x.

Following the proof of Theoreml, no 2-e.c.?(3,2) tournamenexists.
Theproofof thisis nearlyidenticalto the proof of Theoreml andis there-
fore omitted. Whatremainss to classifythe ?(3, 2) tournamentsvhich fail
to be 2-e.c. We prove in the following theoremthat every P(3,2) tourna-
mentis alinearorder Theorems3, 4, 5 and6 finish the classificatiorof the
P(3,2) tournaments.For nonemptysetsof verticesA andB, the notation
A — B meanghateachvertex of A dominatesachvertex of B.

Theorem 6. Thetournamentsvith 2(3,2) arelinear orders.

Proof. LetT bea?(3,2) tournamentWe mayassumehatT is infinite. As
in theproofof Theorem?2, wefirst provethatT hasaninterval: two distinct
verticesx, y with the sameout-neighbourhooth V(T) \ {X, y}.

If T hasasourcex, thenwe provethereis aninterval. (ThecasewhenT
hasa sinkfollows by directionalduality.) Picky in V(T) \ {x} andpartition
V(T)\ {x,y} into the out-neighbour® of y, andthe in-neighboursB of y
differentfrom x. Considerthe partition {x,y}, A, B.

If T=T [ (AU{XYy}), then{xy} is aninterval, sowe mayassumehat
B # 0. In thatcase eitherfor A= 0 or for P(3,2) we havethatT = T |
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(BU{x,y}) = X. Thenyis asinkin X. We claimthataninterval exists. To
seethis, considetthepartition{x}, {y}, B. It followsthatX | ({z} UB) = X,
wherezis eitherx ory. If X [ ({x} UB) £ X, thensinceX = T, it follows
that X [ ({x} UB) hasasink, s, which mustbein B. But then{y,s} is an
interval in X, andthereforethereis aninterval in T. If X | ({y}UB) = X,
thensinceX 2 T, X | ({y} UB) hasa sourcet, which mustbein B. But
then{x,t} is aninterval in X, andwe concludethatthereis aninternval in T.

Thefinal casesif T T | (AUB); thenthereexistsasourcex' in AUB.
If X' belongto B, thenx’ dominatesevery vertex in T save x, thus{x, X'} is
anintenal in T. If X € A, thenpartitionT into

{x}, (A\ {x})u{y},BU{X}.

Now deletingBu {x'} givestheinterval {x,y}. Deleting{x} givesasource
sin T —x. Since(y,X) isanarc,s# X. Sincex' dominatesachvertex of
(AUB)\ {X}, wemusthaves=y. Hence B = 0. Thus,{x,y} isaninterval.
Finally, deleting(A\ {X'}) U{y} givesthat{x, X'} is aninterval.

Next, we assumehat T hasneithera sourcenor a sink. Fromthe tour-
namentanalogueof Theoreml, it followsthatT hasanon-etendablepair
of vertices.If x,y is onesuchpair of non-exctendableverticesin V(T) =V,
thenpartitionV \ {x,y} into four subsets

00, 01, S10, S11,

where Sy is the setof verticesdominatingx andy, S; is the setvertices
dominatingx andnoty, S is the setthe verticesdominatingy but not x,
and$Sp is thesettheverticesdominatedby x andy.

Supposdirst thatx,y is 3-extendable.

Casel. S;1 = 0. We partitionV into {x} U S1, {y} U S10 andSyo. Since
T is aP(3,2) tournamentthe inducedsubtournamenon the union of two
of thesesubsetds isomorphicto T. Two casegjive sinks,sothe solere-
mainingcases T [ ({X Yy} US1USip) = T in whichx,y is 2-extendabldn
theinducedsubtournament&andso thereis a 2-extendablepair of vertices
inT.

Case2. S;p = 0. We partitionV into {x} U So, {y} US11 andS1. Two
casedor P(3,2) give asourceor asink, sothe soleremainingcaseis T |
({X Y} USoUS11) 2 T in which {x,y} is aninterval.

Theothercasesaresimilar. If x,y is 1-extendablethen{x,y} is aninter-
val or ananti-interval a pair of vertices{a, b} suchthatwheneer (a,2) is
anarc,then(z b) is anarc,wherez # a, b.

Considetthefinal casewhenthereexistsapairx, y whichis 2-extendable
andassumehat {x,y} is neitheraninterval nor an anti-intenal. The sole
casethen (by directionalduality) is when S and $;; arenonempty The
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partition
{x}, S1uU iy}, S

then gives either a sourceor an anti-intenal. If we obtaina source,we
obtainaninterval by previousarguments.

To prove thatwe have anintenval, it is enoughnow to show thatthe exis-
tenceof ananti-intenal {a,b} in T givesa contradictionor aninterval. By
directionalduality, we may supposehat(a, b) is anarc. Throughoutwhen
speakingaboutan interval or an anti-intenal {a, b}, it will be implicitly
assumedhat(a, b) is anarc.

If T hastwo distinctanti-intenals{a, b}, {c,d} which intersectthenif
b=d, then{a,c} is aninterval. A similar conclusionholdswhena = c.
We canthereforeassumehatb = ¢ or a= d. Without lossof generality
supposé = c andso (d, a) is anarc. Thesetof vertices

V(T)\{ab,d}

admitsa partitioninto A the out-neighbour®f a not equalto b, andB the
in-neighbourof anotequalto d. ObserethatA — b — BandB — d — A.
ThepartitionAuU {a}, {b},BU{d} giveseithertheinterval {a,d}, or b asa
sourceor sink. In any casewe have aninterval.

Thus,we canassumdhatthe anti-intenals aredisjoint. Enumeratehe
anti-intenalsof T as

{leyl}, {XZ, yz}, e

Denoteby X the union of the x;’s, by Y the union of they;’s, andby S
thesetV \ (XUY). Wefirst reduceto the casewhenSis empty Otherwise,
by consideringhepartitionX,Y, Sof T, we deducehatT is isomorphicto
TI(XUuorT [ (YUS) (andnotto T [ (XUY), sincein thatcase gvery
vertex of T would becontainedn ananti-intenal andsoSwould beempty).
SupposehatT | (XU S) (the othercaseis similar.) Every anti-intenal of
T [ (XU 9) is ananti-intenal of T, which givesa contradiction.

We maythereforeassumehatSis empty;in particular theanti-intenals
of T form aperfectmatching(thatis, asetof pairwisenon-incidentdirected
edges)Now thepartition

{xat {yah, T\ {3, ya}

givesa contradiction.

We now concludethat T hasaninterval. We now introducean extension
of the notion of intenal. A chain-intervalis a subsetS of V suchthat
T | Sis alinear orderand every elementoutsideof S eitherdominatesS
or is dominatedby S. An importantpropertyof chain-interals is that a
(not necessarilyfinite) union of pairwiseintersectingchain-intenalsis a
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chain-intenal. Thus,usingZorn’slemma,we mayconsidemaximalchain-
intervals of T; moreover the setof verticesof T is partitionedinto chain-
internvals. By the factthat T hasan interval, there exists one non-trivial
chain-intenal. By the P(3,2) propertyandan argumentsimilar to onein
the proof of Theorem2, T haseithertwo infinite chain-intenals, which
resultsin a linear order or a unique infinite chain-intenal and possibly
somesingletonchain-intenals.

We considerthe casewhenthereis a uniqueinfinite chain-interal C. If
C =T, thenthetheoremfollows, sowe mayassume is a propersubtour
namentof T. C satisfies?(2,1) by uniquenessWe assumehatC = w*,
wherea is anon-zeroordinal. (The casewhenC is thereversalof anordi-
nal follows by directionalduality.) Let us denoteby A andB the partition
of V(T)\ C suchthatA — C andC — B. Now considerfor ?(3,2) the
partitionA, B,C.

If TT | (AUB), thenthereexistsauniqueinfinite chaininterval C' in
AUB. LetT'=T | (AUB). Denoteby A’ andB' theintersectiorof A and
B with C’, respectiely. SinceC is the unigueinfinite chain-interal, and
hasordertype w?, in orderto avoid in C" aninterval of T (which would be
disjointfrom C, andthusviolate our hypothesighatthereis a uniquechain
internval in T), it is necessarthatthe successoandthe predecessadn C' (if
ary) of anelementof A’ areelementsof B, andcorverselythe successor
andthepredecessaf anelemenbof B’ areelementof A'. In particular the
ordertype of A’ andB' is exactly the ordertype of C’, which is the order
type of C. (We areusingthe crucial fact herethatC hasordertype w”.)
Considemow thepartition

A B, AUB\ (N UB

of V(T'). If T"=T' | (N UB') wearedonesinceT’ andhence T, arelinear
orders.If T"= T/ 1 (V(T')\ B'), thenA’ andC areinfinite chain-intenals
of T. Sincethereexists at mostone infinite chain-interal in T, A’ and
C mustbe containedn a larger uniqueinfinite chain-intenal of T, which
mustbeisomorphicto C (by uniqueness)Sincethe ordertypeof A’ +C is
C+C (andthe ordertype of A’ is C), we violate the left-cancellationlaw
of ordinals. (SeeTheorem3.100f [9].) The samecontradictionoccursif
TT | (V\A): wewould obtainthe conclusionthat the ordertype of
C+ B’ istheordertypeof C.

We mustthereforehave T = T | (AUC) or T2 T [ (BUC). By di-
rectionalduality, we now have the following situation: T is isomorphicto
C — B, whereC is anordinalpower of w or thereversalof suchanordinal,
andB hasno non-trivial chain-intenals.

We now prove thatthereis somevertex in B of in-degreel. Fix a vertex
x in B. We denoteby X andY thein-neighboursandout-neighbour®f x
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in B, respectrely. Obsenre thatsinceC is a maximalchaininterval, X is
nonempty Lety € X. If X\ {y} =0, thenx hasin-degreelin T. We may
thereforeassumehat X\ {y} # 0. We partitionV (T) into

CuU{x},YU{y}, X\ {y}.

If TT | ((Cu{xpu(X\{y})) =T/, thenxisasinkin T’. Considerthe
partitionof V(T') into
C, XA\ {y}, {x}.

Deleting X \ {y} leavesC — x, whichis alinearorder If T/ = T/(X\
{y}u{x}) =T", thenT” hasa chaininterval C" isomorphicto C. It is
not hardto seethatC” is a chaininterval of T/, and by the maximality
anduniquenessf C, we musthave thatC andC” arecontainedn a chain-
internval of T’ isomorphicto C. If C is anordinalpower of w thisviolatesthe
left-cancellationlaw for ordinals. If the ordertype of C is (w*)* for some
nonzeroordinal a, thenwe may usethe factthat (w")* — (w")* 2 (w*)*
to obtaina contradiction.

This forcesthat T’ = T’ — x, which is impossible: T’ — x would contain
asink X, whichin turn, with x, would be a nontrivial chain-interal in T’
disjointfrom C, which asbeforewould give a contradiction.

If T=T[((XUY)\{x}) viaanisomorphismf, thentheimageunderf,
sayC', of C in XUY would alternatefrom X to Y. SupposehatC; is the
partof C' intersectingX; C, is definedsimilarly. We considerthe partition

Cx, GV (CLUCY).

As in anargumentabove, this casegiveseithera contradictionor givesthat
T isalinearorder

Thus, T =T [ (Cu{x}uY u{y}) viaanisomorphisng. In otherwords,
(with thenotationthat T = C — B) B hasavertex of in-degreel relative to
B (the pre-imageof x underg); we denotdit by Xo.

Given a tournamentT’, the chain-reductionof T’ is the operationin
which we deleteall the verticesof a maximal linear order L satisfying
T’ =L — A. A point-reductionof T’ is thetournamenbbtainedirom T by
deletingonevertex of in-degreel. A reductionof T’ is obtainedby apply-
ing achain-reductiorfollowedby onepoint-reductiorto T’. A tournament
which is unchangedy a reductionis reduced Applying somenumberof
reductiongo T’ (beginningwith the chain-reductiorf deletingC followed
by thepoint-reductiorof deletingXp; possiblytransfinitelymary reductions
may resultafterthis initial reduction).the processaventuallyterminatesn
the emptytournamenbr a reducedtournament.ln the latter case we call
theresultingreducedournamenga nucleusof T. (We arenot claimingthat
anucleuss unique,sincepoint-reductionsnaynot be unique.)
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The reductionprocessdefinesa linear order L on the verticesnot in a
givennucleus:x < y if x hasbeendeletedbeforey in the reduction,or
x andy were deletedin the samechain-reductiorandx is lessthany in
this chain. Thus,for ary elementx of L, thein-degreeof x in theinduced
subtournamendf T’ ontheset

{yeL:x<yinL}uU{x}

isatmostl.

Thefirst cases if everynucleusof T is empty We make useof thelinear
orderL onV definedabore. Considerthe graphG of the orientedgraph
on T whosearcsarethe arcswhich arenotin L. The verticesoutsidea
nucleusform aforestin G; hencejn this casethegraphG itself is aforest.
The verticesin C areisolatedin G, andB givesrise to a forestF. Recall
thatT = C — B, with C theuniqueinfinite chain-intenal of T. Considera
fixed2-colouringof B with nonemptyindependensetsB1, B,. Considetthe
partitionV(C), By, By. DeletingV (C) leavesa tournamentwith no chain-
interval which is a contradiction. Finally, the inducedsubtournamentsn
CuB; andCuUBy arelinearorders:thelinearorderL restrictedo thesesets
coincideswith T.

The final caseis whenthereis a nucleusN of T thatis nonempty It is
straightforvardto seethatN andC aredisjoint. PartitionV(T) into

V(C),V(N),V(T)\ (V(C)UV(N)).

ThesetV(T)\ (V(C)UV(N)) is notemptysinceit containsxg (our vertex
of in-degreelinB). If T=T | (V(C)UV(N)) =T’ viaanisomorphismf,
thenC is the uniguenon-trivial chaininterval of T’ (this follows asabove
by left-cancellatiorfor ordinalsandthefactthat (w®)* — (w®)* 2 (w*)*).
Hence, f(B) = N. But B hasa vertex of in-degree 1, while N doesnot.
DeletingV (C) wouldresultin T = T | B viaanisomorphisnmh. But asde-
scribedabove, consideringheimageof C underh givesa contradiction We
mustthereforehave T = T | (V(T) \V(N)) = S In this case we consider
thegraphG of the orientedgraphon arcsof Swhicharenotin L. Deleting
N from T leavesC (sinceC is deletedin the first chain-reduction)anda
setF whichis aforestin G. If F is empty we arefinished,sincethenL
is isomorphicto C whichis alinearorder AssumethatF is nonempty To
finish, applynow the sameargumentto Sastheoneappliedto T in thecase
whenevery nucleusof T is empty O

Theordertypeof therationalss denoted), andalinearorderis scatteed
if it doesnotcontainn asasuborderAlthoughwe donotyetknow aclassi-
ficationof the P(n,k) linearordersfor all possiblevaluesof the parameters
n, k, thefollowing theoremdoesgive someinsightinto their structure.
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Theorem 7. If L is a P(n,k) linear order, where 1 < k < n, thenL is scat-
tered.

Proof. To every countabldinear orderL, we associatehe (countable)set
I (L) of intervals of L which are of ordinal ordertype. Thus, thereis a
minimum countableordinal,a(L), sothatno elementof | (L) is greateror
equalto a(L).

Supposeto obtaina contradiction,that L is not scatteredand satisfies
P(n,k). Thenwe canfind n disjointintenals|y,...,I, of L, eachof them
containinga suborderof ordertypen. Partition eachlj into Aj andB; in
sucha way thatboth a(Aj) anda(B;) aregreaterthana(L). To seethat
thisis possiblewe applythefollowing claimwith B = a(L), y= a(Aj) and
o=a(B;).

Claim: For fixed countable,y,d € ON sothaty,d > (3, thereis a par

tition of Ij into A; andBj sothaty is aninterval of A; andd is an
interval of B;.

To prove theclaim, notethatsincen) is asubordenof | j, we mayembedy
andd in I in suchaway sothattherearex,y,zsothatx <y <y < 4 < zin
theembeddingDefineA| to betheverticesof y union{r : y <r < z} minus
theverticesof 8, anddefineB; to betheverticesof d union{s:s<y}U{t:
t > z} minustheverticesof y. It is routineto checkthaty is aninterval in
thesubordeon Aj andd is aninterval in the suborderon B;.

LetS=L\ (Ul;). Thepartition

SUALUBH,A2UB1,A3UBy,...,AnUBh_1
of L violates?(n,k) sincethe inducedsuborderon the union of ary k of
thesesubsetss alinearorderL’ with a(L") > a(L). O
5. ORIENTED GRAPHS WITH P(3,2)

An orientedgraphO with ?(3,2) musthave a graphwith 2(3,2). In
orderto characterizehe P(3,2) orientedgraphswe may thereforeexploit
Theoren®. TheorenB alsoclassifiegshe countableorderswith 2(3,2). An
orientedgraphis independenif it hasno directededges.

Theorem 8. Theinfinite orientedgraphswith 2(3,2) that are neitherin-
dependenhor tournamentsre (up to converses)thefollowing:

Kl&J(JL)G,(.Oa L‘l’J(A)B,().)a %) KDO, Ki— KDO, KDO — KDO, KDO — OJG,(JL)G — KDO,
whee a and 3 are countableordinals.

Proof. Considerorientationof theinfinite 2 (3,2) graphsG thatareneither
cliquesnor complement®f cliques. Thesewill give all theinfinite 2(3,2)
orientedgraphgshatareneithertournamentsorindependent.
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Casel. G =K1 WKp,.

In this case theinfinite clique mustbe an orientationof a P(2,1) tour-
namentwhich mustbealinearorder:theinfinite randomtournamentT *,
alongwith anisolatedvertex doesnothave P(3,2). To seethis, let x bethe
isolatedvertex, andfix y a vertex of T*. Let O be the out-neighbourof
y andl thein-neighbourof y. The conclusionfollows by consideringhe
partition{x,y}, O, .

Case2. G =K; VKp,.

Partition K, into O, the out-neighbour®f K1, andl, thein-neighbours
of K;1. Sincethe orientedsubgraphnducedby OuU | hasno edgesby the
P(3,2) propertywe have K is a sourceor sink.

Case3. G = Kp, VKp,.

Denotethe join-componentas X andY. Fix x € X. Let O bethe out-
neighbourof xin Y, andlet | bethein-neighbourof xin'Y. By P(3,2),
we concludethat thereis a sourceor a sink. Sincex was arbitrary we
canconcludethereexist at leasttwo sourcesor two sinks; without loss of
generality supposedhat thereare two sourcesandthey belongbothto X.
In particularY is determinedyy having no sourcesWe partition X into its
setof sourcesS minusonecalleds, thesetX\ S andY. If we deleteS,
thenwe areleft with an orientedgraphwith exactly onesources, giving a
contradiction.To seethis, notethatthereareno sourcesn Y sincese X\ S
isasource. Any sourcein X \ Swould beasourcein XUY. If Y is deleted,
thenwe are left with an independentet. Therefore,the orientedgraph
inducedby SUY is isomorphicto the original orientedgraph,which must
beKpn, — Ko,

Case4. a) G = K, WKp,, b) G=Kpg,wKp,.

In eithercasewrite G = XuY, whereX,Y € {Kg,,Kn,}. It is straight-
forwardto seethatif X andY arecompletethenthey have P(2,1). In case
a), we obtainthe disjoint unionof two 2 (2, 1) tournamentsywhich mustbe
linear orders. In caseb), we obtainthe disjoint union of a P(2,1) linear
orderandaninfinite independenset.

Case5. G = Kp, VK.

Namethe join-componentsX, Y, respectiely. A similar agumentasin
Case4 establisheshatY has?(2,1), andsois alinearorder A similar
argumentasin Case3 establisheshat we musthave X — Y or Y — X.
Therefore,in this case,we obtain (up to corverses)L — |, wherelL is a
?(2,1) linearordet andl is aninfinite independenset. O
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6. COMMENTS AND PROBLEMS

For agivenintegern > 2, we mayconstrucseveralexamplesof (n,n—
1) graphsasfollows. If G andH aregraphsandx € V (G), thenby substitut-
ing xin G by H we meanexpandingx to acopy of H andthenjoining every
vertex of H to the neighboursof x in G. Fix G agraphwith n— 1 vertices.
SubstituteeitherKp, or K, for someof the verticesof G. It is not hard
to seethattheresultinggraphshave P(n,n—1); in fact,the ?(2,1) graphs,
exceptR, areof this form, andall the P(3,2) graphsareof this form. Un-
fortunately thereareexamplesof 2(n,n— 1) graphsfor eachn > 4, which
arenotof thisform. For example thegraphG(n) definedto be

(n—4)Kg, & DoKW K,

has?(n,n—1).

The outstandingopenproblemwe presentis the one of classifyingthe
?(n,k) graphstournamentsandorientedgraphswhenn > 3and1 < k <
n. Theoremsl and7 put somerestrictionson suchstructures.A related
problemis whetherthereare only finitely mary ?(n,n— 1) graphswhen
n > 3. Theevidencesofar suggestshis questionwill beanswereaffirma-
tively; if so,is therea non-constructie proof? Anotherproblemis whether
astructurewith 2(n,n— 1) alsosatisfiesP(n+ 1,n) whenn > 3.

The age of a graphG is the setof isomorphismtypesof inducedsub-
graphsof G. An age 4 haspolynomialprofile if thereis a polynomial
function f : w — w sothatthe numberof n-vertex graphsin 4 is bounded
above by f(n). We conjecturehatanage4 of a countablegraphhaspoly-
nomial profile if andonly if 4 is the ageof a countablegraphsatisfying
P(n,n—1) for somen > 2.
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