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What does Schur’s Tauberian theorem have to do with the fact that, in a
random two-coloured linear forest, the probability that a given monadic second-
order sentence holds is well-defined? The connection is the subject of a detailed
theory, developed mainly by Kevin Compton over many years. The goal of this
book is to explain the connection and its background, including all necessary
analysis and logic, in a style accessible to a good undergraduate.

If A(x) =
∑

anxn, where an enumerates the n-element structures in a class
A, and B(x) =

∑
bnxn where bn enumerates a subclass B, then the local, global,

and Dirichlet density of B are, respectively, the limits of

b(n)/a(n),
∑
n≤x

b(n)
/ ∑

n≤x

a(n), B(x)/A(x)

as n→∞, x→∞, x→ ρ− respectively, where ρ is the radius of convergence of
A(x). If A(ρ) =∞, each type of density extends the preceding one (in the sense
that if the earlier one is defined then the later one is equal to it). The strategy
for proving the existence of local density, then, falls into two parts: show that
Dirichlet density exists (and is calculable), and then prove a Tauberian theorem
giving necessary conditions for the local density to exist.

The results in the first six chapters are given for additive number systems,
that is, free commutative monoids with an additive norm. (Combinatorial enu-
merators should think of a structure uniquely expressible as the disjoint union
of connected components.) The relation between the counting sequences p(n)
and a(n) for indecomposable (connected) and arbitrary structures respectively
is the so-called fundamental identity∑

n≥0

a(n)xn =
∏
n≥1

(1− xn)−p(n).

Sets to which the technique applies are the partition sets, specified by requiring
that the numbers of indecomposables of various types are smaller than, equal
to, or greater than a specified value.

Now the connection with logic arises thus. Let L be a finite purely relational
monadic second-order language. (This means that there are no constant or
function symbols, and that we are allowed to quantify over elements or subsets.)
Let K be a class of L-structures containing the empty structure, closed under
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disjoint union, and having a unique decomposition into indecomposables. Then,
for any L-sentence φ, the class of structures satisfying φ is a disjoint union of
partition classes. So the previous results apply, and under suitable conditions
we get a density law (or sometimes even a zero-one law) for L-sentences.

In the second half of the book, the corresponding analysis is given for mul-
tiplicative norms. Typically, structures are combined by direct product instead
of disjoint union, power series are replaced by Dirichlet series, and Ehrenfeucht–
Fräıssé games by the Feferman–Vaught theorem. A different “fundamental iden-
tity” is used, and all the analysis has to be re-done, but surprisingly similar
results emerge (usually for global rather than local density). This applies to
abelian groups, Heyting algebras, etc. The results are less complete, and sev-
eral conjectures and open problems are discussed.

The book is clear and self-contained, and fulfils its purposes admirably. But
what should you say to a student who has read the book and been hooked and
wants to know more?

The methods used depend entirely on convergent series, and so only apply to
counting functions with growth no faster than exponential; but there are results
on faster growth, and also a variety of analytic tools available in Odlyzko’s
survey [3]. Burris gives an artificial counterexample to one assertion on p. 85
and asks without comment whether a “natural” example exists. If by “natural”
we understand that we are counting substructures of a countably categorical
structure, then much is known about growth rates (due to Macpherson in [2]
and subsequent papers). Indeed, instances where a zero-one law is provided by a
countable universal object are more common and fruitful than the brief note on
p. 107 suggests: see [1] for examples. Other models for a random structure, like
those in random graph theory, have been developed; Shelah and Spencer have
spectacular results (see Winkler [4] for an accessible survey). Also there is an
“inverse problem”. For example, exactly half of all N-free graphs on more than
one vertex are connected (since the complement of a connected N-free graph is
disconnected). This simple fact determines the asymptotics completely!
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