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The aim of this short series of lectures is to give some impression of what life
as a mathematician is like. It has taken me to many parts of the world, and enable
me to work with extraordinary people from many different cultures.

There will be some mathematical content in the lectures. As Julian Havel said,
mathematics is not a spectator sport; I will expect some engagement from you.

You may also amuse yourself by spotting several appearances by fellows of
Caius in the lectures.
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1 Before and beyond Sudoku

In this lecture I am not going to tell you how to solve a Sudoku puzzle. I want to
show you two things. First, mathematicians and (more importantly) statisticians
had invented all the ingredients of Sudoku some time before the puzzle first ap-
peared. Then I will turn to a variant on Sudoku invented by Robert Connelly and
independently by Vaughan Jones, and show you that finding all the solutions can
be accomplished by arguments using some of the highlights of finite geometry
and coding theory.

But first I am going to discuss the following:

There’s no mathematics involved. Use logic and reasoning to solve
the puzzle.

Instructions inThe Independent

Any mathematician is rightly outraged by this. I would state, very firmly, that
mathematicsis reasoning and logic. The reason for its power and applicability
is that the techniques for analysing problems and reasoning your way towards a
solution which you learn in a mathematics course generalise to virtually any type
of problem which you will meet, and form the best possible equipment for the
problem-solver.

As Ian Stewart put it in his bookDoes God play dice? The mathematics of
chaos,

To criticize mathematics for its abstraction is to miss the point en-
tirely. Abstraction is what makes mathematics work. If you con-
centrate too closely on too limited an application of a mathematical
idea, you rob the mathematician of his most important tools: analogy,
generality, and simplicity. Mathematics is the ultimate in technology
transfer.

Other mathematicians agree. Sir Michael Atiyah was asked by a journalist
what he thought of the current craze for Sudoku. He said that he was pleased
to see so many people exercising themselves with mathematical problems every
day, and was taken to task on exactly the grounds thatThe Independentwould
support: unlike Killer Sudoku or Kakuro, Sudoku is not mathematics since you
don’t actually doarithmeticwith the numbers (so that any symbols could be used
in their place).
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1.1 Euler

In a newspaper article on “Ten things you didn’t know about Switzerland” I
read, “7. Euler invented Sudoku.” Actually he didn’t, but what he did was very
important for later developments. But before I talk about what he did, I should
acknowledge that even our hero has feet of clay.

One of Euler’s achievements was the solution of the problem of thebridges of
Königsberg. Here is the layout of the rivers and bridges in the city of Königsberg
(now Kaliningrad) in Euler’ day.

Is it possible to walk around the town, crossing each bridge exactly once? (It is
claimed that the citizens of the town liked to walk, annd were very much engaged
with this question.) Euler showed that the answer is “No”. The reason is not hard
to see. Each region has an odd number of bridges leaving it, so a walk using each
bridge exactly once must either start in that region and end somewhere else, or
start elsewhere and end in the region. But this is not possible with more than two
regions!

Indeed, as is well-known, Euler gave a necessary and sufficient condition for
any such network of regions and bridges to have what is now called anEuler tour.

3



But what is less well-known is the contents of a letter he wrote to Carl Ehler,
mayor of Danzig, 3 April 1736:

Thus you see, most noble Sir, how this type of solution [to the Königsberg
bridge problem] bears little relationship to mathematics, and I do not
understand why you expect a mathematician to produce it, rather than
anyone else, for the solution is based on reason alone, and its discov-
ery does not depend on any mathematical principle . . .

In the meantime, most noble Sir, you have assigned this question to
the geometry of position, but I am ignorant as to what this new dis-
cipline involves, and as to which types of problem Leibniz and Wolff
expected to see expressed in this way.

It appears, then, that not only did Euler think that reasoning and logic are not
the same as mathematics (in fact, he seems to suggest they have little connection),
but he admits that he does not know what constitutes the subject of Topology (as
we now call “geometry of position”) and doesn’t seem to think that is mathematics
either! What has happened?

My guess is that the word “mathematics” has broadened its meaning since
Euler’s time.

A recent paper in theBSHM Bulletintraces the history of the K̈onigsberg
bridges (which have suffered a lot of destruction and rebuilding), indicating in
which periods an Euler tour of the bridges was possible. It is now, and the authors
celebrated by taking the tour!

1.2 Euler and magic squares

Euler wrote a couple of papers on magic squares. These had been a topic of
great interest to mathematicians of many cultures (Chinese and Arabic especially)
before they came to Euler’s attention. Here is Dürer’sMelancholia.
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16 3 2 13
5 10 11 8
9 6 7 12
4 15 14 1

In the picture you see a magic square, not very legible, which I have printed
to the side for convenience. The entries are the numbers from 1 to 16. Every row,
column, or diagonal has sum 34. In addition, we see the date of the engraving,
1514, displayed in the bottom row.

Mathematicians found many constructions for magic squares. Euler wanted
to find a construction which would work for all values ofn. His idea can be
expressed in modern terminology as follows.

A Graeco-Latin squareof ordern is ann×n array in which each cell contains
one of the firstn Latin letters and one of the firstn Greek letters, in such a way
that the following conditions hold:

• any row or column of the array contains each Latin letter once and each
Greek letter once;

• given any combination of a Latin and a Greek letter, there is exactly one cell
in the array in which that combination occurs.

Of course, other sets of symbols could be used (and must be, ifn > 24); but the
term “Graeco-Latin square” is used whatever the symbol set. This concept was
indeed invented by Euler.

Now take the symbols to be 0, . . . ,n−1 (the digits to basen). Write a two-digit
number in each cell: first the entry inA, then that inB. Each two-digit number
in basen (from 0 ton2−1) occurs once, and it is easily checked that all row and
column sums aren(n2−1)/2. Add one to each number; then they run from 1 to
n2 and the line sums aren(n2+1)/2. With a bit of fiddling, the diagonal sums can
be arranged also. Here’s a little example:

Cβ Aγ Bα

Aα Bβ Cγ

Bγ Cα Aβ

21 02 10
00 11 22
12 20 01

8 3 4
1 5 9
6 7 2
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So the question is: for whichn can a Graeco-Latin square be constructed?
Euler knew how to do this for all numbersn not congruent to 2 mod 4, and guessed
that it was impossible for the remaining values. This is simple to see in the case
n = 2 (try it yourself!). The casen = 6 was formulated by Euler as follows:

Six different regiments have six officers, each one holding a different
rank (of six different ranks altogether). Can these36 officers be ar-
ranged in a square formation so that each row and column contains
one officer of each rank and one from each regiment?

Trial and error suggests that the answer is “no”:

This was not proved until 1900, by Tarry, who exhaustively considered all
possible cases. It was not until the 1960s that it was shown that for all larger
numbers of this form (n= 10,14, . . .) there does exist a Graeco-Latin square: Euler
was wrong! The three mathematicians who showed this (Bose, Shrikhande and
Parker) were referred to as the “Euler spoilers”.

1.3 Statistics

A Latin squareis ann×n array in which each cell contains one of the numbers
1, . . . ,n, in such a way that each number occurs exactly once in each row and once
in each column. Of course, the entries needn’t be the numbers 1, . . . ,n, but can be
chosen from any set ofn symbols, for example, the firstn Latin letters (ifn≤ 26).
The term “Latin square” is actually a back-formation from “Graeco-Latin square”:
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the Latin letters in a Graeco-Latin square form a Latin square (as indeed do the
Greek letters).

The question of existence is easy for Latin squares. Place the numbers 1, . . . ,n
in order in the first row, and then cycle them one place to the right (moving the last
one back to the first place) to obtain subsequent rows. However, determining how
many Latin squares there are, even approximately, is very difficult and essentially
unsolved.

R. A. Fisher pioneered the use of Latin squares in experimental design. He is
commemorated in Caius hall by a Latin square:

Anthony Edwards has pointed out to me that there is a mystery about this
square, which was taken from the cover of Fisher’s book: what is special about it
seems to be that nothing is special about it!

Suppose you are conducting an experiment in a field divided into square plots.
If there aren different treatments to be applied, and there aren×n plots, it is sensi-
ble to arrange the plots as a Latin square; then, if there is a systematic variation in
fertility or soil structure from one side of the field to the other, the treatments will
be equally affected. Here is an experiment at Rothamsted experimental station,
designed by my colleague Rosemary Bailey. (It has the additional feature that any
two treatments occur on neighbouring plots, horizontally or vertically, just once
in each order.)
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What if there is, for example, a boggy patch in the middle of the field? We
should use each treatment once in this patch, as in the following example. This is
called agerechte design. (These were invented by W. Behrens; the German word
translates as “just”, or, more appropriately, “fair”.)

3 4 5 1 2
5 1 2 3 4
2 3 4 5 1
4 5 1 2 3
1 2 3 4 5

The final ingredient was provided by John Nelder. It is possible to generate
new Latin squares from old by taking a set of positions and moving their entries
around to keep the same sets in each row or column; this is called atrade. To
investigate trades, Nelder defined acritical set to be a partially filled Latin square
which meets every trade (so that it has a unique completion to a Latin square), but
if any entry is removed, there is more than one completion. Here is an example.

1 2
2

3

We now have all the ingredients of Sudoku – a critical set in a gerechte design
for the 9× 9 square divided into 3× 3 subsquares – but it was nearly 20 years
later that Harold Garns, a retired architect in New York, invented the puzzle he
called “Number Place”. It was popularised in Japan by Maki Kaji, who renamed
it Su Doku. New Zealander Wayne Gould popularised it in the West. The rest is
history. . .

1.4 Symmetric Sudoku

Robert Connelly, a mathematician who works on the stability of Buckminster
Fuller-type structures (with elements in tension as well as compression), sug-
gested to me the following variant of Sudoku. (Later and independently Vaughan
Jones proposed the same idea.) Suppose that we make the requirements more
stringent: each number from 1 to 9 should occur once in each set of the following
types:
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• rows;

• columns;

• 3×3 subsquares;

• broken rows (one of these consists of three “short rows” in the same position
in the three subsquares in a large column);

• broken columns (similarly defined);

• locations (a location consists of the nine cells in a given position, e.g. mid-
dle of bottom row, in each of the nine subsquares).

For yourentertainment, here is a symmetric Sudoku puzzle devised by Con-
nelly. You are encouraged to try it before reading further.

7
7

6

4 3
1 5 8

2 7

1 4
4

1

Connelly had given a complete analysis of the solutions to these constraints
(which he called “symmetric Sudoku solutions”). His solution can be translated
very nicely into finite geometry, as I will now describe.

First we coordinatise the Sudoku grid. LetF denote the finite field with three
elements{0,1,2} (the integers mod 3). We label each cell with an element ofF4

as follows:

• the first coordinate is the number of the large row containing the cell;

• the second coordinate is the number of the row within the large row;

• the third coordinate is the number of the large column;

• the fourth coordinate is the number of the column within the large column.

We really have anaffine spacerather than a vector space. (An affine space is
essentially a vector space with the special role of the origin removed. So affine

9



subspaces are cosets of vector subspaces. For example, the unique affine line
through the pointsa andb has the form{(1− t)a+ tb : t ∈ F}. Now the elements
of F are 0,1,2; substituting these values fort shows that the three points on the
line area,b,−a−b. In other words,three points form a line if and only if they
add up to zero. Moreover, a set of points in an affine space is an affine subspace
if and only if it contains the line through any two of its points.

Now the regions defining symmetric Sudoku are cosets of the 2-dimensional
affine subspaces with equations as follows:

• rows: x1 = x2 = 0;

• columns:x3 = x4 = 0;

• subsquares:x1 = x3 = 0;

• broken rows:x2 = x3 = 0;

• broken columns:x1 = x4 = 0;

• locations:x3 = x4 = 0.

So the positions of any given symbol must differ in at least three coordinates.
This means that they form a 1-error-correcting code. Here is a small digression
on coding theory.

We have to send messages through a noisy channel; each message is a word
or string of symbols in a fixed alphabet, and there is a small probability that one
symbol will be changed into another during transmission. We arrange to send
messages that look sufficiently different from one another that if a small number
of errors are made the original message can still be recognised.

For example, suppose that all codewords differ in at least three positions. If
one symbol is changed during transmission, the received word is only one step
away from the transmitted word, but at least two steps from any other word. So
the transmitted word can be recognised.

In our case, each cell of the Sudoku grid is represented by a 4-tuple of elements
of F , and as we noted above, the set of positions of a fixed symbol has the property
that any two of the 4-tuples differ in at least three places: thus, a 1-error correcting
code, as claimed.

Counting shows that this code is “perfect”, that is, any 4-tuple differs in at
most one position from exactly one codeword. The rather surprising geometric
interpretation of this is that the balls of radius 1 with centres at the codewords
cover the entire spaceF4 without any overlapping.
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It is known that there is just one type of perfect 1-error correcting code of
length 4 overF , the so-calledHamming code. So a symmetric Sudoku solution is
precisely the same as a partition ofF4 into nine Hamming codes!

Our next goal is to show that the Hamming codes actually form affine sub-
spaces. As we noted, a subspace is characterised by the property that it contains
the line joining any two of its points. We also noted that three points form a line
if and only if they add up to zero.

In the fieldF (the integers mod 3), a moment’s thought shows that three ele-
mentsa,b,c satisfya+b+c = 0 if and only if eithera,b,c are all equal, or they
are all different: e.g. 2+2+2 = 0 and 0+1+2 = 0. So three points form a line
if and only if, in each of their four coordinates, the entries are either all equal or
all different.

This can be nicely understood in terms of the card game SET, some of whose
cards are as shown here:

Each card has four attributes (number, colour, shape and filling), each of which
can take three values. So the set of cards is matched withF4. A “SET” (a winning
combination in the game) consists of three cards such that, for each attribute,
either they are all the same, or they are all different. The examples given are both
SETs. (If you are reading this in black-and-white, the symbols on the three cards
on the left are all purple; those on the right, from the top down, are purple, green,
and red.)

The SETs are thus precisely the lines of the affine space. So we have to show
that a perfect code has the property that, given any two of its elements, the third
point forming a SET with them is also in the code. Strangely (or maybe not
so strangely), this is a typical Sudoku argument! We know the positions of two
occurrences of a given symbol, and infer the position of a third occurrence, just
as you do solving Sudoku puzzles; in a sense, it is easier, since we have more
constraints. (If you solved the puzzle given earlier, you probably discovered this
principle for yourself.)

Once we have reached this conclusion, it is easy to show that there are just two
essentially different ways to partitionF4 into nine Hamming codes, and hence
two symmetric Sudoku solutions. For one of them, we simply take one Hamming
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code (forming a plane in the space) and all the planes parallel to it. For the other,
we switch the three planes in a 3-dimensional space into a different set of three
parallel planes. This schematic picture shows how. You see that, if two sets of
parallel planes are switched, we could have started from a different parallel class
and switch one set, so no new solutions are obtained.
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The problem of constructing a symmetric Sudoku solution was subsequently
posed as a problem inEmissary, the newsletter of the Mathematical Sciences Re-
search Institute in Berkeley, by the Fields Medallist Vaughan Jones.

Our account of all this and much else appeared in the May 2008 issue of the
American Mathematical Monthly(we in this context being Rosemary, Bob, and
I).

A final remark of interest to Sudoku players. A Sudoku puzzle is a set of
entries in a gerechte design containing a critial set; so we would like to know the
size of the smallest critical set (the smallest number of entries in a valid Sudoku).

For Latin squares, the number is conjectured to be a quarter of the total number
of cells, rounded up: that is,dn2/4e. Forn = 9, this would give 21. However, the
conjecture has only been proved forn≤ 8.

For Sudoku, the extra costraint should make the number smaller. It is widely
conjectured that the answer is 17. Many 17-entry puzzles are known, and exten-
sive computer searches by Gordon Royle have failed to find one with fewer than
17 entries.

Of course, the same square can have critical sets of different sizes, and for
different squares, the sizes of the smallest critical sets can be different.
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2 Proving theorems in Tehran

(afterReading Lolita in Tehran: A Memoir in Booksby Azar Nafisi)

In 2003, an international conference on Combinatorics, Linear Algebra and
Graph Colouring was held at the Institute for Studies in Theoretical Physics and
Mathematics (IPM) in Tehran, Iran. A select group of international visitors was
invited, and the process of obtaining an Iranian visa was expedited for us. (The
Rough Guide suggests that Iranian visas take weeks or months to obtain, but I
received mine by return post from the Iranian Embassy in London.)

Because of teaching commitments, I had to take an overnight flight which
arrived on the morning the conference began. No problem: I was met at the
airport by a car and driver from the IPM, driven through the truly appalling traffic,
and taken to the guesthouse, where I had just enough time to have breakfast of
bread and honey and tea before we left for the Institute. Mine was the first lecture
of the conference: a surge of adrenaline got me through the talk.

Before the conference, an unsavoury incident had occurred. All invited speak-
ers had received emailed death threats warning us not to come to Iran or we would
be killed. The threats were sent several times in increasingly strident language.
Almost without exception, we were not deterred. But we soon noticed that there
were two strong silent men with bulging briefcases on the bus with us for every
journey. Clearly the authorities were taking no chances.
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Also on the bus with us was Mandana, our hostess, about whom I will say
more later.

The conference was one of the most memorable I have ever attended. Every
day there was a daily bulletin giving some interesting information: a recipe for
bagali polowhich we had for lunch1; the history and contents of the museums
to which we were taken in the many free afternoons; the mathematical genealogy
of the invited speakers; competitions for the students. (One of the competitions
was to discover the middle names of the invited speakers. The winner solved the
problem in the most straightforward way, by asking us! The prize was to have her
photograph taken with us.)

Most spectacular of all was the conference excursion, a two-day trip to the
ancient city of Isfahan, a town with a river spanned by many ancient bridges,

1See appendix
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a ruined Zoroastrian fire temple, many gorgeous palaces and mosques, and the
second largest town square in the world (smaller than Tiananman Square, but
larger than Red Square.)

I had decided to stay for a few days after the conference, in the hope that there
might be a chance of doing some mathematics with locals or other visitors. So
indeed it turned out. In the journal volume containing the conference papers, as
well as my own paper and my edition of the problems from the problem session, I
had no less than three joint papers containing results found in those few days after
the conference.

As well as this, I had the chance to get to know Mandana better. When, a
couple of years later, I came to read Azar Nafisi’s bookReading Lolita in Tehran,
I saw some similarities between her story and Mandana’s. Mandana was a stu-
dent of English literature, who would have liked to make a living by translating
books into Farsi. But typically she would produce a translation and apply to have
publication approved, only to be told “Why do you waste your time translating
that decadent rubbish?” As a result, she supported herself teaching English to the
children of Korean migrant workers, and odd jobs like acting as hostess to a group
of visiting mathematicians. She also wrote poetry, in both Farsi and English. She
volunteered to translate some of my poems into Farsi, but warned me I wouldn’t
get any money for this, since Iran does not subscribe to the copyright convention.
(I knew this already. The translator of my algebra textbook, S. M. Mirafzal, intro-
duced himself to me and gave me a copy of the Farsi edition, whose existence I
hadn’t even dreamed of.)

I now want to describe two pieces of work I did during the conference or my
stay in Tehran afterwards. A third piece of work will appear briefly in the next
lecture.

15



2.1 Self-dual, not self-polar

An incidence structureconsists of a set of “points” and a set of “blocks”, with a
relation of “incidence” between points and blocks. Many people identify a block
with the set of points incident with it, and regard an incidence structure as a set
of “points” with a distinguished collection of subsets called “blocks”. But this
approach, by giving a special role to the points, destroys the symmetry between
points and blocks inherent in the first definition I gave.

For example, in real plane projective geometry, we can take any theorem and
form its dual, by interchanging the labels “point” and “line”. The resulting state-
ment will make sense; more, it will be true, since the real projective plane is
self-dual, in the sense defined below.

Let (P,B, I) be an incidence structure. (This means thatP is the set of points,
B the set of blocks, andI the incidence relation between them.) Adualityconsists
of a pair of bijective functionsf : P→B andg : B→P which “reverse incidence”,
in the sense that if pointp and blockb are incident, then so are the pointg(b) and
the block f (p). An incidence structure isself-dualif a duality exists; this means
that the structure is isomorphic to itsdual (with the labels “point” and “block”
reversed).

It is natural to wonder when we can takeg to be the inverse off . We say that
the duality is apolarity if this holds. There are several ways to express this. If
we apply a duality twice, the resulting maps takeP to P andB to B and preserve
incidence; that is, they comprise an automorphism of the structure. A duality is
a polarity if and only if its square is the identity automorphism. Another say of
describing a polarity, just in terms of the mapf , is that for any two pointsp andq,
p is incident with f (q) if and only if q is incident with f (p). Yet again, a structure
is self-polarif and only if the incidence is represented by a symmetric matrix.

Willem Haemers remarked that rather elaborate constructions, using proper-
ties of finite simple groups of Lie type, show the existence of incidence structures
(of a special type calledgeneralized quadrangles) which are self-dual but not self-
polar. The smallest such example has 85 points, and fairly elaborate computations
in vector spaces over finite fields are required to verify the property. Haemers
asked for a simpler example. We were able to come up with one with just eight
points. On my return to London, my colleague Donald Preece was able to reduce
this to seven points. Moreover, we could show that seven is the smallest possi-
ble number of points in such an example, and that there are just four different
incidence structures with seven points which are self-dual but not self-polar.

The strategy is as follows. An incidence structure can be represented by a

16



bipartite graph, whose vertices are the points and blocks, an edge joining two
vertices if they are incident. (This is called theincidence graphor Levi graph
of the structure. Levi was the teacher of Bose, one of the “Euler spoilers” we
met in the last chapter.) Now an automorphism of the incidence structure is a
graph automorphism which fixes the two bipartite sets (points and blocks), while
a duality is a graph automorphism which interchanges them. So we are looking
for a bipartite graph in which the two bipartite sets can be interchanged by an
automorphism of order 4, but not by one of order 2. I leave it as an exercise for
you to find one with 14 vertices.

2.2 Symmetric sign patterns

Another of the invited speakers at the meeting, Charles Johnson, was interested
in the following question: What do I learn about the eigenvalues of a symmetric
real matrix if I know only the signs of its entries? Call a matrix asymmetric sign
pattern if it has all entries+1 or−1 and is symmetric. An arbitrary real matrix
M with all entries nonzeroconformsto a sign patternP if the sign (positive or
negative) of the entrymi j is pi j for all i, j. (We are considering only matrices with
no zero entries.) Johnson’s question is: what properties of symmetric matrices are
forced by the sign pattern?

The operation ofswitchinga symmetricn× n matrix (or sign pattern) with
respect to a subsetJ of {1, . . . ,n} is performed by changing the sign of the rows
and columns with index inJ. The switched matrix is similar to the unswitched
one, so interesting properties are preserved. Similarly, simultaneous permutation
of rows and columns gives a similar matrix. Also, changing the sign of all entries
just negates the matrix and does not essentially change its properties. So Johnson
wanted to know: How many symmetric sign patterns are there, up to switching,
permutations, and negation? He told me the numbers forn = 1,2,3,4: they were
1, 2, 4, 11 respectively.

As it happened, these numbers were very familiar to me: they are the numbers
of graphs onn vertices (up to isomorphism) forn = 1, . . . ,4. This suggested an
obvious conjecture.

In fact, it is clear that the conjecture is true for oddn. For in this case, any
symmetric sign pattern is equivalent (under switching and negation) to a unique
pattern with all row and column sums even; the off-diagonal−1 entries in this
pattern determine the adjacency in a graph, But for evenn, there is no natural
bijection between graphs and symmetric sign patterns, so more is required.

I was well prepared for this. A graph isevenif every vertex lies on an even
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number of edges. (In terms of Euler’s work on the Königsberg bridges, a graph
has a closed Euler tour if and only if it is connected and even.) In the early 1970s,
Mallows and Sloane had given a direct proof that the numbers of even graphs onn
vertices is equal to the number ofswitching classesof n-vertex graphs (these can
be regarded as equivalence classes of symmetric sign patterns with zero diagonal
under switching and permutation). They proved this by finding a formula for the
number of switching classes and showing that it agrees with the known formula
for even graphs. Once again, there is a simple reason for this ifn is odd, since each
switching class contains a unique even graph. I had found a more conceptual proof
of the general statement, using the notion of duality in vector spaces. Combining
the two approaches led us to the proof of the conjectured answer to Johnson’s
question.

In this case we didn’t need it, but there is a very valuable Internet resource
for investigations of this kind: Neil Sloane’sOn-Line Encyclopedia of Integer
Sequences. If you find an unknown integer sequence, in almost any kind of inves-
tigation, look it up in the Encyclopedia: chances are someone has found it before,
probably in a different context, and you will learn something from the connection.
(In fact, it was while compiling data for the first, printed version of the Encyclo-
pedia, that Mallows and Sloane noticed the equality of the numbers of switching
classes of graphs and even graphs, and set about proving it.) I will say more about
the Encyclopedia in the last lecture.

A third topic I worked on in Tehran will make a brief appearance in the next
lecture. I will outline it here.

For reasons connected with the theory of designs, which I won’t elaborate on,
we wanted to find out all possible sizes for a collection ofk-element subsets of the
set{1, . . . ,n} fixed by the action of a certain permutation group (the group known
as PSL(2,q), wheren = q+1). This required three things

• knowledge of all the subgroups of PSL(2,q) (this is “classical”, having been
worked out by Dickson in the early 20th century);

• knowledge of their orbit sizes (this was worked out not long after);

• knowledge of the so-called “M̈obius function” of each subgroup (this is also
known, though more recent and more obscure).

There are three “strange” subgroups here which don’t form part of a general
pattern. It turns out that they are the groups of rotations of the regular polyhedra
(tetrahedron, cube amd dodecahedron). (Note: although there are five regular
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polyhedra, there are only three different groups, since each of two dual pairs –
the cube and octahedron, and the dodecahedron and icosahedron, have the same
group.)

These groups will reappear in the next chapter.

Appendix

Lima Bean with Dill Rice BAGALI SHEVID POLOW
Bagali polo

(Serves 6 to 8)

The following recipes are from ‘Secrets of Cooking’ by Linda Chirinian (ISBN 0-9617033-
0-X Lionhart Inc. New Canaan, CT).
This exotic Iranian dish can be served with plain yogurt spooned over the rice, or with
roast chicken, barbecued lamb chops, or steak. A straight-sided, non-stick, saucepan is
the best kind of pot to use for this recipe.

Ingredients:

• PREPARATION TIME: 20 MINUTES (plus soaking for rice)

• COOKING TIME: 45 MINUTES

• 1 recipe Steamed Rice

• 1 package (10 ounce) frozen baby lima beans, thawed

• 14 tablespoons butter

• 3 cups freshly chopped dill

• 3 medium potaties, cut into 1 inch slices (optional)

• 1/4 teaspoon cinnamon threads crushed and steeped in 2 tablespoons hot water

• salt and freshly ground pepper to taste

– Prepare steamed rice. Melt 4 tablespoons butter in a non-stick 6-quart saucepan.
Arrange potato slices in single layer in saucepan.
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– Spread one-third of prepared rice over potatoes. Salt and pepper. Cover with
half of lima beans, and half of dill. Cover with half of remaining rice and
remainder of lima beans and dill. Top with remaining rice. Keep ingredients
mounded high in center so steam can circulate. Sprinkle 4 cups water over
rice. Slice remaining butter, place over rice. Cover rice with waxed paper.

– Cook over medium-high heat 8 minutes, reduce heat to low, and cook 35
minutes or until rice is soft and fluffy.

– Set 1 cup rice aside. Mound remaining rice on serving dish. Remove pota-
toes from saucepan with spatula and place around rice or in separate dish.
Sprinkle reserved cup of rice with saffron and mix well. Spread saffron rice
on top of plain rice. Season with salt and pepper.

• VARIATION: When layering rice, add 1 large onion, chopped and sauteed in but-
ter, 6 broiled lamb chops or 2 pounds cooked boneless lamb shoulder cubes, or 6
cooked chicken cutlets. Increase cooking time by 15 minutes.
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3 Transgressing the boundaries

(with apologies to Alan Sokal, “Transgressing the Boundaries: To-
wards a Transformative Hermeneutics of Quantum Gravity”,Social
Text, Spring/Summer 1996)

There are many ways of dividing up mathematicians, some jovial (“There are
10 types of mathematician, those who understand binary notation and those who
don’t”), some serious. Tim Gowers wrote an essay on “The two cultures of math-
ematics”, the title based on C. P. Snow’s “two cultures” (artistic and scientific).
Roughly put, Gowers distinguished the type of mathematics which requires the
building of big theories from that which solves problems. The theory-builders
look down on the problem-solvers because they do not prove impressive theo-
rems; in fact what they do is to develop techniques which may be applicable to a
wide variety of problems.

I suppose I stand more on the side of the problem-solvers. The prototypical
subject of the theory-builders is algebraic geometry. I have never proved a theorem
of algebraic geometry, but I once used a little light algebraic geometry (dimension
theory) to prove a result about the growth function of the number of orbits of an
infinite permutation group onn-element sets of the domain.

This brings me to my own division of mathematicians, into those who delve
deep and those who range more widely. Here I am definitely in the second camp.
I work mainly in algebra and combinatorics, but have had papers published in the
Annals of Pure and Applied Logic, Probability Theory and Related Fields, and the
Journal of Mathematical Psychology, among others. The most satisfying results
of mine are those in which an idea from one field has turned out to be useful in
another, quite different, area.

I want to discuss three cases of this from my own work. But first a brief
description of an example due to Sokal himself.

3.1 Chromatic roots

A graphconsists of a set of vertices, some pairs of which are joined by edges. If
every pair is joined, it is acomplete graph; if no pairs are joined, it is anull graph.
The complete graph onn vertices is denoted byKn.

A proper colouringof a graphG with q colours is an assignment of the colours
to the vertices ofG in such a way that two adjacent vertices get different colours.
For any graph, there will be a certain minimum number of colours needed to do
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this: for example, forKn, all the vertices must be coloured differently, so we need
at leastn colours. It can be shown that there is a polynomialPG associated with a
graphG, so that the number of colourings withq colours isPG(q) for any natural
numberq.

The famousfour-colour conjecture, proved by Appel and Haken in 1977, as-
serts that if a graphG can be drawn in the plane without edges crossing, then it
can be coloured with four colours; in other words, 4 is not a root of the equation
PG(q) = 0. This led to a lot of interest in the roots (not necessarily integers) of
chromatic polynomials. These are calledchromatic roots. It was shown that there
are no negative chromatic roots, none between 0 and 1, and (remarkably) none
between 1 and 32/27; but after 32/27, chromatic roots are dense (that is, there is
are chromatic roots arbitrarily close to any real number).

Interest turned to complex chromatic roots. Part of the incentive came from
physics, in particular the study ofphase transitions(e.g. ice melting, iron becom-
ing magnetised). These are apparently discontinuous “macroscopic” changes in
materials in which all the “microscopic” quantities behave continuously. This is
the subject matter ofstatistical mechanics, Sokal’s main field.

The Nobel prizewinners Lee and Yang had postulated a mechanism for phase
transitions which involved complex roots of certain polynomials approaching the
real line arbitrarily closely. The polynomials were generalisations of chromatic
polynomials of graphs.

Partly in view of the fact that there are no negative chromatic roots, and partly
based on computations with reasonably small graphs, it was conjectured that com-
plex chromatic roots cannot have negative real parts. However, this was blown out
of the water when Sokal showed that actually complex chromatic roots are dense
in the whole complex plane. (So, although there are no negative real roots, com-
plex roots come arbitrarily close to the negative real axis).

I won’t describe Sokal’s elegant proof here, but the driving principle behind
it comes naturally to a physicist. Think of a graph as an electrical network. You
probably imagine each edge as a 1 ohm resistor. However it is better to let the
resistance of each edge be a parameter which can take arbitrary values, even com-
plex ones. (A circiut including inductance and capacitance as well as resistance
can be thought of as having complex resistance.) Then we can use the series and
parallel formulae from electrical circuit theory to simplify our graph, replacing
several edges in series or parallel with a single edge. This enabled Sokal to find
general results for a particular class of graphs called theta-graphs. At the end of
the calculation, he simply had to put all the resistances equal to 1 to obtain the
graph-theoretic conclusion.
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3.2 Automata, permutation groups, and cores

An isomorphismfrom a graphG to a graphH is a bijective mapping between
the vertex sets that carries edges to edges and non-edges to non-edges. A weaker
notion is that of ahomomorphism, a mapping that takes edges to edges – we do
not care what it does to a non-edge, which may be mapped to a non-edge, or to
an edge, or collapsed to a single vertex. The symbolG→ H means that there is a
homomorphism fromG to H.

Two graphs are calledhom-equivalentif there are homomorphisms in both
directions between them. This is an equivalence relation on the class of all finite
graphs. It is known that there is a unique (up to isomorphism) smallest graph hom-
equivalent to any given graph, called itscore. The core of a graphG is realised as
an induced subgraph ofG.

Here is an example. Theclique numberω(G) of a graphG is the largestm
such thatG contains a complete graph onm vertices: that is, the largestm for
which Km→ G. As we saw earlier, thechromatic numberχ(G) is the smallest
number of colours required to colour the vertices so that adjacent vertices receive
different colours; that is, the smallestm such thatG→ Km. (Take a moment to
see why this is true. Graph homomorphisms generalise graph colouring and are
widely used to formulate constraint satisfaction problems.)

Clearly, for any graphG we haveω(G)≤ χ(G); equality holds if and only if
the core ofG is a complete graph.

It is known that the core of a graph inherits some symmetry properties of the
graph, such as vertex-transitivity. When I was asked by a former postdoc, Cristy
Kazanidis, for a research problem to work on, I suggested looking at the cores of
graphs with a great deal of symmetry. We chose to look at the so-calledrank 3
graphs, those whose automorphism groups act transitively on vertices, edges and
non-edges. After looking at a few cases, we came up with the conjecture that
either the core of such a graph is complete, or that the graph is itself a core.

The next chapter of the story comes from a completely different source, indi-
rectly from two researchers in automata theory, João Aráujo in Lisbon and Ben
Steinberg in Ottawa. Following notes of João, I can describe the problem this way.
Imagine you are in a dungeon consisting of a number of interconnecting rooms.
Passages between rooms are marked with coloured arrows. Each room contains
a special door; in one room, the door leads to freedom, but in all the others, to
instant death. You have a schematic map of the dungeon, but you do not know
where you are located. You would like to have a sequence of colours such that,
following the edges of these colours in order from any starting point, you will ar-
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rive at the escape room. Such a sequence is called areset wordin automata theory.
Not every finite automaton has a reset word; but the oldest problem in automata
theory, theČerńy conjecture, states that, if a reset word exists, then there is one of
length at most(n−1)2, wheren is the number of states (or rooms in our example).

Here is an example, due to João Aráujo.
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You can check that (Blue, Red, Blue, Blue) is a reset word which takes you to
room 3 no matter where you start.

A related question, theroad-colouring problem, has been solved recently.
Given a directed graph with a constant numberd of edges out of each vertex, can
it be coloured withd colours so that there is a reset word? The obvious necessary
conditions are that the graph isstrongly connected(there is a directed path from
any vertex to any other) and the lengths of the directed cycles are coprime. These
were conjectured to be sufficient by Benjamin Weiss and Roy Adler in 1970; this
conjecture was proved last year by Avraham Trahtman.

If every colour corresponds to a permutation of the states, then no reset word
exists. The two researchers were led to the concept of asynchronizingpermuta-
tion group, one with the property that if any non-permutation is added to it, it is
possible to generate a reset word (that is, a constant function).

I learned about this by two different routes: first, from a lecture in summer
2007, which described a seemingly different concept for permutation groups and
stated that it arose from automata theory; and in January this year, when a former
PhD student of mine, now in Ottawa, told me about a conversation he had had with
Ben Steinberg at a bus stop. Very soon I was able to see that this was connected
with cores. Specifically, I was able to prove the following theorems:

• If the automorphism group of a graphG acts transitively on the non-edges
of G, then either the core ofG is a complete graph, orG is itself a core.
(Thus the conjecture Cristy and I made is true.)
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• A permutation group is non-synchronizing if and only if it is contained in
the automorphism group of a non-null graph which is not a core.

3.3 Root systems and line graphs

A graph can be specified by giving itsadjacency matrix. If the vertices ofG are
v1, . . . ,vn, the adjacency matrixA(G) is then×n matrix with (i, j) entry 1 if vi

is joined tov j , and 0 otherwise. The algebraic properties ofA(G), in particular
its eigenvalues, give important information about the graph. Note that writing the
vertices in a different order replacesA by P−1AP for some permutation matrix
P, and doesn’t change the eigenvalues. Also, we may assume that the graph is
connected; if not, it is enough to look at the connected components.

In the 1950s and 1960s there was a lot of interest in the smallest eigenvalue
λ (G) of a graphG. It is easily shown thatλ (G) ≤ −1, with equality if and only
if G is a complete graph (assuming it is connected). Attention turned to graphs
with least eigenvalue−2 or greater. After several special cases had been analysed,
Alan Hoffman wrote a long manuscript dealing with the general case.

Part of the difficulty comes from the fact that there are two families of graphs
with this property: line graphs and cocktail party graphs. LetH be a graph. The
line graphof H is the graphL(H) whose vertices are the edges ofH, two vertices
of L(H) being joined if and only if the corresponding edges have a common ver-
tex. LetN be the vertex-edge incidence matrix ofH. ThenN>N = 2I + A(G),
where G = L(H). SinceN>N is positive semi-definite (all eigenvalues non-
negative),A(G) has all eigenvalues−2 or greater.

A cocktail party graphhas 2m verticesv1, . . . ,vm, w1, . . . ,wm; all pairs are
joined exceptvi andwi for all i. (At a cocktail party, you talk to everybody except
your own partner.) It is an easy exercise to show that this graph has smallest
eigenvalue−2.

Hoffman discovered a class of graphs which he calledgeneralized line graphs
also fitting the bill. One of these is obtained by taking the line graph of a graph
H, and glueing on cocktail parties to the edges through each vertex ofH.

Hoffman’s manuscript, which was not published (I believe he was not com-
pletely happy with the argument) purported to prove that all “sufficiently large”
graphs with least eigenvalue−2 or greater is a generalized line graph. In the mean-
time, Jean-Marie Goethals in Brussels, Jaap Seidel in Eindhoven, Ernie Shult in
Manhattan, Kansas, and I found a much nicer proof of the theorem which showed
exactly how large “sufficiently large” has to be.
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The proof uses the notion of a root system, developed by Cartan and Killing in
order to classify the simple Lie algebras over the complex numbers. Aroot system
is a finite setS of non-zero vectors in real Euclidean space with the following
properties:

• if v,cv∈ S thenc =±1;

• if v,w∈ S then 2(v·w)/(v·v) is an integer;

• Sis mapped to itself by the reflection in the hyperplane perpendicular to any
of its vectors. (The reflection corresponding tov is the mapw 7→ w−2(v ·
w)/(v·v)v.)

A root system isindecomposableif it is not contained in the union of two non-zero
orthogonal subspaces.

It is impossible to draw helpful pictures of high-dimensional objects; but here
are root systems in 2 and 3 dimensions, known asA2 andA3 respectively. They
are beautiful, symmetric objects; Mark Ronan, in his recent book on symmetry,
refers to them as multidimensional “crystals”.
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The part of the classification we need is that of indecomposablesphericalroot
systems (where all roots have the same length). There are two infinite families
of these, calledAn andDn, wheren is a positive integer, and three “exceptional”
ones,E6, E7 andE8.

I visited Eindhoven regularly at the time. (Their budget went by calendar
years and had to be spent before the end of the year, so I often visited Eindhoven
in December.) When I arrived, Jaap told me of his discovery: first, any graph with
least eigenvalue−2 or greater can be represented as a set of Euclidean vectors. For
2I +A is positive semi-definite; and any positive semi-definite symmetric matrix
is the matrix of inner products of a set of Euclidean vectors.

Jaap had also discovered that the maximal such sets formed an infinite family
with three exceptions.
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The next day we drove to Brussels to visit Jean-Marie. He explained to Jaap
that he had also found one infinite family and three exceptions. But on compari-
son, we found that they had different infinite families. Now two infinite families
and three exceptions meant one thing to me: spherical root systems. And so it
turned out.

The trick is very simple. The vectors representing the graph satisfyvi ·vi = 2
andvi ·v j ∈ {0,1} for i 6= j. So the lines they span are at angles 90◦ or 60◦. Call
three lines in a plane mutually at angles 60◦ astar. A small calculation (this is the
only calculation required in the proof) shows that, if a set of lines at angles 90◦ and
60◦ contains two lines of a star, then the third line of the star also makes angles
90◦ or 60◦ with all the lines. Thus, a maximal set isstar-closed. If we take vectors
of fixed length in both directions along all the lines, the first two conditions in
the definition of a root system are clearly satisfied, and star-closure gives the third
condition.

Everything was simple after that. AlthoughAn is maximal inn dimensions, it
is contained inDn+1 (one dimension higher), so we could ignoreAn. It turned out
that graphs embeddable inDn are precisely Hoffman’s generalized line graphs!
Of course, only a finite number of graphs can be embedded in an exceptional root
system. (The largest,E8, has 240 vectors, but an embedded graph has at most 36
vertices.)

The resulting paper is one of my most-cited, and has found various applica-
tions. But so far nobody has managed to classify the graphs with least eigenvalue
−3 or greater: this is a much harder problem!

3.4 Connection number and M̈obius function

The third topic is an open problem, a guess at a connection based on very slim
evidence. Before stating it, I mention briefly another case involving one of the
protagonists in this story, John McKay.

The largest sporadic simple group is the so-called “Monster”, a group of order

808017424794512875886459904961710757005754368000000000.

Before this group was actually constructed, it was shown (on the basis of a hy-
pothesis later confirmed) that the smallest size of complex matrices representing
the group is 196883.

In the classical nineteenth-century theory of complex functions, themodular
functionplays a particular role. It is a function defined on the upper half-plane
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and invariant under the group of M̈obius transformationsz 7→ (az+ b)/(cz+ d),
wherea,b,c,d are integers withad−bc= 1. The Laurent series of the modular
function begins

z−1 +196884z+ · · ·

McKay asked: Is it just coincidence that 196884= 196883+ 1? Of course,
there were not too many mathematicians in the world who would have been aware
of the significance of both these numbers at the time: finite group theorists do not
study complex analysis orvice versa!

The answer is that it is not at all coincidence, and McKay’s observation led to
the theory of “monstrous moonshine” (the term was invented by John Conway),
with connections to Lie algebras and conformal field theory, and eventually to a
Fields medal for Conway’s student Richard Borcherds.

Now to another place where McKay played a role. There is a strange and
shadowy parallelism between, on the one hand, the three “dual pairs” of regu-
lar polyhedra (the tetrahedron, cube/octahedron, and dodecahedron/icosahedron),
and the three exceptional root systemsE6, E7, E8 mentioned in the last section. I
will briefly discuss this before turning to the open problem.

Each rotation groupG in 3-dimensional space can be “lifted” to a groupG
twice as large consisting of 2× 2 complex unitary matrices containing−I ; the
factor groupG/〈−I〉 is isomorphic toG. From the groups of the regular poly-
hedra (the tetrahedral, octahedral and icosahedral groups), we get corresponding
binarygroups of orders 24, 48 and 120. Now we consider the irreducible complex
matrix representations of this group; they are the vertices of a graph in which two
representationsR1 andR2 are joined by an edge if and only ifR2 is a constituent
of R1⊗S, whereS is the distinguished representation of degree 2. The graphs in
the case of the three groups are shown below. (The fact thatS is unitary implies
that edges are undirected.)t t t t t t t t t t t t t t t t t t t ttt t t

Now take a spherical root system. The set of integer linear combinations of
roots forms alattice in the Euclidean space, a discrete additive subgroup. There
is a basis of so-called “fundamental roots”, such that each root is a linear com-
bination of fundamental roots with all coefficients of the same sign. We can add
a special root to the fundamental set in a canonical way which I don’t want to
explain here. Now the inner product of two roots from the enlarged set is 0 or−1:
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form a graph by joining two roots if their inner product is−1. (If A is the adja-
cency matrix of the graph, then the inner product matrix is 2I −A; so the greatest
eigenvalue ofA is at most 2. Compare this with what we had in the last section.
Now it turns out that the “extended Coxeter–Dynkin diagrams” (as they are called)
for the exceptional root systemsE6, E7, E8 are precisely the three graphs above.
(This is theMcKay correspondence. It works for the root systemsAn andDn as
well, suitably re-interpreted – there are no regular polyhedra for these!)

Put another way, the extended Coxeter–Dynkin diagrams are precisely the con-
nected graphs whose vertices can be labelled with numbers in such a way that the
sum of the labels of the neighbours of any vertex is twice the label of the vertex.
Exercise: find such labellings for the graphs in the above figure.

Other areas of mathematics including singularity theory also show the same
correspondence between regular polyhedra and exceptional root systems, or more
generally, provide occurrences of the root systems and their Coxeter–Dynkin dia-
grams. Indeed, these diagrams are among the most ubiquitous objects in the gram-
mar of mathematics. In the 1970s, the American Mathematical Society asked a se-
lect group of mathematicians to propose problems to replace the famous “Hilbert
Problems” from 1900, which influenced the course of mathematics in the twen-
tieth century. The Russian mathematician V. I. Arnol’d proposed the problem of
explaining the ubiquity of the Coxeter–Dynkin diagrams.

Last year, some of my colleagues and ex-students arranged a conference for
my sixtieth birthday, which was held during four days of perfect weather in Am-
bleside, in the Lake District. The conspirators, recalling that I had once said that
any advanced alien civilisation would certainly know the Coxeter–Dynkin dia-
grams, arranged for my son to incorporate them in a birthday card.
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Now to the problem. In Tehran, I worked with three postdocs at the IPM
(Maimani, Omidi and Tayfeh-Rezaie), on counting the designs admitting certain
groups. We had to be able to count subsets of the domain invariant under certain
subgroups of the group in question (this is easy), and from this, to count sub-
sets invariant under the given subgroup but no larger one. The tool for this is a
generalisation of the Inclusion–Exclusion Principle calledMöbius inversion.

In ordinary Inclusion–Exclusion, we have a set of properties and we know
how many elements satisfy any given subset of the properties; we can compute
the number which satisfy that subset and no others. The result is obtained by
adding up the numbers satisfying all larger sets of properties with appropriate
coefficients, which turn out to be all+1 and−1. In terms of a Venn diagram, if
we know how many elements are in the whole box, in each of the circles, and in
all the intersections of circles, we can count the number of elements excluded by
all the circles.
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In the generalisation, we do a similar calculation with subgroups in place of
sets of properties, but the coefficients are not necessarily+1 and−1. TheMöbius
functionis the functionµ(H,K) defined on pairs of subgroupsH,K with H ≤ K:
if a(H) is the number of sets fixed byH, then the number fixed byH and no more
is ∑

K≥H
µ(H,K)a(K).

The crucial value isµ(1,G) where 1 is the identity andG the whole group. It
turned out that for the groups we were looking at, the hardest subgroups to deal
with were exactly the polyhedral groups. The value of|µ(1,G)|, whereG is the
tetrahedral, octahedral, or icosahedral group, is 3, 2, or 1 respectively. (There is a
sign, which I will ignore here.)

Now it also happens that ifL(R) is the root lattice of the root systemR (the
set of integer linear combinations ofR) andL∗(R) is the dual lattice (the set of
vectorsv such thatv · r is an integer for allr ∈ R), thenL∗(R)/L(R) is a finite
abelian group; its order is called theconnection numberof the root system. For
R= E6,E7,E8, the connection numbers are 3, 2, 1 respectively.

Is there a connection??

31



4 Cameron felt like counting

‘I count a lot of things that there’s no need to count,’ Cameron said.
‘Just because that’s the way I am. But I count all the things that need
to be counted.’

Richard Brautigan,The Hawkline Monster

Like the character in Brautigan’s novel, I have always enjoyed counting, from
a very early age. I will talk about some counting problems, solved and unsolved.

Ernst Mach said, “There is no problem in all mathematics that cannot be
solved by direct counting.” This may overstate the case, but counting is abso-
lutely fundamental to mathematics.

First, we should make clear that counting can mean many different things. Let
us suppose that we are counting “objects” of some kind with “size”n. Let f (n)
be the number of such objects.

• Find a formula forf (n).

• Find arecurrence relationwhich allows f (n) to be calculated from knowl-
edge of the preceding valuesf (0), . . . , f (n−1).

• Find explicitly thegenerating function
∞

∑
n=0

f (n)xn – then, at least in princi-

ple, the coefficients can be found by analytic methods.

• Give a (hopefully efficient) algorithm for calculatingf (n): ideally quicker
than generating the objects and counting them!

• Failing an exact formula, give upper and lower bounds forf (n), as close
together as possible.

• Find anasymptotic formulafor f (n), that is, a (hopefully simple) function
g(n) such thatf (n)/g(n)→ 1 asn→ ∞.

There are several other things we might want, closely related to counting. Among
these might be

• An algorithm to generate all the objects, or to move from one object to the
next in some suitable ordering.

• A method to choose an object at random (all objects equally likely), or
failing that, a method which makes the probabilities approximately equal,
and closer to equal the longer we are prepared to spend on it.
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4.1 Partitions and representations

The result of counting objects can have interest beyond the count itself. Here
is a very famous example, concerning the symmetric groupSn (the group of all
permutations of{1, . . . ,n}).

A partition of n is an sequence of positive integers with sumn, arranged in
non-increasing order. For example, there are five partitions of 4:

4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1.

To make a small digression, counting partitions is a very famous problem, to
which Euler made the first serious contribution. No simple formula is known
for p(n), but it satisfies the recurrence relation

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ p(n−15)+ · · · ,

where the sequence continues as long as the numbers inside the brackets are non-
negative. The terms have the form(−1)k−1p(n− k(3k± 1)/2); the numbers
k(3k± 1)/2 arepentagonal numbers, since they record the number of dots in a
pentagonal arrangement of sidek; so the recurrence is calledEuler’s Pentagonal
Numbers Theorem.

u u uuu uuu uu
u uu uu

Why does this recurrence satisfy our criteria? The number of terms in the
recurrence forp(n) is about the square root ofn; so we can computep(1), . . . , p(n)
with approximatelyn3/2 additions and subtractions. This calculation was actually
performed by Percy McMahon in the early 20th century, and his data led to the
brilliant work of Ramanujan and Hardy on partitions.

Back to the story. First, a bit of theory shows that the irreducible representa-
tions ofSn can be “labelled” by partitionsn. There is an ordering on the partitions.
Now we can let the symmetric group act onr-tuples(A1, . . . ,Ar) of pairwise dis-
joint sets with union{1, . . . ,n}, where|Ai | = ai for all i. Take the action of the
group on this set by permutation matrices, and decompose it. You will find just one
irreducible module in the decomposition which has not occurred for any partition
earlier on the list. This is the representation indexed by the partition(a1, . . . ,an).
What is its degree?
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The partition can be represented byn empty boxes placed inr rows with ai

boxes in theith row, for i = 1, . . . , r, the boxes being aligned on the left. Given
such a diagram, atableauis a filling of the boxes with the numbers 1, . . . ,n such
that the numbers increase along every row and down every column. The num-
ber of tableaux for a given partition is precisely the degree of the corresponding
irreducible representation!

For example, here are the five tableaux asssociated with the partition 5= 3+2;
so there is a corresponding representation of degree 5 ofS5.

1 2 3
4 5

1 2 4
3 5

1 2 5
3 4

1 3 4
2 5

1 3 5
2 4

4.2 Permutations

A permutationof the set{1,2, . . . ,n} is a rearrangement of the elements; in other
words, a function mapping the set to itself which is invertible (that is, one-to-one
and onto). Any permutation can be represented incycle notation, in which we
track each element as it is repeatedly mapped by the permutation until it returns
to its starting point. For example, the permutation of{1,2,3,4,5} which maps
1→ 2, 2→ 3, 3→ 1, 4→ 5 and 5→ 4 would be represented as(1,2,3)(4,5). If
the permutation leaves a point where it is, that point forms a cycle of length 1.

There are many interesting counting problems regarding permutations. Often
they can be conveniently expressed in terms of generating functions, of a particu-
lar type called exponential generating functions. If we have a class containingan

permutations of{1, . . . ,n}, we take theexponential generating functionto be

A(x) =
∞

∑
n=0

anxn

n!
.

(The name comes from the fact that, for the simplest possible sequence, with all
terms equal to 1, we obtain the series for the exponential function.

Now the exponential generating function (or e.g.f. for short) of the sequence
counting all permutations is

P(x) =
∞

∑
n=0

n! xn

n!
=

∞

∑
n=0

xn =
1

1−x
.
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For reasons that will appear, we only want to take the terms with even index; so
we get the even powers ofx, and our new function is

P′(x) =
1

1−x2 .

In connection with a problem involving Latin squares, I observed that the e.g.f.
for permutations in which all cycles have even length is

E(x) =
1√

1−x2
.

(Here we only get even powers ofx, since such a permutation can only exist ifn
is even.) Now there is a multiplicative principle for generating functions: For an
arbitrary permutation, there is a unique way of splitting it up into a permutation
with all cycles even and one with all cycles odd. It follows that, ifO(x) is the e.g.f.
for permutations with all cycles odd acting on an even number of points, then

E(x) ·O(x) = P′(x).

From our formulae above, we conclude that

O(x) =
1√

1−x2
= E(x).

In other words,

The numbers of permutations with all cycles even and all cycles odd
are equal.

For example, whenn = 4, there are nine permutations with all cycles even
(three products of two 2-cycles, and six 4-cycles), and nine with all cycles odd
(the identity, and eight permutations consisting of a 3-cycle and a fixed point).

This cries out for a “direct” proof, that is, one matching up the two types of
permutations. I asked for such a proof at the British Combinatorial Conference
in 1993. On the way home from the conference, Richard Lewis and Simon Nor-
ton independently found such a bijection, and wrote it up as a joint paper in the
conference proceedings. You might like to try this one yourself. It is not a very
“natural” bijection, though!
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4.3 Latin squares

We met the concept of a Latin square in the first lecture, and saw how they occur
in various parts of mathematics and statistics. How many Latin squares are there?

This is a very difficult questions, and heroic calculations by Brendan McKay
and Ian Wanless have managed to count Latin squares up to order 11: the number
of Latin squares of order 11 is

776966836171770144107444346734230682311065600000.

You may think that we are over-counting, and that there are some obvious
equivalences: permuting the rows, the columns, or the symbols in a Latin square
gives a different Latin square which is obviously “equivalent” to the first. One
can also transpose a Latin square, and there are more subtle operations involving
exchanging rows and symbols, or columns and symbols. In this way, the set of all
Latin squares is partitioned intomain classes. But these are harder to count, and
the number of main classes has only been calculated up to order 10.

In fact it doesn’t matter too much. Clearly the number of Latin squares is
at mostnn2

, since this is the number of ways of filling ann×n array if n sym-
bols are available. You can probably see how to improve this bound slightly. But
it is known that the number is at least(n/c)n2

, which is not too much smaller.
Put another way, we know that thelogarithm of the number of Latin squares is
asymptotic ton2 logn. Now the number of Latin squares in the same main class as
a given one cannot exceed(n!)3 ·6 (permutations of rows, columns, and symbols
among themselves, and permutations of the three classes: the group of such trans-
formations is known as thewreath productof Sn by S3.) This number is much
smaller, asymptotically, than the number of Latin squares, that dividing by it has
little effect: the difference this makes is swallowed up in our ignorance about the
magnitude of the total number.

Failing this, one of our alternatives was choosing a Latin square at random.
There is another motivation for this. One of the first statisticians to use Latin
squares, R. A. Fisher, introduced the idea of “randomization” in experimental
design, to validate the analysis of variance. Fisher advocated choosing a random
Latin square for an experiment based on Latin squares; for this purpose, he and
Yates began the tabulation of Latin squares which has been continued by McKay
and Wanless. (However, Fisher’s method is no longer required; it is enough to
choose any Latin square and apply a random element of the wreath product ofSn

by S3 to it.)
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There are theoretical reasons why we still need a method for choosing Latin
squares at random. Since there are so many of them, we want to know something
about their “typical properties”. For example, each row of a Latin square is a
permutation of{1, . . . ,n}; what is the distribution of the number of rows which
are odd permutations? A natural conjecture would be that it is approximately the
same as the number of heads inn tosses of a fair coin (a binomial distribution).

A method for choosing random Latin squares was found by Jacobson and
Matthews. It involves a random walk through the very large space. But it is not
easy to think of a small step to take from one Latin square to another. The big idea
of Jacobson and Matthews was to enlarge the space to contain “improper” Latin
squares containing one “fault”.

Suppose, for example, that the entry in rowi and columnj is k, and we wish
to change it tok′. The elementk′ already occurs in rowi (in position j ′, say)
and in columnj (in row i′, say), and we should change these entries tok to avoid
duplications in these rows. If we are lucky, the entry in rowi′ and column j ′

will be k; then changing it tok′ will give us a Latin square. But it is much more
probable that there is a different entry, sayk′′, in cell (i′, j ′). In this case, we
change this cell so that it contains two entriesk′ andk′′ and one “negative” entry
k. If you then check, you will see that, allowing for signs, each symbol still occurs
once in each row and once in each column.

j j ′

i k k′

i′ k′ k′′

→

j j ′

i k′ k

i′ k k′+k′′−k

If we start from an improper Latin square with one fault, we must fix the
fault: if a cell containsk′+k′′−k, we must change it to eitherk′ or k′′, and make
consequential changes elsewhere. This may lead to one fault somewhere else in
the square.

If we walk around the space making such changes, we reach genuine Latin
squares not too infrequently, and as the number of steps increases the distribution
of the Latin squares we reach tends to the uniform distribution.

This method is easy to implement, and has been used to explore questions
about typical Latin squares. For example, Thomas Prellberg and I looked at the
question of the number of odd rows. It seems that it is close to a binomial dis-
tribution, but the tails are a little heavier than they should be; in other words, the
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number of Latin squares with all rows of the same parity is slightly more than you
would expect if the parities were really random and independent. But we can’t
prove anything yet!

4.4 Parking

In the 1960s, the following problem was raised (originally in connection with data
storage by computers).

A car park has n spaces in a line, numbered1,2, . . . ,n. The
drivers of n cars have each independently decided on the position
where they want to park. As each driver arrives at the car park, (s)he
drive to the preferred parking place. If the space is free, (s)he parks
there. If not, (s)he drives on and takes the first available space; if
(s)he doesn’t find an empty space, (s)he leaves in disgust.

What is the probability that all drivers manage to park?

If n = 2, the probability is3
4, since only if both drivers choose 2 will they fail

to park.
The answer is surprisingly simple, and there is a beautiful argument to show

it. The required probability is
(n+1)n−1

nn . Said otherwise, out of thenn ways

the drivers can make their choices, exactly(n+ 1)n−1 lead to everyone parking
successfully. A beautiful argument was found by Henry Pollak of Bell Labs.

Consider instead a circular car park withn+ 1 spaces. Again there aren
drivers, and the same rules apply; but now everybody will succeed in finding
a place, since each driver continues round the circle until reaching a free spot.
Now the parking is successful in the linear car park if and only if spacen+ 1 is
unoccupied in the circular car park (i.e. nobody choosesn+ 1, and nobody is
forced to park there). By symmetry, any space in the circular car park is equally
likely to be unoccupied: so, out of the(n+1)n choices, a fraction 1/(n+1) lead
to successful parking in the linear car park.

A year or two ago, I wondered about the numberk of drivers who are unable
to park. This number is a random variable: can its distribution be calculated? I
calculated it for some small values, and Emil Vaughan (a Ph.D. student at Queen
Mary) pushed it further.

At that point, I put the problem on my web page, so that all the world could
have a go. The challenge was taken up by two computer science students from
Saarbr̈ucken in Germany, Daniel Johannsen and Pascal Schweitzer. They were
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able to find a recurrence relation for the numbers, and even more impressively, to
solve it to give an explicit (though rather complicated!) formula.

I wanted to see a plot of the data. For this, the scale is very important. For ex-
ample, since the limit of(1+1/n)n asn→∞ is e (the base of natural logarithms),
we see that the probability thatk = 0 (everybody parks) is about e/(n+1). If we
scale they-axis by a factor ofn, this will be visible, but it turns out that some other
values will be much too large to appear on the page.

My colleague Thomas Prellberg took up the challenge. He found that the
correct scaling was by the square root ofn on they-axis, and by 1/

√
n on the

x-axis. If this is done, moreover, the histogram of the probabilities tends to a
limit known as theRayleigh distribution. I have shown a plot of the histogram for
n = 100 (fork > 20, the probabilities are too small to appear on the graph), and
on the comparable scale, the p.d.f. of the Rayleigh distribution. The curve has
equationy = 4xe−2x2

.
The result is a bit surprising. The Rayleigh distribution arises classically as

the length of a random vector in the Euclidean plane whoseX andY coordinates
are independent normal variables with mean zero and the same variance. There is
no obvious connection with our parking problem!

In calculating the distribution function, Thomas had to evaluate a rather com-
plicated integral. He was so pleased when he found the right substitution to do
this that he set it as a prize question for the first-year Calculus class; one student
managed to claim the prize.
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(This section is based on an article to appear in the forthcoming magazine
QED.)

4.5 The On-Line Encyclopedia of Integer Sequences

To anyone who counts things, the On-Line Encyclopedia of Integer Sequences,
maintained by Neil Sloane at AT&T Bell Labs, is a resource without price (and
also without cost). Look up the sequence you have just found; it is very likely
that you will either find it under a completely different name (and so discover
that what you are working on is closely related to another branch of mathematics,
whose insights you can use), or that it is a transform of another known sequence
(in which case you have to figure out why this is).

Let me briefly describe my own first acquaintance with this resource. This
dates from the mid 1970s, in the days before on-line resources. I was studying
infinite permutation groups, and had just constructed a new interesting example,
with a complicated construction involving sequences of rational numbers. I was
interested in the number of orbits of the group acting on the set ofn-element sub-
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sets, and calculated the first few numbers. I knew that Neil Sloane was about
to publish a book containing some interesting sequences (about 2000 of them),
and that my colleague Dominic Welsh had a preliminary version of the book. I
phoned him up and read out the numbers to him: “1,2,3,6,11,23,46” “Don’t
you mean 47?” “No, I am sure it is 46.” It turned out that my sequence was not
the same as the one in the book, which counted certain kinds of trees; but, by a
remarkable coincidence, my sequence counted trees of a different kind. Finding
this connection led to some very fruitful research. (For the record, my sequence is
number A001190 in the Encyclopedia, labelled “Wedderburn–Etherington num-
bers”, while the one Dominic found is number A000055, “Number of trees”.)

The Encyclopedia celebrated its 100K birthday recently (the addition of the
100000th sequence). Here you see the host, Neil Sloane, inviting contributors to
the virtual birthday party, and one of the contributors toasting the Encyclopedia.
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