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Preface

Linear algebra has two aspects. Abstractly, it is the study of vector spaces over
fields, and their linear maps and bilinear forms. Concretely, it is matrix theory:
matrices occur in all parts of mathematics and its applications, and everyone work-
ing in the mathematical sciences and related areas needs to be able to diagonalise
a real symmetric matrix. So in a course of this kind, it is necessary to touch on
both the abstract and the concrete aspects, though applications are not treated in
detail.

On the theoretical side, we deal with vector spaces, linear maps, and bilin-
ear forms. Vector spaces over a fieldK are particularly attractive algebraic ob-
jects, since each vector space is completely determined by a single number, its
dimension (unlike groups, for example, whose structure is much more compli-
cated). Linear maps are the structure-preserving maps or homomorphisms of vec-
tor spaces.

On the practical side, the subject is really about one thing: matrices. If we need
to do some calculation with a linear map or a bilinear form, we must represent it
by a matrix. As this suggests, matrices represent several different kinds of things.
In each case, the representation is not unique, since we have the freedom to change
bases in our vector spaces; so many different matrices represent the same object.
This gives rise to several equivalence relations on the set of matrices, summarised
in the following table:

Equivalence Similarity Congruence Orthogonal
similarity

Same linear map Same linear map Same bilinear Same self-adjoint
α : V →W α : V →V form b onV α : V →V w.r.t.

orthonormal basis

A′ = Q−1AP A′ = P−1AP A′ = P>AP A′ = P−1AP
P,Q invertible P invertible P invertible P orthogonal

The power of linear algebra in practice stems from the fact that we can choose
bases so as to simplify the form of the matrix representing the object in question.
We will see several such “canonical form theorems” in the notes.
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These lecture notes correspond to the course Linear Algebra II, as given at
Queen Mary, University of London, in the first sememster 2005–6.

The course description reads as follows:

This module is a mixture of abstract theory, with rigorous proofs, and
concrete calculations with matrices. The abstract component builds
on the notions of subspaces and linear maps to construct the theory
of bilinear forms i.e. functions of two variables which are linear in
each variable, dual spaces (which consist of linear mappings from the
original space to the underlying field) and determinants. The concrete
applications involve ways to reduce a matrix of some specific type
(such as symmetric or skew-symmetric) to as near diagonal form as
possible.

In other words, students on this course have met the basic concepts of linear al-
gebra before. Of course, some revision is necessary, and I have tried to make the
notes reasonably self-contained. If you are reading them without the benefit of a
previous course on linear algebra, you will almost certainly have to do some work
filling in the details of arguments which are outlined or skipped over here.

The notes for the prerequisite course, Linear Algebra I, by Dr Francis Wright,
are currently available from

http://centaur.maths.qmul.ac.uk/Lin Alg I/

I have by-and-large kept to the notation of these notes. For example, a general
field is calledK, vectors are represented as column vectors, linear maps (apart
from zero and the identity) are represented by Greek letters.

I have included in the appendices some extra-curricular applications of lin-
ear algebra, including some special determinants, the method for solving a cubic
equation, the proof of the “Friendship Theorem” and the problem of deciding the
winner of a football league, as well as some worked examples.

Peter J. Cameron
September 5, 2008
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Chapter 1

Vector spaces

These notes are about linear maps and bilinear forms on vector spaces, how we
represent them by matrices, how we manipulate them, and what we use this for.

1.1 Definitions

Definition 1.1 A field is an algebraic system consisting of a non-empty setK
equipped with two binary operations+ (addition) and· (multiplication) satisfying
the conditions:

(A) (K,+) is an abelian group with identity element 0 (calledzero);

(M) (K\{0}, ·) is an abelian group with identity element 1;

(D) thedistributive law
a(b+c) = ab+ac

holds for alla,b,c∈K.

If you don’t know what an abelian group is, then you can find it spelled out in
detail in Appendix A. In fact, the only fields that I will use in these notes are

• Q, the field of rational numbers;

• R, the field of real numbers;

• C, the field of complex numbers;

• Fp, the field of integers modp, wherep is a prime number.

I will not stop to prove that these structures really are fields. You may have seen
Fp referred to asZp.

3



4 CHAPTER 1. VECTOR SPACES

Definition 1.2 A vector space Vover a fieldK is an algebraic system consisting
of a non-empty setV equipped with a binary operation+ (vector addition), and
an operation of scalar multiplication

(a,v) ∈K×V 7→ av∈V

such that the following rules hold:

(VA) (V,+) is an abelian group, with identity element 0 (thezero vector).

(VM) Rules for scalar multiplication:

(VM0) For anya∈K, v∈V, there is a unique elementav∈V.

(VM1) For anya∈K, u,v∈V, we havea(u+v) = au+av.

(VM2) For anya,b∈K, v∈V, we have(a+b)v = av+bv.

(VM3) For anya,b∈K, v∈V, we have(ab)v = a(bv).

(VM4) For anyv∈V, we have 1v = v (where 1 is the identity element ofK).

Since we have two kinds of elements, namely elements ofK and elements of
V, we distinguish them by calling the elements ofK scalarsand the elements of
V vectors.

A vector space over the fieldR is often called areal vector space, and one
overC is acomplex vector space.

Example 1.1 The first example of a vector space that we meet is theEuclidean
planeR2. This is a real vector space. This means that we can add two vectors, and
multiply a vector by a scalar (a real number). There are two ways we can make
these definitions.

• Thegeometricdefinition. Think of a vector as an arrow starting at the origin
and ending at a point of the plane. Then addition of two vectors is done by
theparallelogram law(see Figure 1.1). The scalar multipleav is the vector
whose length is|a| times the length ofv, in the same direction ifa > 0 and
in the opposite direction ifa < 0.

• Thealgebraicdefinition. We represent the points of the plane by Cartesian
coordinates(x,y). Thus, a vectorv is just a pair(x,y) of real numbers. Now
we define addition and scalar multiplication by

(x1,y1)+(x2,y2) = (x1 +x2,y1 +y2),
a(x,y) = (ax,ay).



1.2. BASES 5

�
�
�
�
�
�

�
�
�
�
�
�

���������

���������

�
�

�
�

�
�

�
�

�
�

��

�
�
�
��� �

�
�
���

�������1

�������1

�
�

�
�

�
�

�
��>

Figure 1.1: The parallelogram law

Not only is this definition much simpler, but it is much easier to check that
the rules for a vector space are really satisfied! For example, we check the
law a(v+w) = av+aw. Let v = (x1,y1) andw = (x2,y2). Then we have

a(v+w) = a((x1,y1)+(x2,y2)
= a(x1 +x2,y1 +y2)
= (ax1 +ax2,ay1 +ay2)
= (ax1,ay1)+(ax2,ay2)
= av+aw.

In the algebraic definition, we say that the operations of addition and scalar
multiplication arecoordinatewise: this means that we add two vectors coordinate
by coordinate, and similarly for scalar multiplication.

Using coordinates, this example can be generalised.

Example 1.2 Let n be any positive integer andK any field. LetV = Kn, the set
of all n-tuples of elements ofK. ThenV is a vector space overK, where the
operations are defined coordinatewise:

(a1,a2, . . . ,an)+(b1,b2, . . . ,bn) = (a1 +b1,a2 +b2, . . . ,an +bn),
c(a1,a2, . . . ,an) = (ca1,ca2, . . . ,can).

1.2 Bases

This example is much more general than it appears:Every finite-dimensional vec-
tor space looks like Example 1.2. Here’s why.

Definition 1.3 Let V be a vector space over the fieldK, and letv1, . . . ,vn be vec-
tors inV.
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(a) The vectorsv1,v2, . . . ,vn are linearly independentif, whenever we have
scalarsc1,c2, . . . ,cn satisfying

c1v1 +c2v2 + · · ·+cnvn = 0,

then necessarilyc1 = c2 = · · ·= 0.

(b) The vectorsv1,v2, . . . ,vn arespanningif, for every vectorv∈V, we can find
scalarsc1,c2, . . . ,cn ∈K such that

v = c1v1 +c2v2 + · · ·+cnvn.

In this case, we writeV = 〈v1,v2, . . . ,vn〉.

(c) The vectorsv1,v2, . . . ,vn form abasisfor V if they are linearly independent
and spanning.

Remark Linear independence is a property of alist of vectors. A list containing
the zero vector is never linearly independent. Also, a list in which the same vector
occurs more than once is never linearly independent.

I will say “Let B= (v1, . . . ,vn) be a basis forV” to mean that the list of vectors
v1, . . . ,vn is a basis, and to refer to this list asB.

Definition 1.4 Let V be a vector space over the fieldK. We say thatV is finite-
dimensionalif we can find vectorsv1,v2, . . . ,vn ∈V which form a basis forV.

Remark In these notes we are only concerned with finite-dimensional vector
spaces. If you study Functional Analysis, Quantum Mechanics, or various other
subjects, you will meet vector spaces which are not finite dimensional.

Proposition 1.1 The following three conditions are equivalent for the vectors
v1, . . . ,vn of the vector space V overK:

(a) v1, . . . ,vn is a basis;

(b) v1, . . . ,vn is a maximal linearly independent set (that is, if we add any vector
to the list, then the result is no longer linearly independent);

(c) v1, . . . ,vn is a minimal spanning set (that is, if we remove any vector from
the list, then the result is no longer spanning).

The next theorem helps us to understand the properties of linear independence.
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Theorem 1.2 (The Exchange Lemma)Let V be a vector space overK. Suppose
that the vectors v1, . . . ,vn are linearly independent, and that the vectors w1, . . . ,wm

are linearly independent, where m> n. Then we can find a number i with1≤ i ≤m
such that the vectors v1, . . . ,vn,wi are linearly independent.

In order to prove this, we need a lemma about systems of equations.

Lemma 1.3 Given a system (∗)

a11x1 +a12x2 + · · ·+a1mxm = 0,

a21x1 +a22x2 + · · ·+a2mxm = 0,

· · ·
an1x1 +an2x2 + · · ·+anmxm = 0

of homogeneous linear equations, where the number n of equations is strictly less
than the number m of variables, there exists a non-zero solution(x1, . . . ,xm) (that
is, x1, . . . ,xm are not all zero).

Proof This is proved by induction on the number of variables. If the coefficients
a11,a21, . . . ,an1 of x1 are all zero, then puttingx1 = 1 and the other variables zero
gives a solution. If one of these coefficients is non-zero, then we can use the
corresponding equation to expressx1 in terms of the other variables, obtaining
n− 1 equations inm− 1 variables. By hypothesis,n− 1 < m− 1. So by the
induction hypothesis, these new equations have a non-zero solution. Computing
the value ofx1 gives a solution to the original equations.

Now we turn to the proof of the Exchange Lemma. Let us argue for a contra-
diction, by assuming that the result is false: that is, assume that none of the vectors
wi can be added to the list(v1, . . . ,vn) to produce a larger linearly independent list.
This means that, for allj, the list(v1, . . . ,vn,wi) is linearly dependent. So there
are coefficientsc1, . . . ,cn,d, not all zero, such that

c1v1 + · · ·+cnvn +dwi = 0.

We cannot haved = 0; for this would mean that we had a linear combination of
v1, . . . ,vn equal to zero, contrary to the hypothesis that these vectors are linearly
independent. So we can divide the equation through byd, and takewi to the other
side, to obtain (changing notation slightly)

wi = a1iv1 +a2iv2 + · · ·+anivn =
n

∑
j=1

a ji v j .
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We do this for each value ofi = 1, . . . ,m.
Now take a non-zero solution to the set of equations (∗) above: that is,

m

∑
i=1

a ji xi = 0

for j = 1, . . . ,n.
Multiplying the formula forwi by xi and adding, we obtain

x1w1 + · · ·+xmwm =
n

∑
j=1

(
m

∑
i=1

a ji xi

)
v j = 0.

But the coefficients are not all zero, so this means that the vectors(w1, . . . ,wm)
are not linearly dependent, contrary to hypothesis.

So the assumption that nowi can be added to(v1, . . . ,vn) to get a linearly
independent set must be wrong, and the proof is complete.

The Exchange Lemma has some important consequences:

Corollary 1.4 Let V be a finite-dimensional vector space over a fieldK. Then

(a) any two bases of V have the same number of elements;

(b) any linearly independent set can be extended to a basis.

The number of elements in a basis is called thedimensionof the vector space
V. We will say “ann-dimensional vector space” instead of “a finite-dimensional
vector space whose dimension isn”. We denote the dimension ofV by dim(V).

Proof Let us see how the corollary follows from the Exchange Lemma.
(a) Let (v1, . . . ,vn) and(w1, . . . ,wm) be two bases forV. Suppose, for a con-

tradiction, that they have different numbers of elements; say thatn < m, without
loss of generality. Both lists of vectors are linearly independent; so, according to
the Exchange Lemma, we can add some vectorwi to the first list to get a larger
linearly independent list. This means thatv1, . . . ,vn was not a maximal linearly
independent set, and so (by Proposition 1.1) not a basis, contradicting our assump-
tion. We conclude thatm= n, as required.

(b) Let (v1, . . . ,vn) be linearly independent and let(w1, . . . ,wm) be a basis.
Necessarilyn≤ m, since otherwise we could add one of thevs to (1, . . . ,wm) to
get a larger linearly independent set, contradicting maximality. But now we can
add somews to(v1, . . . ,vn) until we obtain a basis.
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Remark We allow the possibility that a vector space has dimension zero. Such
a vector space contains just one vector, the zero vector 0; a basis for this vector
space consists of the empty set.

Now letV be ann-dimensional vector space overK. This means that there is a
basisv1,v2, . . . ,vn for V. Since this list of vectors is spanning, every vectorv∈V
can be expressed as

v = c1v1 +c2v2 + · · ·+cnvn

for some scalarsc1,c2, . . . ,cn ∈ K. The scalarsc1, . . . ,cn are thecoordinatesof
v (with respect to the given basis), and thecoordinate representationof v is the
n-tuple

(c1,c2, . . . ,cn) ∈Kn.

Now the coordinate representation is unique. For suppose that we also had

v = c′1v1 +c′2v2 + · · ·+c′nvn

for scalarsc′1,c
′
2 . . . ,c′n. Subtracting these two expressions, we obtain

0 = (c1−c′1)v1 +(c2−c′2)v2 + · · ·+(cn−c′n)vn.

Now the vectorsv1,v2 . . . ,vn are linearly independent; so this equation implies
thatc1−c′1 = 0, c2−c′2 = 0, . . . ,cn−c′n = 0; that is,

c1 = c′1, c2 = c′2, . . . cn = c′n.

Now it is easy to check that, when we add two vectors inV, we add their
coordinate representations inKn (using coordinatewise addition); and when we
multiply a vectorv ∈ V by a scalarc, we multiply its coordinate representation
by c. In other words, addition and scalar multiplication inV translate to the same
operations on their coordinate representations. This is why we only need to con-
sider vector spaces of the formKn, as in Example 1.2.

Here is how the result would be stated in the language of abstract algebra:

Theorem 1.5 Any n-dimensional vector space over a fieldK is isomorphic to the
vector spaceKn.

1.3 Row and column vectors

The elements of the vector spaceKn are all then-tuples of scalars from the field
K. There are two different ways that we can represent ann-tuple: as a row, or as
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a column. Thus, the vector with components 1, 2 and−3 can be represented as a
row vector

[1 2 −3]

or as acolumn vector  1
2
−3

 .

(Note that we use square brackets, rather than round brackets or parentheses. But
you will see the notation(1,2,−3) and the equivalent for columns in other books!)

Both systems are in common use, and you should be familiar with both. The
choice of row or column vectors makes some technical differences in the state-
ments of the theorems, so care is needed.

There are arguments for and against both systems. Those who prefer row
vectors would argue that we already use(x,y) or (x,y,z) for the coordinates of
a point in 2- or 3-dimensional Euclidean space, so we should use the same for
vectors. The most powerful argument will appear when we consider representing
linear maps by matrices.

Those who prefer column vectors point to the convenience of representing,
say, the linear equations

2x+3y = 5,

4x+5y = 9

in matrix form [
2 3
4 5

][
x
y

]
=
[

5
9

]
.

Statisticians also prefer column vectors: to a statistician, a vector often represents
data from an experiment, and data are usually recorded in columns on a datasheet.

I will use column vectors in these notes.So we make a formal definition:

Definition 1.5 Let V be a vector space with a basisB = (v1,v2, . . . ,vn). If v =
c1v1 + c2v2 + · · ·+ cnvn, then thecoordinate representationof v relative to the
basisB is

[v]B =


c1

c2
...

cn

 .

In order to save space on the paper, we often write this as

[v]B = [c1 c2 . . . vn ]> .

The symbol> is read “transpose”.



1.4. CHANGE OF BASIS 11

1.4 Change of basis

The coordinate representation of a vector is always relative to a basis. We now
have to look at how the representation changes when we use a different basis.

Definition 1.6 LetB=(v1, . . . ,vn) andB′ =(v′1, . . . ,v
′
n) be bases for then-dimensional

vector spaceV over the fieldK. Thetransitition matrix Pfrom B to B′ is then×n
matrix whosejth column is the coordinate representation[v′j ]B of the jth vector
of B′ relative toB. If we need to specify the bases, we writePB,B′.

Proposition 1.6 Let B and B′ be bases for the n-dimensional vector space V over
the fieldK. Then, for any vector v∈V, the coordinate representations of v with
respect to B and B′ are related by

[v]B = P[v]B′.

Proof Let pi j be thei, j entry of the matrixP. By definition, we have

v′j =
n

∑
i=1

pi j vi .

Take an arbitrary vectorv∈V, and let

[v]B = [c1, . . . ,cn]>, [v]B′ = [d1, . . . ,dn]>.

This means, by definition, that

v =
n

∑
i=1

civi =
n

∑
j=1

d jv
′
j .

Substituting the formula forv′j into the second equation, we have

v =
n

∑
j=1

d j

(
n

∑
i=1

pi j vi

)
.

Reversing the order of summation, we get

v =
n

∑
i=1

(
n

∑
j=1

pi j d j

)
vi .

Now we have two expressions forv as a linear combination of the vectorsvi . By
the uniqueness of the coordinate representation, they are the same: that is,

ci =
n

∑
j=1

pi j d j .
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In matrix form, this says c1
...

cn

= P

d1
...

dn

 ,

or in other words
[v]B = P[v]B′,

as required.

In this course, we will see four ways in which matrices arise in linear algebra.
Here is the first occurrence:matrices arise as transition matrices between bases
of a vector space.

The next corollary summarises how transition matrices behave. HereI denotes
the identity matrix, the matrix having 1s on the main diagonal and 0s everywhere
else. Given a matrixP, we denote byP−1 theinverseof P, the matrixQ satisfying
PQ = QP = I . Not every matrix has an inverse: we say thatP is invertible or
non-singularif it has an inverse.

Corollary 1.7 Let B,B′,B′′ be bases of the vector space V.

(a) PB,B = I.

(b) PB′,B = (PB,B′)−1.

(c) PB,B′′ = PB,B′PB′,B′′.

This follows from the preceding Proposition. For example, for (b) we have

[v]B = PB,B′ [v]B′ , [v]B′ = PB′,B [v]B,

so
[v]B = PB,B′PB′,B [v]B.

By the uniqueness of the coordinate representation, we havePB,B′PB′,B = I .

Corollary 1.8 The transition matrix between any two bases of a vector space is
invertible.

This follows immediately from (b) of the preceding Corollary.

Remark We see that, to express the coordinate representation w.r.t. the new
basis in terms of that w.r.t. the old one, we need the inverse of the transition matrix:

[v]B′ = P−1
B,B′[v]B.
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Example Consider the vector spaceR2, with the two bases

B =
([

1
0

]
,

[
0
1

])
, B′ =

([
1
1

]
,

[
2
3

])
.

The transition matrix is

PB,B′ =
[

1 2
1 3

]
,

whose inverse is calculated to be

PB′,B =
[

3 −2
−1 1

]
.

So the theorem tells us that, for anyx,y∈ R, we have[
x
y

]
= x

[
1
0

]
+y

[
0
1

]
= (3x−2y)

[
1
1

]
+(−x+y)

[
2
3

]
,

as is easily checked.

1.5 Subspaces and direct sums

Definition 1.7 A non-empty subset of a vector space is called asubspaceif it
contains the sum of any two of its elements and any scalar multiple of any of its
elements. We writeU ≤V to mean “U is a subspace ofV”.

A subspace of a vector space is a vector space in its own right.
Subspaces can be constructed in various ways:

(a) Letv1, . . . ,vn ∈V. Thespanof (v1, . . . ,vn) is the set

{c1v1 +c2v2 + · · ·+cnvn : c1, . . . ,cn ∈K}.

This is a subspace ofV. Moreover,(v1, . . . ,vn) is a spanning set in this
subspace. We denote the span ofv1, . . . ,vn by 〈v1, . . . ,vn〉.

(b) LetU1 andU2 be subspaces ofV. Then

– the intersection U1∩U2 is the set of all vectors belonging to bothU1

andU2;

– thesum U1 +U2 is the set{u1 +u2 : u1 ∈U1,u2 ∈U2} of all sums of
vectors from the two subspaces.

BothU1∩U2 andU1 +U2 are subspaces ofV.
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The next result summarises some properties of these subspaces. Proofs are left
to the reader.

Proposition 1.9 Let V be a vector space overK.

(a) For any v1, . . . ,vn∈V, the dimension of〈v1, . . . ,vn〉 is at most n, with equal-
ity if and only if v1, . . . ,vn are linearly independent.

(b) For any two subspaces U1 and U2 of V , we have

dim(U1∩U2)+dim(U1 +U2) = dim(U1)+dim(U2).

An important special case occurs whenU1∩U2 is the zero subspace{0}. In
this case, the sumU1 +U2 has the property that each of its elements has aunique
expression in the formu1 +u2, for u1 ∈U1 andu2 ∈U2. For suppose that we had
two different expressions for a vectorv, say

v = u1 +u2 = u′1 +u′2, u1,u
′
1 ∈U1,u2,u

′
2 ∈U2.

Then
u1−u′1 = u′2−u2.

But u1−u′1 ∈U1, andu′2−u2 ∈U2; so this vector is inU1∩U2, and by hypothesis
it is equal to 0, so thatu1 = u′1 and u2 = u′2; that is, the two expressions are
not different after all! In this case we say thatU1 +U2 is thedirect sumof the
subspacesU1 andU2, and write it asU1⊕U2. Note that

dim(U1⊕U2) = dim(U1)+dim(U2).

The notion of direct sum extends to more than two summands, but is a little
complicated to describe. We state a form which is sufficient for our purposes.

Definition 1.8 Let U1, . . . ,Ur be subspaces of the vector spaceV. We say thatV
is thedirect sumof U1, . . . ,Ur , and write

V = U1⊕ . . .⊕Ur ,

if every vectorv ∈ V can be written uniquely in the formv = u1 + · · ·+ ur with
ui ∈Ui for i = 1, . . . , r.

Proposition 1.10 If V = U1⊕·· ·⊕Ur , then

(a) dim(V) = dim(U1)+ · · ·+dim(Ur);

(b) if Bi is a basis for Ui for i = 1, . . . , r, then B1∪·· ·∪Br is a basis for V .



Chapter 2

Matrices and determinants

You have certainly seen matrices before; indeed, we met some in the first chapter
of the notes. Here we revise matrix algebra, consider row and column operations
on matrices, and define the rank of a matrix. Then we define the determinant of
a square matrix axiomatically and prove that it exists (that is, there is a unique
“determinant” function satisfying the rules we lay down), and give some methods
of calculating it and some of its properties. Finally we prove the Cayley–Hamilton
Theorem: every matrix satisfies its own characteristic equation.

2.1 Matrix algebra

Definition 2.1 A matrix of sizem×n over a fieldK, wherem andn are positive
integers, is an array withm rows andn columns, where each entry is an element
of K. For 1≤ i ≤mand 1≤ j ≤ n, the entry in rowi and columnj of A is denoted
by Ai j , and referred to as the(i, j) entry ofA.

Example 2.1 A column vector inKn can be thought of as an×1 matrix, while a
row vector is a 1×n matrix.

Definition 2.2 We define addition and multiplication of matrices as follows.

(a) LetA andB be matrices of the same sizem×n overK. Then the sumA+B
is defined by adding corresponding entries:

(A+B)i j = Ai j +Bi j .

(b) Let A be anm×n matrix andB ann× p matrix overK. Then the product
AB is them× p matrix whose(i, j) entry is obtained by multiplying each

15
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element in theith row ofA by the corresponding element in thejth column
of B and summing:

(AB)i j =
n

∑
k=1

AikBk j.

Remark Note that we can only add or multiply matrices if their sizes satisfy
appropriate conditions. In particular, for a fixed value ofn, we can add and mul-
tiply n×n matrices. It turns out that the setMn(K) of n×n matrices overK is
a ring with identity: this means that it satisfies conditions (A0)–(A4), (M0)–(M2)
and (D) of Appendix 1. The zero matrix, which we denote byO, is the matrix
with every entry zero, while the identity matrix, which we denote byI , is the ma-
trix with entries 1 on the main diagonal and 0 everywhere else. Note that matrix
multiplication is not commutative:BA is usually not equal toAB.

We already met matrix multiplication in Section 1 of the notes: recall that if
PB,B′ denotes the transition matrix between two bases of a vector space, then

PB,B′PB′,B′′ = PB,B′′.

2.2 Row and column operations

Given anm×n matrix A over a fieldK, we define certain operations onA called
row and column operations.

Definition 2.3 Elementary row operationsThere are three types:

Type 1 Add a multiple of thejth row to theith, wherej 6= i.

Type 2 Multiply theith row by a non-zero scalar.

Tyle 3 Interchange theith and jth rows, wherej 6= i.

Elementary column operationsThere are three types:

Type 1 Add a multiple of thejth column to theith, wherej 6= i.

Type 2 Multiply theith column by a non-zero scalar.

Tyle 3 Interchange theith and jth column, wherej 6= i.

By applying these operations, we can reduce any matrix to a particularly sim-
ple form:



2.2. ROW AND COLUMN OPERATIONS 17

Theorem 2.1 Let A be an m× n matrix over the fieldK. Then it is possible to
change A into B by elementary row and column operations, where B is a matrix
of the same size satisfying Bii = 1 for 0≤ i ≤ r, for r ≤ min{m,n}, and all other
entries of B are zero.

If A can be reduced to two matrices B and B′ both of the above form, where
the numbers of non-zero elements are r and r′ respectively, by different sequences
of elementary operations, then r= r ′, and so B= B′.

Definition 2.4 The numberr in the above theorem is called therank of A; while
a matrix of the form described forB is said to be in thecanonical form for equiv-
alence. We can write the canonical form matrix in “block form” as

B =
[

Ir O
O O

]
,

whereIr is anr× r identity matrix andO denotes a zero matrix of the appropriate
size (that is,r×(n− r), (m− r)× r, and(m− r)×(n− r) respectively for the three
Os). Note that some or all of theseOs may be missing: for example, ifr = m, we
just have[ Im O].

Proof We outline the proof that the reduction is possible. To prove that we al-
ways get the same value ofr, we need a different argument.

The proof is by induction on the size of the matrixA: in other words, we
assume as inductive hypothesis that any smaller matrix can be reduced as in the
theorem. Let the matrixA be given. We proceed in steps as follows:

• If A = O (the all-zero matrix), then the conclusion of the theorem holds,
with r = 0; no reduction is required. So assume thatA 6= O.

• If A11 6= 0, then skip this step. IfA11 = 0, then there is a non-zero element
Ai j somewhere inA; by swapping the first andith rows, and the first andjth
columns, if necessary (Type 3 operations), we can bring this entry into the
(1,1) position.

• Now we can assume thatA11 6= 0. Multiplying the first row byA−1
11 , (row

operation Type 2), we obtain a matrix withA11 = 1.

• Now by row and column operations of Type 1, we can assume that all the
other elements in the first row and column are zero. For ifA1 j 6= 0, then
subtractingA1 j times the first column from thejth gives a matrix withA1 j =
0. Repeat this until all non-zero elements have been removed.
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• Now letB be the matrix obtained by deleting the first row and column ofA.
ThenB is smaller thanA and so, by the inductive hypothesis, we can reduce
B to canonical form by elementary row and column operations. The same
sequence of operations applied toA now finish the job.

Example 2.2 Here is a small example. Let

A =
[

1 2 3
4 5 6

]
.

We haveA11 = 1, so we can skip the first three steps. Subtracting twice the first
column from the second, and three times the first column from the third, gives the
matrix [

1 0 0
4 −3 −6

]
.

Now subtracting four times the first row from the second gives[
1 0 0
0 −3 −6

]
.

From now on, we have to operate on the smaller matrix[−3 −6], but we con-
tinue to apply the operations to the large matrix.

Multiply the second row by−1/3 to get[
1 0 0
0 1 2

]
.

Now subtract twice the second column from the third to obtain[
1 0 0
0 1 0

]
.

We have finished the reduction, and we conclude that the rank of the original
matrixA is equal to 2.

We finish this section by describing the elementary row and column operations
in a different way.

For each elementary row operation on ann-rowed matrixA, we define the cor-
respondingelementary matrixby applying the same operation to then×n identity
matrix I . Similarly we represent elementary column operations by elementary ma-
trices obtained by applying the same operations to them×m identity matrix.

We don’t have to distinguish between rows and columns for our elementary
matrices. For example, the matrix1 2 0

0 1 0
0 0 1
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corresponds to the elementary column operation of adding twice the first column
to the second, or to the elementary row operation of adding twice the second
row to the first. For the other types, the matrices for row operations and column
operations are identical.

Lemma 2.2 The effect of an elementary row operation on a matrix is the same as
that of multiplying on the left by the corresponding elementary matrix. Similarly,
the effect of an elementary column operation is the same as that of multiplying on
the right by the corresponding elementary matrix.

The proof of this lemma is somewhat tedious calculation.

Example 2.3 We continue our previous example. In order, here is the list of
elementary matrices corresponding to the operations we applied toA. (Here 2×2
matrices are row operations while 3×3 matrices are column operations).1 −2 0

0 1 0
0 0 1

 ,

1 0 −3
0 1 0
0 0 1

 ,

[
1 0
−4 1

]
,

[
1 0
0 −1/3

]
,

1 0 0
0 1 −2
0 0 1

 .

So the whole process can be written as a matrix equation:[
1 0
0 −1/3

][
1 0
−4 1

]
A

1 −2 0
0 1 0
0 0 1

1 0 −3
0 1 0
0 0 1

1 0 0
0 1 −2
0 0 1

= B,

or more simply [
1 0

4/3 −1/3

]
A

1 −2 1
0 1 −2
0 0 1

= B,

where, as before,

A =
[

1 2 3
4 5 6

]
, B =

[
1 0 0
0 1 0

]
.

An important observation about the elementary operations is that each of them
can have its effect undone by another elementary operation of the same kind,
and hence every elementary matrix is invertible, with its inverse being another
elementary matrix of the same kind. For example, the effect of adding twice the
first row to the second is undone by adding−2 times the first row to the second,
so that [

1 2
0 1

]−1

=
[

1 −2
0 1

]
.

Since the product of invertible matrices is invertible, we can state the above theo-
rem in a more concise form. First, one more definition:
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Definition 2.5 Them×n matricesA andB are said to beequivalentif B = PAQ,
whereP andQ are invertible matrices of sizesm×m andn×n respectively.

Theorem 2.3 Given any m×n matrix A, there exist invertible matrices P and Q
of sizes m×m and n×n respectively, such that PAQ is in the canonical form for
equivalence.

Remark The relation “equivalence” defined above is an equivalence relation on
the set of allm×n matrices; that is, it is reflexive, symmetric and transitive.

When mathematicians talk about a “canonical form” for an equivalence re-
lation, they mean a set of objects which are representatives of the equivalence
classes: that is, every object is equivalent to a unique object in the canonical form.
We have shown this for the relation of equivalence defined earlier, except for the
uniqueness of the canonical form. This is our job for the next section.

2.3 Rank

We have the unfinished business of showing that the rank of a matrix is well de-
fined; that is, no matter how we do the row and column reduction, we end up with
the same canonical form. We do this by defining two further kinds of rank, and
proving that all three are the same.

Definition 2.6 Let A be anm×n matrix over a fieldK. We say that thecolumn
rank of A is the maximum number of linearly independent columns ofA, while
therow rankof A is the maximum number of linearly independent rows ofA. (We
regard columns or rows as vectors inKm andKn respectively.)

Now we need a sequence of four lemmas.

Lemma 2.4 (a) Elementary column operations don’t change the column rank
of a matrix.

(b) Elementary row operations don’t change the column rank of a matrix.

(c) Elementary column operations don’t change the row rank of a matrix.

(d) Elementary row operations don’t change the row rank of a matrix.

Proof (a) This is clear for Type 3 operations, which just rearrange the vectors.
For Types 1 and 2, we have to show that such an operation cannot take a linearly
independent set to a linearly dependent set; thevice versastatement holds because
the inverse of an elementary operation is another operation of the same kind.
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So suppose thatv1, . . . ,vn are linearly independent. Consider a Type 1 oper-
ation involving addingc times the jth column to theith; the new columns are
v′1, . . . ,v

′
n, wherev′k = vk for k 6= i, while v′i = vi +cvj . Suppose that the new vec-

tors are linearly dependent. Then there are scalarsa1, . . . ,an, not all zero, such
that

0 = a1v′1 + · · ·+anv′n
= a1v1 + · · ·+ai(vi +cvj)+ · · ·+a jv j + · · ·+anvn

= a1v1 + · · ·+aivi + · · ·+(a j +cai)v j + · · ·+anvn.

Sincev1, . . . ,vn are linearly independent, we conclude that

a1 = 0, . . . ,ai = 0, . . . ,a j +cai = 0, . . . ,an = 0,

from which we see that all theak are zero, contrary to assumption. So the new
columns are linearly independent.

The argument for Type 2 operations is similar but easier.

(b) It is easily checked that, if an elementary row operation is applied, then the
new vectors satisfy exactly the same linear relations as the old ones (that is, the
same linear combinations are zero). So the linearly independent sets of vectors
don’t change at all.

(c) Same as (b), but applied to rows.

(d) Same as (a), but applied to rows.

Theorem 2.5 For any matrix A, the row rank, the column rank, and the rank are
all equal. In particular, the rank is independent of the row and column operations
used to compute it.

Proof Suppose that we reduceA to canonical formB by elementary operations,
whereB has rankr. These elementary operations don’t change the row or column
rank, by our lemma; so the row ranks ofA andB are equal, and their column ranks
are equal. But it is trivial to see that, if

B =
[

Ir O
O O

]
,

then the row and column ranks ofB are both equal tor. So the theorem is proved.

We can get an extra piece of information from our deliberations. LetA be an
invertible n×n matrix. Then the canonical form ofA is just I : its rank is equal
to n. This means that there are matricesP andQ, each a product of elementary
matrices, such that

PAQ= In.
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From this we deduce that

A = P−1InQ−1 = P−1Q−1;

in other words,

Corollary 2.6 Every invertible square matrix is a product of elementary matrices.

In fact, we learn a little bit more. We observed, when we defined elementary
matrices, that they can represent either elementary column operations or elemen-
tary row operations. So, when we have writtenA as a product of elementary
matrices, we can choose to regard them as representing column operations, and
we see thatA can be obtained from the identity by applying elementary column
operations. If we now apply the inverse operations in the other order, they will turn
A into the identity (which is its canonical form). In other words, the following is
true:

Corollary 2.7 If A is an invertible n×n matrix, then A can be transformed into
the identity matrix by elementary column operations alone (or by elementary row
operations alone).

2.4 Determinants

The determinant is a function defined on square matrices; its value is a scalar.
It has some very important properties: perhaps most important is the fact that a
matrix is invertible if and only if its determinant is not equal to zero.

We denote the determinant function by det, so that det(A) is the determinant
of A. For a matrix written out as an array, the determinant is denoted by replacing
the square brackets by vertical bars:

det

[
1 2
3 4

]
=
∣∣∣∣1 2
3 4

∣∣∣∣ .
You have met determinants in earlier courses, and you know the formula for

the determinant of a 2×2 or 3×3 matrix:∣∣∣∣a b
c d

∣∣∣∣= ad−bc,

∣∣∣∣∣∣
a b c
d e f
g h i

∣∣∣∣∣∣= aei+b f g+cdh−a f h−bdi−ceg.

Our first job is to define the determinant for square matrices of any size. We do
this in an “axiomatic” manner:
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Definition 2.7 A functionD defined onn×n matrices is adeterminantif it satis-
fies the following three conditions:

(D1) For 1≤ i ≤ n, D is a linear function of theith column: this means that, ifA
andA′ are two matrices which agree everywhere except theith column, and
if A′′ is the matrix whoseith column isc times theith column ofA plusc′

times theith column ofA′, but agreeing withA andA′ everywhere else, then

D(A′′) = cD(A)+c′D(A′).

(D2) If A has two equal columns, thenD(A) = 0.

(D3) D(In) = 1, whereIn is then×n identity matrix.

We show the following result:

Theorem 2.8 There is a unique determinant function on n×n matrices, for any n.

Proof First, we show that applying elementary row operations toA has a well-
defined effect onD(A).

(a) If B is obtained fromA by addingc times the jth column to theith, then
D(B) = D(A).

(b) If B is obtained fromA by multiplying theith column by a non-zero scalar
c, thenD(B) = cD(A).

(c) If B is obtained fromA by interchanging two columns, thenD(B) =−D(A).

For (a), letA′ be the matrix which agrees withA in all columns except theith,
which is equal to thejth column ofA. By rule (D2),D(A′) = 0. By rule (D1),

D(B) = D(A)+cD(A′) = D(A).

Part (b) follows immediately from rule (D3).
To prove part (c), we observe that we can interchange theith and jth columns

by the following sequence of operations:

• add theith column to thejth;

• multiply the ith column by−1;

• add thejth column to theith;

• subtract theith column from thejth.
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In symbols,

(ci ,c j) 7→ (ci ,c j +ci) 7→ (−ci ,c j +ci) 7→ (c j ,c j +ci) 7→ (c j ,ci).

The first, third and fourth steps don’t change the value ofD, while the second
multiplies it by−1.

Now we take the matrixA and apply elementary column operations to it, keep-
ing track of the factors by whichD gets multiplied according to rules (a)–(c). The
overall effect is to multiplyD(A) by a certain non-zero scalarc, depending on the
operations.

• If A is invertible, then we can reduceA to the identity, so thatcD(A) =
D(I) = 1, whenceD(A) = c−1.

• If A is not invertible, then its column rank is less thann. So the columns ofA
are linearly dependent, and one column can be written as a linear combina-
tion of the others. Applying axiom (D1), we see thatD(A) is a linear com-
bination of valuesD(A′), whereA′ are matrices with two equal columns; so
D(A′) = 0 for all suchA′, whenceD(A) = 0.

This proves that the determinant function, if it exists, is unique. We show its
existence in the next section, by giving a couple of formulae for it.

Given the uniqueness of the determinant function, we now denote it by det(A)
instead ofD(A). The proof of the theorem shows an important corollary:

Corollary 2.9 A square matrix is invertible if and only ifdet(A) 6= 0.

Proof See the case division at the end of the proof of the theorem.

One of the most important properties of the determinant is the following.

Theorem 2.10 If A and B are n×n matrices overK, thendet(AB)= det(A)det(B).

Proof Suppose first thatB is not invertible. Then det(B) = 0. Also, AB is not
invertible. (For, suppose that(AB)−1 = X, so thatXAB= I . ThenXA is the inverse
of B.) So det(AB) = 0, and the theorem is true.

In the other case,B is invertible, so we can apply a sequence of elementary
column operations toB to get to the identity. The effect of these operations is
to multiply the determinant by a non-zero factorc (depending on the operations),
so thatcdet(B) = I , or c = (det(B))−1. Now these operations are represented by
elementary matrices; so we see thatBQ= I , whereQ is a product of elementary
matrices.
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If we apply the same sequence of elementary operations toAB, we end up with
the matrix(AB)Q = A(BQ) = AI = A. The determinant is multiplied by the same
factor, so we find thatcdet(AB) = det(A). Sincec = det(B))−1, this implies that
det(AB) = det(A)det(B), as required.

Finally, we have defined determinants using columns, but we could have used
rows instead:

Proposition 2.11 The determinant is the unique function D of n× n matrices
which satisfies the conditions

(D1′) for 1≤ i ≤ n, D is a linear function of the ith row;

(D2′) if two rows of A are equal , then D(A) = 0;

(D3′) D(In) = 1.

The proof of uniqueness is almost identical to that for columns. To see that
D(A) = det(A): if A is not invertible, thenD(A) = det(A) = 0; but if A is invertible,
then it is a product of elementary matrices (which can represent either row or
column operations), and the determinant is the product of the factors associated
with these operations.

Corollary 2.12 If A> denotes the transpose of A, thendet(A>) = det(A).

For, if D denotes the “determinant” computed by row operations, then det(A)=
D(A) = det(A>), since row operations onA correspond to column operations on
A>.

2.5 Calculating determinants

We now give a couple of formulae for the determinant. This finishes the job we
left open in the proof of the last theorem, namely, showing that a determinant
function actually exists!

The first formula involves some background notation.

Definition 2.8 A permutationof {1, . . . ,n} is a bijection from the set{1, . . . ,n}
to itself. Thesymmetric group Sn consists of all permutations of the set{1, . . . ,n}.
(There aren! such permutations.) For any permutationπ ∈ Sn, there is a number
sign(π) = ±1, computed as follows: writeπ as a product of disjoint cycles; if
there arek cycles (including cycles of length 1), then sign(π) = (−1)n−k. A
transpositionis a permutation which interchanges two symbols and leaves all the
others fixed. Thus, ifτ is a transposition, then sign(τ) =−1.
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The last fact holds because a transposition has one cycle of size 2 andn−2
cycles of size 1, son−1 altogether; so sign(τ) = (−1)n−(n−1) =−1.

We need one more fact about signs: ifπ is any permutation andτ is a trans-
position, then sign(πτ) =−sign(π), whereπτ denotes the composition ofπ and
τ (apply firstτ, thenπ).

Definition 2.9 Let A be ann×n matrix overK. Thedeterminantof A is defined
by the formula

det(A) = ∑
π∈Sn

sign(π)A1π(1)A2π(2) · · ·Anπ(n).

Proof In order to show that this is a good definition, we need to verify that it
satisfies our three rules (D1)–(D3).

(D1) According to the definition, det(A) is a sum ofn! terms. Each term, apart
from a sign, is the product ofn elements, one from each row and column. If
we look at a particular column, say theith, it is clear that each product is a
linear function of that column; so the same is true for the determinant.

(D2) Suppose that theith and jth columns ofA are equal. Letτ be the transpo-
sition which interchangesi and j and leaves the other symbols fixed. Then
π(τ(i)) = π( j) andπ(τ( j)) = π(i), whereasπ(τ(k)) = π(k) for k 6= i, j. Be-
cause the elements in theith and jth columns ofA are the same, we see that
the productsA1π(1)A2π(2) · · ·Anπ(n) andA1πτ(1)A2πτ(2) · · ·Anπτ(n) are equal.
But sign(πτ) = −sign(π). So the corresponding terms in the formula for
the determinant cancel one another. The elements ofSn can be divided up
into n!/2 pairs of the form{π,πτ}. As we have seen, each pair of terms in
the formula cancel out. We conclude that det(A) = 0. Thus (D2) holds.

(D3) If A = In, then the only permutationπ which contributes to the sum is the
identity permutationι : for any other permutationπ satisfiesπ(i) 6= i for
somei, so thatAiπ(i) = 0. The sign ofι is +1, and all the termsAiι(i) = Aii

are equal to 1; so det(A) = 1, as required.

This gives us a nice mathematical formula for the determinant of a matrix.
Unfortunately, it is a terrible formula in practice, since it involves working out
n! terms, each a product of matrix entries, and adding them up with+ and−
signs. Forn of moderate size, this will take a very long time! (For example,
10! = 3628800.)

Here is a second formula, which is also theoretically important but very inef-
ficient in practice.
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Definition 2.10 Let A be ann× n matrix. For 1≤ i, j ≤ n, we define the(i, j)
minor of A to be the(n−1)× (n−1) matrix obtained by deleting theith row and
jth column ofA. Now we define the(i, j) cofactorof A to be(−1)i+ j times the
determinant of the(i, j) minor. (These signs have a chessboard pattern, starting
with sign+ in the top left corner.) We denote the(i, j) cofactor ofA by Ki j (A).
Finally, theadjugateof A is then×n matrix Adj(A) whose(i, j) entry is the( j, i)
cofactorK ji (A) of A. (Note the transposition!)

Theorem 2.13 (a) For j ≤ i ≤ n, we have

det(A) =
n

∑
i=1

Ai j Ki j (A).

(b) For 1≤ i ≤ n, we have

det(A) =
n

∑
j=1

Ai j Ki j (A).

This theorem says that, if we take any column or row ofA, multiply each
element by the corresponding cofactor, and add the results, we get the determinant
of A.

Example 2.4 Using a cofactor expansion along the first column, we see that∣∣∣∣∣∣
1 2 3
4 5 6
7 8 10

∣∣∣∣∣∣ =
∣∣∣∣5 6
8 10

∣∣∣∣−4

∣∣∣∣2 3
8 10

∣∣∣∣+7

∣∣∣∣2 3
5 6

∣∣∣∣
= (5·10−6·8)−4(2·10−3·8)+7(2·6−3·5)
= 2+16−21

= −3

using the standard formula for a 2×2 determinant.

Proof We prove (a); the proof for (b) is a simple modification, using rows instead
of columns. LetD(A) be the function defined by the right-hand side of (a) in the
theorem, using thejth column ofA. We verify rules (D1)–(D3).

(D1) It is clear thatD(A) is a linear function of thejth column. Fork 6= j, the co-
factors are linear functions of thekth column (since they are determinants),
and soD(A) is linear.
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(D2) If the kth andl th columns ofA are equal, then each cofactor is the determi-
nant of a matrix with two equal columns, and so is zero. The harder case is
when thejth column is equal to another, say thekth. Using induction, each
cofactor can be expressed as a sum of elements of thekth column times
(n−2)× (n−2) determinants. In the resulting sum, it is easy to see that
each such determinant occurs twice with opposite signs and multiplied by
the same factor. So the terms all cancel.

(D3) Suppose thatA = I . The only non-zero cofactor in thejth column isK j j (I),
which is equal to(−1) j+ j det(In−1) = 1. SoD(I) = 1.

By the main theorem, the expressionD(A) is equal to det(A).

At first sight, this looks like a simple formula for the determinant, since it is
just the sum ofn terms, rather thann! as in the first case. But each term is an
(n−1)× (n−1) determinant. Working down the chain we find that this method
is just as labour-intensive as the other one.

But the cofactor expansion has further nice properties:

Theorem 2.14 For any n×n matrix A, we have

A·Adj(A) = Adj(A) ·A = det(A) · I .

Proof We calculate the matrix product. Recall that the(i, j) entry of Adj(A) is
K ji (A).

Now the(i, i) entry of the productA·Adj(A) is

n

∑
k=1

Aik(Adj(A))ki =
n

∑
k=1

AikKik(A) = det(A),

by the cofactor expansion. On the other hand, ifi 6= j, then the(i, j) entry of the
product is

n

∑
k=1

Aik(Adj(A))k j =
n

∑
k=1

AikK jk(A).

This last expression is the cofactor expansion of the matrixA′ which is the same
of A except for thejth row, which has been replaced by theith row of A. (Note
that changing thejth row of a matrix has no effect on the cofactors of elements in
this row.) So the sum is det(A′). But A′ has two equal rows, so its determinant is
zero.

ThusA ·Adj(A) has entries det(A) on the diagonal and 0 everywhere else; so
it is equal to det(A) · I .

The proof for the product the other way around is the same, using columns
instead of rows.
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Corollary 2.15 If the n×n matrix A is invertible, then its inverse is equal to

(det(A))−1Adj(A).

So how can you work out a determinant efficiently? The best method in prac-
tice is to use elementary operations.

Apply elementary operations to the matrix, keeping track of the factor by
which the determinant is multiplied by each operation. If you want, you can
reduce all the way to the identity, and then use the fact that det(I) = 1. Often it is
simpler to stop at an earlier stage when you can recognise what the determinant is.
For example, if the matrixA has diagonal entriesa1, . . . ,an, and all off-diagonal
entries are zero, then det(A) is just the producta1 · · ·an.

Example 2.5 Let

A =

1 2 3
4 5 6
7 8 10

 .

Subtracting twice the first column from the second, and three times the second
column from the third (these operations don’t change the determinant) gives1 0 0

4 −3 −6
7 −6 −11

 .

Now the cofactor expansion along the first row gives

det(A) =
∣∣∣∣−3 −6
−6 −11

∣∣∣∣= 33−36=−3.

(At the last step, it is easiest to use the formula for the determinant of a 2× 2
matrix rather than do any further reduction.)

2.6 The Cayley–Hamilton Theorem

Since we can add and multiply matrices, we can substitute them into a polynomial.
For example, if

A =
[

0 1
−2 3

]
,

then the result of substitutingA into the polynomialx2−3x+2 is

A2−3A+2I =
[
−2 3
−6 7

]
+
[

0 −3
6 −9

]
+
[

2 0
0 2

]
=
[

0 0
0 0

]
.
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We say that the matrixA satisfies the equation x2−3x+ 2 = 0. (Notice that for
the constant term 2 we substituted 2I .)

It turns out that, for everyn×n matrixA, we can calculate a polynomial equa-
tion of degreen satisfied byA.

Definition 2.11 Let A be an×n matrix. Thecharacteristic polynomialof A is
the polynomial

cA(x) = det(xI−A).

This is a polynomial inx of degreen.

For example, if

A =
[

0 1
−2 3

]
,

then

cA(x) =
∣∣∣∣x −1
2 x−3

∣∣∣∣= x(x−3)+2 = x2−3x+2.

Indeed, it turns out that this is the polynomial we want in general:

Theorem 2.16 (Cayley–Hamilton Theorem)Let A be an n×n matrix with char-
acteristic polynomial cA(x). Then cA(A) = O.

Example 2.6 Let us just check the theorem for 2×2 matrices. If

A =
[

a b
c d

]
,

then

cA(x) =
∣∣∣∣x−a −b
−c x−d

∣∣∣∣= x2− (a+d)x+(ad−bc),

and so

cA(A) =
[

a2 +bc ab+bd
ac+cd bc+d2

]
− (a+d)

[
a b
c d

]
+(ad−bc)

[
1 0
0 1

]
= O,

after a small amount of calculation.

Proof We use the theorem

A·Adj(A) = det(A) · I .

In place ofA, we put the matrixxI−A into this formula:

(xI−A)Adj(xI−A) = det(xI−A)I = cA(x)I .
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Now it is very tempting just to substitutex = A into this formula: on the
right we havecA(A)I = cA(A), while on the left there is a factorAI −A = O.
Unfortunately this is not valid; it is important to see why. The matrix Adj(xI−A)
is ann× n matrix whose entries are determinants of(n− 1)× (n− 1) matrices
with entries involvingx. So the entries of Adj(xI−A) are polynomials inx, and if
we try to substituteA for x the size of the matrix will be changed!

Instead, we argue as follows. As we have said, Adj(xI−A) is a matrix whose
entries are polynomials, so we can write it as a sum of powers ofx times matrices,
that is, as a polynomial whose coefficients are matrices. For example,[

x2 +1 2x
3x−4 x+2

]
= x2

[
1 0
0 0

]
+x

[
0 2
3 1

]
+
[

1 0
−4 2

]
.

The entries in Adj(xI−A) are(n−1)× (n−1) determinants, so the highest
power ofx that can arise isxn−1. So we can write

Adj(xI−A) = xn−1Bn−1 +xn−2Bn−2 + · · ·+xB1 +B0,

for suitablen×n matricesB0, . . . ,Bn−1. Hence

cA(x)I = (xI−A)Adj(xI−A)
= (xI−A)(xn−1Bn−1 +xn−2Bn−2 + · · ·+xB1 +B0)
= xnBn−1 +xn−1(−ABn−1 +Bn−2)+ · · ·+x(−AB1 +B0)−AB0.

So, if we let
cA(x) = xn +cn−1xn−1 + · · ·+c1x+c0,

then we read off that

Bn−1 = I ,
−ABn−1 + Bn−2 = cn−1I ,

· · ·
−AB1 + B0 = c1I ,
−AB0 = c0I .

We take this system of equations, and multiply the first byAn, the second by
An−1, . . . , and the last byA0 = I . What happens? On the left, all the terms cancel
in pairs: we have

AnBn−1 +An−1(−ABn−1 +Bn−2)+ · · ·+A(−AB1 +B0)+ I(−AB0) = O.

On the right, we have

An +cn−1An−1 + · · ·+c1A+c0I = cA(A).

SocA(A) = O, as claimed.



32 CHAPTER 2. MATRICES AND DETERMINANTS



Chapter 3

Linear maps between vector spaces

We return to the setting of vector spaces in order to define linear maps between
them. We will see that these maps can be represented by matrices, decide when
two matrices represent the same linear map, and give another proof of the canon-
ical form for equivalence.

3.1 Definition and basic properties

Definition 3.1 Let V andW be vector spaces over a fieldK. A function α from
V to W is a linear mapif it preserves addition and scalar multiplication, that is, if

• α(v1 +v2) = α(v1)+α(v2) for all v1,v2 ∈V;

• α(cv) = cα(v) for all v∈V andc∈K.

Remarks 1. We can combine the two conditions into one as follows:

α(c1v1 +c2v2) = c1α(v1)+c2α(v2).

2. In other literature the term “linear transformation” is often used instead of
“linear map”.

Definition 3.2 Let α : V →W be a linear map. Theimageof α is the set

Im(α) = {w∈W : w = α(v) for somev∈V},

and thekernelof α is

Ker(α) = {v∈V : α(v) = 0}.

33
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Proposition 3.1 Let α : V →W be a linear map. Then the image ofα is a sub-
space of W and the kernel is a subspace of V .

Proof We have to show that each is closed under addition and scalar multiplica-
tion. For the image, ifw1 = α(v1) andw2 = α(v2), then

w1 +w2 = α(v1)+α(v2) = α(v1 +v2),

and ifw = α(v) then
cw= cα(v) = α(cv).

For the kernel, ifα(v1) = α(v2) = 0 then

α(v1 +v2) = α(v1)+α(v2) = 0+0 = 0,

and if α(v) = 0 then
α(cv) = cα(v) = c0 = 0.

Definition 3.3 We define therank of α to beρ(α) = dim(Im(α)) and thenullity
of α to beν(α) = dim(Ker(α)). (We use the Greek letters ‘rho’ and ‘nu’ here to
avoid confusing the rank of a linear map with the rank of a matrix, though they
will turn out to be closely related!)

Theorem 3.2 (Rank–Nullity Theorem) Let α : V →W be a linear map. Then
ρ(α)+ν(α) = dim(V).

Proof Choose a basisu1,u2, . . . ,uq for Ker(α), wherer = dim(Ker(α)) = ν(α).
The vectorsu1, . . . ,uq are linearly independent vectors ofV, so we can add further
vectors to get a basis forV, sayu1, . . . ,uq,v1, . . . ,vs, whereq+s= dim(V).

We claim that the vectorsα(v1), . . . ,α(vs) form a basis for Im(α). We have
to show that they are linearly independent and spanning.

Linearly independent: Suppose thatc1α(v1)+ · · ·+csα(vs) = 0. Thenα(c1v1+
· · ·+csvs) = 0, so thatc1v1 + · · ·+csvs∈ Ker(α). But then this vector can
be expressed in terms of the basis for Ker(α):

c1v1 + · · ·+csvs = a1u1 + · · ·+aquq,

whence
−a1u1−·· ·−aquq +c1v1 + · · ·+csvs = 0.

But theus andvs form a basis forV, so they are linearly independent. So
this equation implies that all theas andcs are zero. The fact thatc1 = · · ·=
cs = 0 shows that the vectorsα(v1, . . . ,α(vs) are linearly independent.
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Spanning: Take any vector in Im(α), sayw. Thenw = α(v) for somev ∈ V.
Write v in terms of the basis forV:

v = a1u1 + · · ·+aquq +c1v1 + · · ·+csvs

for somea1, . . . ,aq,c1, . . . ,cs. Applying α, we get

w = α(v)
= a1α(u1)+ · · ·+aqα(uq)+c1α(v1)+ · · ·+csα(vs)
= c1w1 + · · ·+csws,

sinceα(ui) = 0 (asui ∈ Ker(α)) andα(vi) = wi . So the vectorsw1, . . . ,ws

span Im(α).

Thus, ρ(α) = dim(Im(α)) = s. Sinceν(α) = q and q+ s = dim(V), the
theorem is proved.

3.2 Representation by matrices

We come now to the second role of matrices in linear algebra:they represent
linear maps between vector spaces.

Let α : V →W be a linear map, where dim(V) = m and dim(W) = n. As we
saw in the first section, we can takeV andW in their coordinate representation:
V = Km andW = Kn (the elements of these vector spaces being represented as
column vectors). Lete1, . . . ,em be the standard basis forV (so thatei is the vector
with ith coordinate 1 and all other coordinates zero), andf1, . . . , fn the standard
basis forV. Then fori = 1, . . . ,m, the vectorα(ei) belongs toW, so we can write
it as a linear combination off1, . . . , fn.

Definition 3.4 The matrix representing the linear mapα : V →W relative to the
basesB = (e1, . . . ,em) for V andC = ( f1, . . . , fn) for W is then×mmatrix whose
(i, j) entry isai j , where

α(ei) =
n

∑
j=1

a ji f j

for j = 1, . . . ,n.

In practice this means the following. Takeα(ei) and write it as a column vector
[a1i a2i · · · ani ]

>. This vector is theith column of the matrix representingα.
So, for example, ifm= 3, n = 2, and

α(e1) = f1 + f2, α(e2) = 2 f1 +5 f2, α(e3) = 3 f1− f2,
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then the vectorsα(ei) as column vectors are

α(e1) =
[

1
1

]
, α(e2) =

[
2
5

]
, α(e3) =

[
3
−1

]
,

and so the matrix representingT is[
1 2 3
1 5 −1

]
.

Now the most important thing about this representation is that the action ofα

is now easily described:

Proposition 3.3 Let α : V →W be a linear map. Choose bases for V and W and
let A be the matrix representingα. Then, if we represent vectors of V and W as
column vectors relative to these bases, we have

α(v) = Av.

Proof Let e1, . . . ,em be the basis forV, and f1, . . . , fn for W. Takev= ∑m
i=1ciei ∈

V, so that in coordinates

v =

 c1
...

cm

 .

Then

α(v) =
m

∑
i=1

ciα(ei) =
m

∑
i=1

n

∑
j=1

cia ji f j ,

so thejth coordinate ofα(v) is ∑n
i=1a ji ci , which is precisely thejth coordinate in

the matrix productAv.

In our example, ifv = 2e1 +3e2 +4e3 = [2 3 4]>, then

α(v) = Av=
[

1 2 3
1 5 −1

]2
3
4

=
[

20
13

]
.

Addition and multiplication of linear maps correspond to addition and multi-
plication of the matrices representing them.

Definition 3.5 Let α andβ be linear maps fromV to W. Define their sumα +β

by the rule
(α +β )(v) = α(v)+β (v)

for all v∈V. It is easy to check thatα +β is a linear map.
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Proposition 3.4 If α and β are linear maps represented by matrices A and B
respectively, thenα +β is represented by the matrix A+B.

The proof of this is not difficult: just use the definitions.

Definition 3.6 Let U,V,W be vector spaces overK, and letα : U → V andβ :
V →W be linear maps. The productβα is the functionU →W defined by the
rule

(βα)(u) = β (α(u))

for all u ∈U . Again it is easily checked thatβα is a linear map. Note that the
order is important: we take a vectoru∈U , applyα to it to get a vector inV, and
then applyβ to get a vector inW. Soβα means “applyα, thenβ ”.

Proposition 3.5 If α : U → V andβ : V → W are linear maps represented by
matrices A and B respectively, thenβα is represented by the matrix BA.

Again the proof is tedious but not difficult. Of course it follows that a linear
map is invertible (as a map; that is, there is an inverse map) if and only if it is
represented by an invertible matrix.

Remark Let l = dim(U), m= dim(V) andn = dim(W), thenA is m× l , andB
is n×m; so the productBA is defined, and isn× l , which is the right size for a
matrix representing a map from anl -dimensional to ann-dimensional space.

The significance of all this is that the strange rule for multiplying matrices is
chosen so as to make Proposition 3.5 hold. The definition of multiplication of
linear maps is the natural one (composition), and we could then say: what defini-
tion of matrix multiplication should we choose to make the Proposition valid? We
would find that the usual definition was forced upon us.

3.3 Change of basis

The matrix representing a linear map depends on the choice of bases we used to
represent it. Now we have to discuss what happens if we change the basis.

Remember the notion oftransition matrixfrom Chapter 1. IfB = (v1, . . . ,vm)
andB′ = (v′1, . . . ,v

′
m) are two bases for a vector spaceV, the transition matrixPB,B′

is the matrix whosejth column is the coordinate representation ofv′j in the basis
B. Then we have

[v]B = P[v]B′,
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where[v]B is the coordinate representation of an arbitrary vector in the basisB,
and similarly forB′. The inverse ofPB,B′ is PB′,B. Let pi j be the(i, j) entry of
P = PB,B′.

Now letC = (w1, . . . ,wn) andC′ = (w′
1, . . . ,w

′
n) be two bases for a spaceW,

with transition matrixQC,C′ and inverseQC′,C. Let Q= QC,C′ and letR= QC′,C be
its inverse, with(i, j) entryr i j .

Let α be a linear map fromV to W. Thenα is represented by a matrixA
using the basesB andC, and by a matrixA′ using the basesB′ andC′. What is the
relation betweenA andA′?

We just do it and see. To getA′, we have to represent the vectorsα(v′i) in the
basisC′. We have

v′j =
m

∑
i=1

pi j vi ,

so

α(v′j) =
m

∑
i=1

pi j α(vi)

=
m

∑
i=1

m

∑
k=1

pi j Akiwk

=
m

∑
i=1

n

∑
k=1

n

∑
l=1

pi j Akir lkw′
l .

This means, on turning things around, that

(A′)l j =
n

∑
k=1

m

∑
i=1

r lkAkipi j ,

so, according to the rules of matrix multiplication,

A′ = RAP= Q−1AP.

Proposition 3.6 Let α : V →W be a linear map represented by matrix A relative
to the bases B for V and C for W, and by the matrix A′ relative to the bases B′ for
V and C′ for W. If P= PB,B′ and Q= PC,C′ are the transition matrices from the
unprimed to the primed bases, then

A′ = Q−1AP.

This is rather technical; you need it for explicit calculations, but for theoretical
purposes the importance is the following corollary. Recall that two matricesA and
B are equivalent ifB is obtained fromA by multiplying on the left and right by
invertible matrices. (It makes no difference that we saidB = PAQ before and
B = Q−1APhere, of course.)
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Proposition 3.7 Two matrices represent the same linear map with respect to dif-
ferent bases if and only if they are equivalent.

This holds because

• transition matrices are always invertible (the inverse ofPB,B′ is the matrix
PB′,B for the transition in the other direction); and

• any invertible matrix can be regarded as a transition matrix: for, if then×n
matrix P is invertible, then its rank isn, so its columns are linearly inde-
pendent, and form a basisB′ for Kn; and thenP = PB,B′, whereB is the
“standard basis”.

3.4 Canonical form revisited

Now we can give a simpler proof of Theorem 2.3 about canonical form for equiv-
alence. First, we make the following observation.

Theorem 3.8 Let α : V →W be a linear map of rank r= ρ(α). Then there are
bases for V and W such that the matrix representingα is, in block form,[

Ir O
O O

]
.

Proof As in the proof of Theorem 3.2, choose a basisu1, . . . ,us for Ker(α), and
extend to a basisu1, . . . ,us,v1, . . . ,vr for V. Thenα(v1), . . . ,α(vr) is a basis for
Im(α), and so can be extended to a basisα(v1), . . . ,α(vr),x1, . . . ,xt for W. Now
we will use the bases

v1, . . . ,vr ,vr+1 = u1, . . . ,vr+s = ws for V,

w1 = α(v1), . . . ,wr = α(vr),wr+1 = x1, . . . ,wr+s = xs for W.

We have

α(vi) =
{

wi if 1 ≤ i ≤ r,
0 otherwise;

so the matrix ofα relative to these bases is[
Ir O
O O

]
as claimed.
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We recognise the matrix in the theorem as the canonical form for equivalence.
Combining Theorem 3.8 with Proposition 3.7, we see:

Theorem 3.9 A matrix of rank r is equivalent to the matrix[
Ir O
O O

]
.

We also see, by the way, that the rank of a linear map (that is, the dimension
of its image) is equal to the rank of any matrix which represents it. So all our
definitions of rank agree!

The conclusion is that

two matrices are equivalent if and only if they have the same rank.

So how many equivalence classes ofm×n matrices are there, for givenm andn?
The rank of such a matrix can take any value from 0 up to the minimum ofm and
n; so the number of equivalence classes is min{m,n}+1.



Chapter 4

Linear maps on a vector space

In this chapter we consider a linear mapα from a vector spaceV to itself. If
dim(V) = n then, as in the last chapter, we can representα by ann× n matrix
relative to any basis forV. However, this time we have less freedom: instead of
having two bases to choose, there is only one. This makes the theory much more
interesting!

4.1 Projections and direct sums

We begin by looking at a particular type of linear map whose importance will be
clear later on.

Definition 4.1 The linear mapπ : V → V is a projection if π2 = π (where, as
usual,π2 is defined byπ2(v) = π(π(v))).

Proposition 4.1 If π : V →V is a projection, then V= Im(π)⊕Ker(π).

Proof We have two things to do:

Im(π) + Ker(π) = V: Take any vectorv ∈ V, and letw = π(v) ∈ Im(π). We
claim thatv−w∈ Ker(π). This holds because

π(v−w) = π(v)−π(w) = π(v)−π(π(v)) = π(v)−π
2(v) = 0,

sinceπ2 = π. Now v = w+(v−w) is the sum of a vector in Im(π) and one
in Ker(π).

Im(π)∩Ker(π) = {0}: Takev∈ Im(π)∩Ker(π). Thenv= π(w) for some vector
w; and

0 = π(v) = π(π(w)) = π
2(w) = π(w) = v,

as required (the first equality holding becausev∈ Ker(π)).

41
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It goes the other way too: ifV = U ⊕W, then there is a projectionπ : V →V
with Im(π) = U and Ker(π) = W. For every vectorv∈V can be uniquely written
asv= u+w, whereu∈U andw∈W; we defineπ by the rule thatπ(v) = u. Now
the assertions are clear.

The diagram in Figure 4.1 shows geometrically what a projection is. It moves
any vectorv in a direction parallel to Ker(π) to a vector lying in Im(π).
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Ker(π)

Im(π)

���
���

����

v

π(v)

Figure 4.1: A projection

We can extend this to direct sums with more than two terms. First, notice that
if π is a projection andπ ′ = I −π (whereI is the identity map, satisfyingI(v) = v
for all vectorsv), thenπ ′ is also a projection, since

(π ′)2 = (I −π)2 = I −2π +π
2 = I −2π +π = I −π = π

′;

andπ +π ′ = I ; alsoππ ′ = π(I −π) = π−π2 = O. Finally, we see that Ker(π) =
Im(π ′); soV = Im(π)⊕ Im(π ′). In this form the result extends:

Proposition 4.2 Suppose thatπ1,π2, . . . ,πr are projections on V satisfying

(a) π1 +π2 + · · ·+πr = I, where I is the identity transformation;

(b) πiπ j = O for i 6= j.

Then V= U1⊕U2⊕·· ·⊕Ur , where Ui = Im(πi).

Proof We have to show that any vectorv can beuniquelywritten in the form
v = u1 +u2 + · · ·+ur , whereui ∈Ui for i = 1, . . . , r. We have

v = I(v) = π1(v)+π2(v)+ · · ·+πr(v) = u1 +u2 + · · ·+ur ,
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whereui = πi(v) ∈ Im(πi) for i = 1, . . . , r. So any vector can be written in this
form. Now suppose that we have any expression

v = u′1 +u′2 + · · ·+u′r ,

with u′i ∈Ui for i = 1, . . . , r. Sinceu′i ∈Ui = Im(πi), we haveu′i = π(vi) for some
vi ; then

πi(u′i) = π
2
i (vi) = πi(vi) = u′i .

On the other hand, forj 6= i, we have

πi(u′j) = πiπ j(v j) = 0,

sinceπiπ j = O. So applyingπi to the expression forv, we obtain

πi(v) = πi(u′1)+πi(u′2)+ · · ·+πi(u′r) = πi(u′i) = u′i ,

since all terms in the sum except theith are zero. So the only possible expression
is given byui = πi(v), and the proof is complete.

Conversely, ifV =U1⊕U2⊕·· ·⊕Ur , then we can find projectionsπi ,π2, . . . ,πr

satisfying the conditions of the above Proposition. For any vectorv ∈ V has a
unique expression as

v = u1 +u2 + · · ·+ur

with ui ∈Ui for i = 1, . . . , r; then we defineπi(v) = ui .
The point of this is that projections give us another way to recognise and de-

scribe direct sums.

4.2 Linear maps and matrices

Let α : V →V be a linear map. If we choose a basisv1, . . . ,vn for V, thenV can
be written in coordinates asKn, andα is represented by a matrixA, say, where

α(vi) =
n

∑
j=1

a ji v j .

Then just as in the last section, the action ofα onV is represented by the action of
A onKn: α(v) is represented by the productAv. Also, as in the last chapter, sums
and products (and hence arbitrary polynomials) of linear maps are represented by
sums and products of the representing matrices: that is, for any polynomialf (x),
the mapf (α) is represented by the matrixf (A).

What happens if we change the basis? This also follows from the formula we
worked out in the last chapter. However, there is only one basis to change.
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Proposition 4.3 Letα be a linear map on V which is represented by the matrix A
relative to a basis B, and by the matrix A′ relative to a basis B′. Let P= PB,B′ be
the transition matrix between the two bases. Then

A′ = P−1AP.

Proof This is just Proposition 4.6, sinceP andQ are the same here.

Definition 4.2 Two n×n matricesA andB are said to besimilar if B = P−1AP
for some invertible matrixP.

Thus similarity is an equivalence relation, and

two matrices are similar if and only if they represent the same linear
map with respect to different bases.

There is no simple canonical form for similarity like the one for equivalence
that we met earlier. For the rest of this section we look at a special class of ma-
trices or linear maps, the “diagonalisable” ones, where we do have a nice simple
representative of the similarity class. In the final section we give without proof a
general result for the complex numbers.

4.3 Eigenvalues and eigenvectors

Definition 4.3 Let α be a linear map onV. A vector v ∈ V is said to be an
eigenvectorof α, with eigenvalueλ ∈ K, if v 6= 0 andα(v) = λv. The set{v :
α(v) = λv} consisting of the zero vector and the eigenvectors with eigenvalueλ

is called theλ -eigenspaceof α.

Note that we require thatv 6= 0; otherwise the zero vector would be an eigen-
vector for any value ofλ . With this requirement, each eigenvector has a unique
eigenvalue: for ifα(v) = λv = µv, then(λ − µ)v = 0, and so (sincev 6= 0) we
haveλ = µ.

The nameeigenvalueis a mixture of German and English; it means “charac-
teristic value” or “proper value” (here “proper” is used in the sense of “property”).
Another term used in older books is “latent root”. Here “latent” means “hidden”:
the idea is that the eigenvalue is somehow hidden in a matrix representingα, and
we have to extract it by some procedure. We’ll see how to do this soon.
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Example Let

A =
[
−6 6
−12 11

]
.

The vectorv =
[

3
4

]
satisfies

[
−6 6
−12 11

][
3
4

]
= 2

[
3
4

]
,

so is an eigenvector with eigenvalue 2. Similarly, the vectorw =
[

2
3

]
is an eigen-

vector with eigenvalue 3.
If we knew that, for example, 2 is an eigenvalue ofA, then we could find a

corresponding eigenvector

[
x
y

]
by solving the linear equations

[
−6 6
−12 11

][
x
y

]
= 2

[
x
y

]
.

In the next-but-one section, we will see how to find the eigenvalues, and the fact
that there cannot be more thann of them for ann×n matrix.

4.4 Diagonalisability

Some linear maps have a particularly simple representation by matrices.

Definition 4.4 The linear mapα on V is diagonalisableif there is a basis ofV
relative to which the matrix representingα is a diagonal matrix.

Suppose thatv1, . . . ,vn is such a basis showing thatα is diagonalisable. Then
α(vi) = aii vi for i = 1, . . . ,n, whereaii is the ith diagonal entry of the diagonal
matrix A. Thus, the basis vectors are eigenvectors. Conversely, if we have a basis
of eigenvectors, then the matrix representingα is diagonal. So:

Proposition 4.4 The linear mapα on V is diagonalisable if and only if there is a
basis of V consisting of eigenvectors ofα.
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Example The matrix

[
1 2
0 1

]
is not diagonalisable. It is easy to see that its only

eigenvalue is 1, and the only eigenvectors are scalar multiples of[1 0]>. So we
cannot find a basis of eigenvectors.

Theorem 4.5 Let α : V →V be a linear map. Then the following are equivalent:

(a) α is diagonalisable;

(b) V is the direct sum of eigenspaces ofα;

(c) α = λ1π1 + · · ·+ λrπr , whereλ1, . . . ,λr are the distinct eigenvalues ofα,
andπ1, . . . ,πr are projections satisfyingπ1 + · · ·+ πr = I and πiπ j = 0 for
i 6= j.

Proof Let λ1, . . . ,λr be the distinct eigenvalues ofα, and letvi1, . . . ,vimi be a
basis for theλi-eigenspace ofα. Thenα is diagonalisable if and only if the union
of these bases is a basis forV. So (a) and (b) are equivalent.

Now suppose that (b) holds. Proposition 4.2 and its converse show that there
are projectionsπ1, . . . ,πr satisfying the conditions of (c) where Im(πi) is theλi-
eigenspace. Now in this case it is easily checked thatT and∑λiπi agree on every
vector inV, so they are equal. So (b) implies (c).

Finally, if α = ∑λiπi , where theπi satisfy the conditions of (c), thenV is the
direct sum of the spaces Im(πi), and Im(πi) is theλi-eigenspace. So (c) implies
(b), and we are done.

Example Our matrixA =
[
−6 6
−12 11

]
is diagonalisable, since the eigenvectors[

3
4

]
and

[
2
3

]
are linearly independent, and so form a basis forR. Indeed, we see

that [
−6 6
−12 11

][
3 4
2 3

]
=
[

3 4
2 3

][
2 0
0 3

]
,

so thatP−1AP is diagonal, whereP is the matrix whose columns are the eigenvec-
tors ofA.

Furthermore, one can find two projection matrices whose column spaces are
the eigenspaces, namely

P1 =
[

9 −6
12 −8

]
, P2 =

[
−8 6
−12 9

]
.
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Check directly thatP2
1 = P1, P2

2 = P2, P1P2 = P2P1 = 0,P1+P2 = I , and 2P1+3P2 =
A.

This expression for a diagonalisable matrixA in terms of projections is useful
in calculating powers ofA, or polynomials inA.

Proposition 4.6 Let

A =
r

∑
i=1

λiPi

be the expression for the diagonalisable matrix A in terms of projections Pi sat-
isfying the conditions of Theorem 4.5, that is,∑r

i=1Pi = I and PiPj = O for i 6= j.
Then

(a) for any positive integer m, we have

Am =
r

∑
i=1

λ
m
i Pi ;

(b) for any polynomial f(x), we have

f (A) =
r

∑
i=1

f (λi)Pi .

Proof (a) The proof is by induction onm, the casem= 1 being the given expres-
sion. Suppose that the result holds form= k−1. Then

Ak = Ak−1A

=

(
r

∑
i=1

λ
k−1
i Pi

)(
r

∑
i=1

λiPi

)

When we multiply out this product, all the termsPiPj are zero fori 6= j, and we
obtain simply∑r

i=1λ
k−1
i λiPi , as required. So the induction goes through.

(b) If f (x) = ∑amxm, we obtain the result by multiplying the equation of part
(a) byam and summing overm. (Note that, form= 0, we use the fact that

A0 = I =
r

∑
i=1

Pi =
r

∑
i=1

λ
0
i Pi ,

that is, part (a) holds also form= 0.)
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4.5 Characteristic and minimal polynomials

We defined the determinant of a square matrixA. Now we want to define the de-
terminant of a linear mapα. The obvious way to do this is to take the determinant
of any matrix representingα. For this to be a good definition, we need to show
that it doesn’t matter which matrix we take; in other words, that det(A′) = det(A)
if A andA′ are similar. But, ifA′ = P−1AP, then

det(P−1AP) = det(P−1)det(A)det(P) = det(A),

since det(P−1)det(P) = 1. So our plan will succeed:

Definition 4.5 (a) Thedeterminantdet(α) of a linear mapα : V → V is the
determinant of any matrix representingT.

(b) Thecharacteristic polynomial cα(x) of a linear mapα : V →V is the char-
acteristic polynomial of any matrix representingα.

(c) The minimal polynomial mα(x) of a linear mapα : V → V is the monic
polynomial of smallest degree which is satisfied byα.

The second part of the definition is OK, by the same reasoning as the first
(sincecA(x) is just a determinant). But the third part also creates a bit of a problem:
how do we know thatα satisfies any polynomial? The Cayley–Hamilton Theorem
tells us thatcA(A) = O for any matrixA representingα. Now cA(A) represents
cA(α), andcA = cα by definition; socα(α) = O. Indeed, the Cayley–Hamilton
Theorem can be stated in the following form:

Proposition 4.7 For any linear mapα on V, its minimal polynomial mα(x) di-
vides its characteristic polynomial cα(x) (as polynomials).

Proof Suppose not; then we can dividecα(x) by mα(x), getting a quotientq(x)
and non-zero remainderr(x); that is,

cα(x) = mα(x)q(x)+ r(x).

Substitutingα for x, using the fact thatcα(α) = mα(α) = O, we find thatr(α) =
0. But the degree ofr is less than the degree ofmα , so this contradicts the defini-
tion of mα as the polynomial of least degree satisfied byα.

Theorem 4.8 Let α be a linear map on V. Then the following conditions are
equivalent for an elementλ of K:

(a) λ is an eigenvalue ofα;

(b) λ is a root of the characteristic polynomial ofα;

(c) λ is a root of the minimal polynomial ofα.
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Remark: This gives us a recipe to find the eigenvalues ofα: take a matrixA
representingα; write down its characteristic polynomialcA(x) = det(xI−A); and
find the roots of this polynomial. In our earlier example,∣∣∣∣x−0.9 −0.3
−0.1 x−0.7

∣∣∣∣=(x−0.9)(x−0.7)−0.03= x2−1.6x+0.6=(x−1)(x−0.6),

so the eigenvalues are 1 and 0.6, as we found.

Proof (b) implies (a): Suppose thatcα(λ ) = 0, that is, det(λ I −α) = 0. Then
λ I −α is not invertible, so its kernel is non-zero. Pick a non-zero vectorv in
Ker(λ I −α). Then(λ I −α)v = 0, so thatα(v) = λv; that is,λ is an eigenvalue
of α.

(c) implies (b): Suppose thatλ is a root ofmα(x). Then (x− λ ) divides
mα(x). But mα(x) dividescα(x), by the Cayley–Hamilton Theorem: so(x− λ

dividescα(x), whenceλ is a root ofcα(x).
(a) implies (c): Letλ be an eigenvalue ofA with eigenvectorv. We have

α(v) = λv. By induction, αk(v) = λ kv for any k, and so f (α)(v) = f (λ )(v)
for any polynomialf . Choosingf = mα , we havemα(α) = 0 by definition, so
mα(λ )v = 0; sincev 6= 0, we havemα(λ ) = 0, as required.

Using this result, we can give a necessary and sufficient condition forα to be
diagonalisable. First, a lemma.

Lemma 4.9 Let v1, . . . ,vr be eigenvectors ofα with distinct eigenvaluesλ1, . . . ,λr .
Then v1, . . . ,vr are linearly independent.

Proof Suppose thatv1, . . . ,vr are linearly dependent, so that there exists a linear
relation

c1v1 + · · ·+crvr = 0,

with coefficientsci not all zero. Some of these coefficients may be zero; choose a
relation with the smallest number of non-zero coefficients. Suppose thatc1 6= 0.
(If c1 = 0 just re-number.) Now acting on the given relation withα, using the fact
thatα(vi) = λivi , we get

c1λ1v1 + · · ·+crλrvr = 0.

Subtractingλ1 times the first equation from the second, we get

c2(λ2−λ1)v2 + · · ·+cr(λr −λ1)vr = 0.

Now this equation has fewer non-zero coefficients than the one we started with,
which was assumed to have the smallest possible number. So the coefficients in
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this equation must all be zero. That is,ci(λi −λ1) = 0, soci = 0 (sinceλi 6= λ1),
for i = 2, . . . ,n. This doesn’t leave much of the original equation, onlyc1v1 = 0,
from which we conclude thatc1 = 0, contrary to our assumption. So the vectors
must have been linearly independent.

Theorem 4.10 The linear mapα on V is diagonalisable if and only if its mini-
mal polynomial is the product of distinct linear factors, that is, its roots all have
multiplicity 1.

Proof Suppose first thatα is diagonalisable, with eigenvaluesλ1, . . . ,λr . Then
there is a basis such thatα is represented by a diagonal matrixD whose diagonal
entries are the eigenvalues. Now for any polynomialf , f (α) is represented by
f (D), a diagonal matrix whose diagonal entries aref (λi) for i = 1, . . . , r. Choose

f (x) = (x−λ1) · · ·(x−λr).

Then all the diagonal entries off (D) are zero; sof (D) = 0. We claim thatf is
the minimal polynomial ofα; clearly it has no repeated roots, so we will be done.
We know that eachλi is a root ofmα(x), so thatf (x) dividesmα(x); and we also
know that f (α) = 0, so that the degree off cannot be smaller than that ofmα . So
the claim follows.

Conversely, we have to show that ifmα is a product of distinct linear factors
thenα is diagonalisable. This is a little argument with polynomials. Letf (x) =
∏(x− λi) be the minimal polynomial ofα, with the rootsλi all distinct. Let
hi(x) = f (x)/(x− λi). Then the polynomialsh1, . . . ,hr have no common factor
except 1; for the only possible factors are(x−λi), but this fails to dividehi . Now
the Euclidean algorithm shows that we can write the h.c.f. as a linear combination:

1 =
r

∑
i=1

hi(x)ki(x).

Let Ui = Im(hi(α). The vectors inUi are eigenvectors ofα with eigenvalueλi ;
for if u∈Ui , sayu = hi(α)v, then

(α −λi I)ui = (α −λi I)hi(α)(v) = f (α)v = 0,

so thatα(v) = λi(v). Moreover every vector can be written as a sum of vectors
from the subspacesUi . For, givenv∈V, we have

v = Iv =
r

∑
i=1

hi(α)(ki(α)v),

with hi(α)(ki(α)v) ∈ Im(hi(α). The fact that the expression is unique follows
from the lemma, since the eigenvectors are linearly independent.
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So how, in practice, do we “diagonalise” a matrixA, that is, find an invertible
matrixP such thatP−1AP= D is diagonal? We saw an example of this earlier. The
matrix equation can be rewritten asAP= PD, from which we see that the columns
of P are the eigenvectors ofA. So the proceedure is: Find the eigenvalues ofA, and
find a basis of eigenvectors; then letP be the matrix which has the eigenvectors as
columns, andD the diagonal matrix whose diagonal entries are the eigenvalues.
ThenP−1AP= D.

How do we find the minimal polynomial of a matrix? We know that it divides
the characteristic polynomial, and that every root of the characteristic polynomial
is a root of the minimal polynomial; then it’s trial and error. For example, if the
characteristic polynomial is(x−1)2(x−2)3, then the minimal polynomial must be
one of(x−1)(x−2) (this would correspond to the matrix being diagonalisable),
(x−1)2(x−2), (x−1)(x−2)2, (x−1)2(x−2)2, (x−1)(x−2)3 or (x−1)2(x−2)3.
If we try them in this order, the first one to be satisfied by the matrix is the minimal
polynomial.

For example, the characteristic polynomial ofA =
[

1 2
0 1

]
is (x− 1)2; its

minimal polynomial is not(x−1) (sinceA 6= I ); so it is(x−1)2.

4.6 Jordan form

We finish this chapter by stating without proof a canonical form for matrices over
the complex numbers under similarity.

Definition 4.6 (a) A Jordan block J(n,λ ) is a matrix of the form
λ 1 0 · · · 0
0 λ 1 · · · 0

· · ·
0 0 0 · · · λ

 ,

that is, it is ann× n matrix with λ on the main diagonal, 1 in positions
immediately above the main diagonal, and 0 elsewhere. (We takeJ(1,λ ) to
be the 1×1 matrix[λ ].)

(b) A matrix is in Jordan formif it can be written in block form with Jordan
blocks on the diagonal and zeros elsewhere.

Theorem 4.11 Over C, any matrix is similar to a matrix in Jordan form; that
is, any linear map can be represented by a matrix in Jordan form relative to a
suitable basis. Moreover, the Jordan form of a matrix or linear map is unique
apart from putting the Jordan blocks in a different order on the diagonal.
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Remark A matrix overC is diagonalisable if and only if all the Jordan blocks
in its Jordan form have size 1.

Example Any 3×3 matrix overC is similar to one ofλ 0 0
0 µ 0
0 0 ν

 ,

λ 1 0
0 λ 0
0 0 µ

 ,

λ 1 0
0 λ 1
0 0 λ

 ,

for someλ ,µ,ν ∈ C (not necessarily distinct).

Example Consider the matrix

[
a b
−b a

]
, with b 6= 0. Its characteristic polyno-

mial is x2−2ax+(a2 +b2), so that the eigenvalues overC area+bi anda−bi.
ThusA is diagonalisable, if we regard it as a matrix over the complex numbers.
But over the real numbers,A has no eigenvalues and no eigenvectors; it is not
diagonalisable, and cannot be put into Jordan form either.

We see that there are two different “obstructions” to a matrix being diagonal-
isable:

(a) The roots of the characteristic polynomial don’t lie in the fieldK. We can
always get around this by working in a larger field (as above, enlarge the
field fromR to C).

(b) Even though the characteristic polynomial factorises, there may be Jordan
blocks of size bigger than 1, so that the minimal polynomial has repeated
roots. This problem cannot be transformed away by enlarging the field; we
are stuck with what we have.

Though it is beyond the scope of this course, it can be shown that if all the roots
of the characteristic polynomial lie in the fieldK, then the matrix is similar to one
in Jordan form.

4.7 Trace

Here we meet another function of a linear map, and consider its relation to the
eigenvalues and the characteristic polynomial.

Definition 4.7 The trace Tr(A) of a square matrixA is the sum of its diagonal
entries.
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Proposition 4.12 (a) For any two n×n matrices A and B, we haveTr(AB) =
Tr(BA).

(b) Similar matrices have the same trace.

Proof (a)

Tr(AB) =
n

∑
i=1

(AB)ii =
n

∑
i=1

n

∑
j=1

Ai j B ji ,

by the rules for matrix multiplication. Now obviously Tr(BA) is the same thing.
(b) Tr(P−1AP) = Tr(APP−1) = Tr(AI) = Tr(A).

The second part of this proposition shows that, ifα : V →V is a linear map,
then any two matrices representingα have the same trace; so, as we did for the
determinant, we can define thetrace Tr(α) of α to be the trace of any matrix
representingα.

The trace and determinant ofα are coefficients in the characteristic polyno-
mial of α.

Proposition 4.13 Let α : V →V be a linear map, wheredim(V) = n, and let cα
be the characteristic polynomial ofα, a polynomial of degree n with leading term
xn.

(a) The coefficient of xn−1 is−Tr(α), and the constant term is(−1)ndet(α).

(b) If α is diagonalisable, then the sum of its eigenvalues isTr(α) and their
product isdet(α).

Proof Let A be a matrix representingα. We have

cα(x) = det(xI−A) =

∣∣∣∣∣∣∣∣
x−a11 −a12 . . . −a1n

−a21 x−a22 . . . −a2n

. . .
−an1 −an2 . . . x−ann

∣∣∣∣∣∣∣∣ .
The only way to obtain a term inxn−1 in the determinant is from the product
(x−a11)(x−a22) · · ·(x−ann) of diagonal entries, taking−aii from theith factor
andx from each of the others. (If we take one off-diagonal term, we would have
to have at least two, so that the highest possible power ofx would bexn−2.) So the
coefficient ofxn−1 is minus the sum of the diagonal terms.

Puttingx= 0, we find that the constant term iscα(0)= det(−A)= (−1)ndet(A).
If α is diagonalisable then the eigenvalues are the roots ofcα(x):

cα(x) = (x−λ1)(x−λ2) · · ·(x−λn).

Now the coefficient ofxn−1 is minus the sum of the roots, and the constant term
is (−1)n times the product of the roots.
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Chapter 5

Linear and quadratic forms

In this chapter we examine “forms”, that is, functions from a vector spaceV to
its field, which are either linear or quadratic. The linear forms comprise the dual
space ofV; we look at this and define dual bases and the adjoint of a linear map
(corresponding to the transpose of a matrix).

Quadratic forms make up the bulk of the chapter. We show that we can change
the basis to put any quadratic form into “diagonal form” (with squared terms only),
by a process generalising “completing the square” in elementary algebra, and that
further reductions are possible over the real and complex numbers.

5.1 Linear forms and dual space

The definition is simple:

Definition 5.1 LetV be a vector space overK. A linear formonV is a linear map
fromV to K, whereK is regarded as a 1-dimensional vector space overK: that is,
it is a function fromV to K satisfying

f (v1 +v2) = f (v1)+ f (v2), f (cv) = c f(v)

for all v1,v2,v∈V andc∈K.

If dim(V) = n, then a linear form is represented by a 1× n matrix overK,
that is, arow vectorof lengthn overK. If f = [a1 a2 . . . an ], then forv =
[x1 x2 . . . xn ]> we have

f (v) = [a1 a2 . . . an ]


x1

x2
...

xn

= a1x1 +a2x2 + · · ·+anxn.

55
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Conversely, any row vector of lengthn represents a linear form onKn.

Definition 5.2 Linear forms can be added and multiplied by scalars in the obvious
way:

( f1 + f2)(v) = f1(v)+ f2(v), (c f)(v) = c f(v).

So they form a vector space, which is called thedual spaceof V and is denoted
by V∗.

Not surprisingly, we have:

Proposition 5.1 If V is finite-dimensional, then so is V∗, anddim(V∗) = dim(V).

Proof We begin by observing that, if(v1, . . . ,vn) is a basis forV, anda1, . . . ,an

are any scalars whatsoever, then there is a unique linear mapf with the property
that f (vi) = ai for i = 1, . . . ,n. It is given by

f (c1v1 + · · ·+cnvn) = a1c1 + · · ·+ancn,

in other words, it is represented by the row vector[a1 a2 . . . an ], and its
action onKn is by matrix multiplication as we saw earlier.

Now let fi be the linear map defined by the rule that

fi(v j) =
{

1 if i = j,
0 if i 6= j.

Then ( f1, . . . , fn) form a basis forV∗; indeed, the linear formf defined in the
preceding paragraph isa1 f1 + · · ·+ an fn. This basis is called thedual basisof
V∗ corresponding to the given basis forV. Since it hasn elements, we see that
dim(V∗) = n = dim(V).

We can describe the basis in the preceding proof as follows.

Definition 5.3 TheKronecker deltaδi j for i, j ∈ {1, . . . ,n} is defined by the rule
that

δi j =
{

1 if i = j,
0 if i 6= j.

Note thatδi j is the(i, j) entry of the identity matrix. Now, if(v1, . . . ,vn) is a basis
for V, then thedual basisfor the dual spaceV∗ is the basis( f1, . . . , fn) satisfying

fi(v j) = δi j .

There are some simple properties of the Kronecker delta with respect to sum-
mation. For example,

n

∑
i=1

δi j ai = a j

for fixed j ∈ {1, . . . ,n}. This is because all terms of the sum except the termi = j
are zero.
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5.1.1 Adjoints

Definition 5.4 Let α : V →W be a linear map. There is a linear mapα∗ : W∗→
V∗ (note the reversal!) defined by

(α∗( f ))(v) = f (α(v)).

The mapα∗ is called theadjoint of α.

This definition takes a bit of unpicking. We are givenα : V →W and asked to
defineα∗ : W∗→V∗. This means that, to any elementf ∈W∗ (any linear form on
W) we must associate a linear formg = α∗( f ) ∈V∗. This linear form must act on
vectorsv∈V to produce scalars. Our definition says thatα∗( f ) maps the vectorv
to the scalarf (α(v)): this makes sense becauseα(v) is a vector inW, and hence
the linear formf ∈W∗ can act on it to produce a scalar.

Now α∗, being a linear map, is represented by a matrix when we choose bases
for W∗ andV∗. The obvious bases to choose are the dual bases corresponding to
some given bases ofW andV respectively. What is the matrix? Some calculation
shows the following, which will not be proved in detail here.

Proposition 5.2 Letα : V →W be a linear map. Choose bases B for V , and C for
W, and let A be the matrix representingα relative to these bases. Let B∗ and C∗

denote the dual bases of V∗ and W∗ corresponding to B and C. Then the matrix
representingα∗ relative to the bases C∗ and B∗ is the transpose of A, that is, A>.

5.1.2 Change of basis

Suppose that we change bases inV from B= (v1, . . . ,vn) to B′ = (v′1, . . . ,v
′
n), with

change of basis matrixP = PB,B′. How do the dual bases change? In other words,
if B∗ = ( f1, . . . , fn) is the dual basis ofB, and(B′)∗ = ( f ′1, . . . , f ′n) the dual basis
of B, then what is the transition matrixPB∗,(B′)∗? The next result answers the
question.

Proposition 5.3 Let B and B′ be bases for V , and B∗ and(B′)∗ the dual bases of
the dual space. Then

PB∗,(B′)∗ =
(

P>B,B′

)−1
.

Proof Use the notation from just before the Proposition. IfP = PB,B′ has(i, j)
entry pi j , andQ = PB∗,(B′)∗ has(i, j) entryqi j , we have

v′i =
n

∑
k=1

pkivk,

f ′j =
n

∑
l=1

ql j fl ,
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and so

δi j = f ′j(v
′
i)

=

(
n

∑
l=1

ql j fl

)(
n

∑
k=1

pkivi

)

=
n

∑
l=1

n

∑
k=1

ql j δi j pki

=
n

∑
k=1

qk j pki.

Now qk j is the( j,k) entry ofQ>, and so we have

I = Q>P,

whenceQ> = P−1, so thatQ =
(
P−1

)> =
(
P>
)−1

, as required.

5.2 Quadratic forms

A lot of applications of mathematics involve dealing with quadratic forms: you
meet them in statistics (analysis of variance) and mechanics (energy of rotating
bodies), among other places. In this section we begin the study of quadratic forms.

5.2.1 Quadratic forms

For almost everything in the remainder of this chapter, we assume that

the characteristic of the fieldK is not equal to2.

This means that 26= 0 in K, so that the element 1/2 exists inK. Of our list of
“standard” fields, this only excludesF2, the integers mod 2. (For example, inF5,
we have 1/2 = 3.)

A quadratic form as a function which, when written out in coordinates, is a
polynomial in which every term has total degree 2 in the variables. For example,

q(x,y,z) = x2 +4xy+2xz−3y2−2yz−z2

is a quadratic form in three variables.
We will meet a formal definition of a quadratic form later in the chapter, but

for the moment we take the following.
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Definition 5.5 A quadratic formin n variablesx1, . . . ,xn over a fieldK is a poly-
nomial

n

∑
i=1

n

∑
j=1

ai j xix j

in the variables in which every term has degree two (that is, is a multiple ofxix j

for somei, j).

In the above representation of a quadratic form, we see that ifi 6= j, then the
term inxix j comes twice, so that the coefficient ofxix j is ai j +a ji . We are free to
choose any two values forai j anda ji as long as they have the right sum; but we
will always make the choice so that the two values are equal. That is, to obtain a
termcxix j , we takeai j = a ji = c/2. (This is why we require that the characteristic
of the field is not 2.)

Any quadratic form is thus represented by asymmetricmatrix A with (i, j)
entryai j (that is, a matrix satisfyingA = A>). This is the third job of matrices in
linear algebra:Symmetric matrices represent quadratic forms.

We think of a quadratic form as defined above as being a function from the
vector spaceKn to the fieldK. It is clear from the definition that

q(x1, . . . ,xn) = v>Av, wherev =

x1
...

xn

 .

Now if we change the basis forV, we obtain a different representation for the
same functionq. The effect of a change of basis is a linear substitutionv = Pv′ on
the variables, whereP is the transition matrix between the bases. Thus we have

v>Av= (Pv′)>A(Pv′) = (v′)>(P>AP)v′,

so we have the following:

Proposition 5.4 A basis change with transition matrix P replaces the symmetric
matrix A representing a quadratic form by the matrix P>AP.

As for other situations where matrices represented objects on vector spaces,
we make a definition:

Definition 5.6 Two symmetric matricesA,A′ over a fieldK arecongruentif A′ =
P>AP for some invertible matrixP.

Proposition 5.5 Two symmetric matrices are congruent if and only if they repre-
sent the same quadratic form with respect to different bases.
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Our next job, as you may expect, is to find a canonical form for symmetric
matrices under congruence; that is, a choice of basis so that a quadratic form has
a particularly simple shape. We will see that the answer to this question depends
on the field over which we work. We will solve this problem for the fields of real
and complex numbers.

5.2.2 Reduction of quadratic forms

Even if we cannot find a canonical form for quadratic forms, we can simplify them
very greatly.

Theorem 5.6 Let q be a quadratic form in n variables x1, . . . ,xn, over a field
K whose characteristic is not2. Then by a suitable linear substitution to new
variables y1, . . . ,yn, we can obtain

q = c1y2
1 +c2y2

2 + · · ·+cny2
n

for some c1, . . . ,cn ∈K.

Proof Our proof is by induction onn. We call a quadratic form which is written
as in the conclusion of the theoremdiagonal. A form in one variable is certainly
diagonal, so the induction starts. Now assume that the theorem is true for forms
in n−1 variables. Take

q(x1, . . . ,xn) =
n

∑
i=1

n

∑
j=1

ai j xix j ,

whereai j = a ji for i 6= j.

Case 1: Assume thataii 6= 0 for somei. By a permutation of the variables (which
is certainly a linear substitution), we can assume thata11 6= 0. Let

y1 = x1 +
n

∑
i=2

(a1i/a11)xi .

Then we have

a11y
2
1 = a11x

2
1 +2

n

∑
i=2

a1ix1xi +q′(x2, . . . ,xn),

whereq′ is a quadratic form inx2, . . . ,xn. That is, all the terms involvingx1 in q
have been incorporated intoa11y2

1. So we have

q(x1, . . . ,xn) = a11y
2
1 +q′′(x2, . . . ,xn),
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whereq′′ is the part ofq not containingx1 minusq′.
By induction, there is a change of variable so that

q′′(x2, . . . ,xn) =
n

∑
i=2

ciy
2
i ,

and so we are done (takingc1 = a11).

Case 2: All aii are zero, butai j 6= 0 for somei 6= j. Now

xi j = 1
4

(
(xi +x j)2− (xi −x j)2

)
,

so takingx′i = 1
2(xi + x j) andx′j = 1

2(xi − x j), we obtain a new form forq which
does contain a non-zero diagonal term. Now we apply the method of Case 1.

Case 3: All ai j are zero. Nowq is the zero form, and there is nothing to prove:
takec1 = · · ·= cn = 0.

Example 5.1 Consider the quadratic formq(x,y,z) = x2 + 2xy+ 4xz+ y2 + 4z2.
We have

(x+y+2z)2 = x2 +2xy+4xz+y2 +4z2 +4yz,

and so

q = (x+y+2z)2−4yz

= (x+y+2z)2− (y+z)2 +(y−z)2

= u2 +v2−w2,

whereu= x+y+2z, v= y−z, w= y+z. Otherwise said, the matrix representing
the quadratic form, namely

A =

1 1 2
1 1 0
2 0 4


is congruent to the matrix

A′ =

1 0 0
0 1 0
0 0 −1

 .

Can you find an invertible matrixP such thatP>AP= A′?
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Thus any quadratic form can be reduced to the diagonal shape

α1x2
1 + · · ·+αnx2

n

by a linear substitution. But this is still not a “canonical form for congruence”.
For example, ify1 = x1/c, thenα1x2

1 = (α1c2)y2
1. In other words, we can multiply

anyαi by any factor which is a perfect square inK.
Over the complex numbersC, every element has a square root. Suppose that

α1, . . . ,αr 6= 0, andαr+1 = · · ·= αn = 0. Putting

yi =
{

(
√

αi)xi for 1≤ i ≤ r,
xi for r +1≤ i ≤ n,

we have
q = y2

1 + · · ·+y2
r .

We will see later thatr is an “invariant” ofq: however we do the reduction, we
arrive at the same value ofr.

Over the real numbersR, things are not much worse. Since any positive real
number has a square root, we may suppose thatα1, . . . ,αs > 0, αs+1, . . . ,αs+t < 0,
andαs+t+1, . . . ,αn = 0. Now putting

yi =

{(
√

αi)xi for 1≤ i ≤ s,
(
√
−αi)xi for s+1≤ i ≤ s+ t,

xi for s+ t +1≤ i ≤ n,

we get
q = x2

1 + · · ·+x+s2−x2
s+1−·· ·−x2

s+t .

Again, we will see later thats andt don’t depend on how we do the reduction.
[This is the theorem known asSylvester’s Law of Inertia.]

5.2.3 Quadratic and bilinear forms

The formal definition of a quadratic form looks a bit different from the version we
gave earlier, though it amounts to the same thing. First we define a bilinear form.

Definition 5.7 (a) Let b : V ×V → K be a function of two variables fromV
with values inK. We say thatb is abilinear form if it is a linear function of
each variable when the other is kept constant: that is,

b(v,w1 +w2) = b(v,w1)+b(v,w2), b(v,cw) = cb(v,w),

with two similar equations involving the first variable. A bilinear formb is
symmetricif b(v,w) = b(w,v) for all v,w∈V.



5.2. QUADRATIC FORMS 63

(b) Letq : V →K be a function. We say thatq is aquadratic formif

– q(cv) = c2q(v) for all c∈K, v∈V;

– the functionb defined by

b(v,w) = 1
2(q(v+w)−q(v)−q(w))

is a bilinear form onV.

Remarks The bilinear form in the second part is symmetric; and the division
by 2 in the definition is permissible because of our assumption that the character-
istic of K is not 2.

If we think of the prototype of a quadratic form as being the functionx2, then
the first equation says(cx)2 = c2x2, while the second has the form

1
2((x+y)2−x2−y2) = xy,

andxy is the prototype of a bilinear form: it is a linear function ofx wheny is
constant, andvice versa.

Note that the formulab(x,y) = 1
2(q(x+y)−q(x)−q(y)) (which is known as

thepolarisation formula) says that the bilinear form is determined by the quadratic
term. Conversely, if we know the symmetric bilinear formb, then we have

2q(v) = 4q(v)−2q(v) = q(v+v)−q(v)−q(v) = 2b(v,v),

so thatq(v) = b(v,v), and we see that the quadratic form is determined by the
symmetric bilinear form. So these are equivalent objects.

If b is a symmetric bilinear form onV andB = (v1, . . . ,vn) is a basis forV,
then we can representb by then×n matrix A whose(i, j) entry isai j = b(vi ,v j).
Note thatA is a symmetric matrix. It is easy to see that this is the same as the
matrix representing the quadratic form.

Here is a third way of thinking about a quadratic form. LetV∗ be the dual
space ofV, and letα :V →V∗ be a linear map. Then forv∈V, we haveα(v)∈V∗,
and soα(v)(w) is an element ofK. The function

b(v,w) = α(v)(w)

is a bilinear form onV. If α(v)(w) = α(w)(v) for all v,w∈V, then this bilinear
form is symmetric. Conversely, a symmetric bilinear formb gives rise to a linear
mapα : V →V∗ satisfyingα(v)(w) = α(w)(v), by the rule thatα(v) is the linear
mapw 7→ b(v,w).

Now givenα : V → V∗, choose a basisB for V, and letB∗ be the dual basis
for V∗. Thenα is represented by a matrixA relative to the basesB andB∗.

Summarising:
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Proposition 5.7 The following objects are equivalent on a vector space over a
field whose characteristic is not2:

(a) a quadratic form on V;

(b) a symmetric bilinear form on V;

(c) a linear mapα : V →V∗ satisfyingα(v)(w) = α(w)(v) for all v,w∈V.

Moreover, if corresponding objects of these three types are represented by ma-
trices as described above, then we get the same matrix A in each case. Also, a
change of basis in V with transition matrix P replaces A by P>AP.

Proof Only the last part needs proof. We have seen it for a quadratic form, and
the argument for a bilinear form is the same. So suppose thatα : V → V∗, and
we change fromB to B′ in V with transition matrixP. We saw that the transition
matrix between the dual bases inV∗ is (P>)−1. Now go back to the discussion
of linear maps between different vector spaces in Chapter 4. Ifα : V →W and
we change bases inV andW with transition matricesP andQ, then the matrix
A representingα is changed toQ−1AP. Apply this with Q = P>)−1, so that
Q−1 = P>, and we see that the new matrix isP>AP, as required.

5.2.4 Canonical forms for complex and real forms

Finally, in this section, we return to quadratic forms (or symmetric matrices) over
the real and complex numbers, and find canonical forms under congruence. Re-
call that two symmetric matricesA andA′ are congruent ifA′ = P>AP for some
invertible matrixP; as we have seen, this is the same as saying that the represent
the same quadratic form relative to different bases.

Theorem 5.8 Any n×n complex symmetric matrix A is congruent to a matrix of
the form [

Ir O
O O

]
for some r. Moreover, r= rank(A), and so A is congruent to two matrices of this
form then they both have the same value of r.

Proof We already saw thatA is congruent to a matrix of this form. Moreover, if
P is invertible, then so isP>, and so

r = rank(P>AP) = rank(A)

as claimed.



5.2. QUADRATIC FORMS 65

The next result isSylvester’s Law of Inertia.

Theorem 5.9 Any n×n real symmetric matrix A is congruent to a matrix of the
form  Is O O

O −It O
O O O


for some s, t. Moreover, if A is congruent to two matrices of this form, then they
have the same values of s and of t.

Proof Again we have seen thatA is congruent to a matrix of this form. Arguing
as in the complex case, we see thats+ t = rank(A), and so any two matrices of
this form congruent toA have the same values ofs+ t.

Suppose that two different reductions give the valuess, t ands′, t ′ respectively,
with s+ t = s′+ t ′ = n. Suppose for a contradiction thats< s′. Now letq be the
quadratic form represented byA. Then we are told that there are linear functions
y1, . . . ,yn andz1, . . . ,zn of the original variablesx1, . . . ,xn of q such that

q = y2
1 + · · ·+y2

s−y2
s+1−·· ·−y2

s+t = z2
1 + · · ·+z2

s′−z2
s′+1−·· ·−z2

s+t .

Now consider the equations

y1 = 0, . . . ,ys = 0,zs′+1 = 0, . . .zn = 0

regarded as linear equations in the original variablesx1, . . . ,xn. The number of
equations iss+(n−s′) = n− (s′−s) < n. According to a lemma from much ear-
lier in the course (we used it in the proof of the Exchange Lemma!), the equations
have a non-zero solution. That is, there are values ofx1, . . . ,xn, not all zero, such
that the variablesy1, . . . ,ys andzs′+1, . . . ,zn are all zero.

Sincey1 = · · ·= ys = 0, we have for these values

q =−y2
s+1−·· ·−y2

n ≤ 0.

But sincezs′+1 = · · ·= zn = 0, we also have

q = z2
1 + · · ·+z2

s′ > 0.

But this is a contradiction. So we cannot haves< s′. Similarly we cannot have
s′ < s either. So we must haves= s′, as required to be proved.
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We saw thats+t is the rank ofA. The numbers−t is known as thesignatureof
A. Of course, both the rank and the signature are independent of how we reduce
the matrix (or quadratic form); and if we know the rank and signature, we can
easily recovers andt.

You will meet some further terminology in association with Sylvester’s Law of
Inertia. Letq be a quadratic form inn variables represented by the real symmetric
matrix A. Let q (or A) have ranks+ t and signatures− t, that is, haves positive
andt negative terms in its diagonal form. We say thatq (or A) is

• positive definiteif s= n (andt = 0), that is, ifq(v)≥ 0 for all v, with equality
only if v = 0;

• positive semidefiniteif t = 0, that is, ifq(v)≥ 0 for all v;

• negative definiteif t = n (and s = 0), that is, if q(v) ≤ 0 for all v, with
equality only ifv = 0;

• negative semi-definiteif s= 0, that is, ifq(v)≤ 0 for all v;

• indefiniteif s> 0 andt > 0, that is, ifq(v) takes both positive and negative
values.



Chapter 6

Inner product spaces

Ordinary Euclidean space is a 3-dimensional vector space overR, but it is more
than that: the extra geometric structure (lengths, angles, etc.) can all be derived
from a special kind of bilinear form on the space known as an inner product. We
examine inner product spaces and their linear maps in this chapter.

One can also define inner products for complex vector spaces, but things are
a bit different: we have to use a form which is not quite bilinear. We defer this to
Chapter 8.

6.1 Inner products and orthonormal bases

Definition 6.1 An inner producton a real vector spaceV is a functionb :V×V →
R satisfying

• b is bilinear (that is,b is linear in the first variable when the second is kept
constant andvice versa);

• b is positive definite, that is,b(v,v)≥ 0 for all v∈V, andb(v,v) = 0 if and
only if v = 0.

We usually writeb(v,w) as v ·w. An inner product is sometimes called adot
product(because of this notation).

Geometrically, in a real vector space, we definev ·w = |v|.|w|cosθ , where|v|
and|w| are the lengths ofv andw, andθ is the angle betweenv andw. Of course
this definition doesn’t work if eitherv or w is zero, but in this casev ·w = 0. But
it is much easier to reverse the process. Given an inner product onV, we define

|v|=
√

v·v

67
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for any vectorv∈V; and, ifv,w 6= 0, then we define the angle between them to be
θ , where

cosθ =
v·w
|v|.|w|

.

For this definition to make sense, we need to know that

−|v|.|w| ≤ v·w≤ |V|.|w|

for any vectorsv,w (since cosθ lies between−1 and 1). This is the content of the
Cauchy–Schwarz inequality:

Theorem 6.1 If v,w are vectors in an inner product space then

(v·w)2 ≤ (v·v)(w ·w).

Proof By definition, we have(v+xw) · (v+xw)≥ 0 for any real numberx. Ex-
panding, we obtain

x2(w ·w)+2x(v·w)+(v·v)≥ 0.

This is a quadratic function inx. Since it is non-negative for all realx, either it has
no real roots, or it has two equal real roots; thus its discriminant is non-positive,
that is,

(v·w)2− (v·v)(w ·w)≤ 0,

as required.

There is essentially only one kind of inner product on a real vector space.

Definition 6.2 A basis(v1, . . . ,vn) for an inner product space is calledorthonor-
mal if vi ·v j = δi j (the Kronecker delta) for 1≤ i, j ≤ n.

Remark: If vectorsv1, . . . ,vn satisfyvi · v j = δi j , then they are necessarily lin-
early independent. For suppose thatc1v1+ · · ·+cnvn = 0. Taking the inner product
of this equation withvi , we find thatci = 0, for all i.

Theorem 6.2 Let · be an inner product on a real vector space V. Then there is an
orthonormal basis(v1, . . . ,vn) for V . If we represent vectors in coordinates with
respect to this basis, say v= [x1 x2 . . . xn ]> and w= [y1 y2 . . . yn ]>,
then

v·w = x1y1 +x2y2 + · · ·+xnyn.
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Proof This follows from our reduction of quadratic forms in the last chapter.
Since the inner product is bilinear, the functionq(v) = v · v = |v|2 is a quadratic
form, and so it can be reduced to the form

q = x2
1 + · · ·+x2

s−x2
s+1−·· ·−x2

s+t .

Now we must haves= n andt = 0. For, if t > 0, then thes+1st basis vectorvs+1

satisfiesvs+1 ·vs+1 = −1; while if s+ t < n, then thenth basis vectorvn satisfies
vn · vn = 0. Either of these would contradict the positive definiteness ofV. Now
we have

q(x1, . . . ,xn) = x2
1 + · · ·+x2

n,

and by polarisation we find that

b((x1, . . . ,xn),(y1, . . . ,yn)) = x1y1 + · · ·+xnyn,

as required.
However, it is possible to give a more direct proof of the theorem; this is

important because it involves a constructive method for finding an orthonormal
basis, known as theGram–Schmidt process.

Let w1, . . . ,wn be any basis forV. The Gram–Schmidt process works as fol-
lows.

• Sincew1 6= 0, we havew1 ·w1 > 0, that is,|w1|> 0. Putv1 = w1/|w1|; then
|v1|= 1, that is,v1 ·v1 = 1.

• For i = 2, . . . ,n, let w′
i = wi − (v1 ·wi)v1. Then

v1 ·w′
i = v1 ·wi − (v1 ·wi)(v1 ·v1) = 0

for i = 2, . . . ,n.

• Now apply the Gram–Schmidt process recursively to(w′
2, . . . ,w

′
n).

Since we replace these vectors by linear combinations of themselves, their inner
products withv1 remain zero throughout the process. So if we end up with vectors
v2, . . . ,vn, thenv1 ·vi = 0 for i = 2, . . . ,n. By induction, we can assume thatvi ·v j =
δi j for i, j = 2, . . . ,n; by what we have said, this holds ifi or j is 1 as well.

Definition 6.3 The inner product onRn for which the standard basis is orthonor-
mal (that is, the one given in the theorem) is called thestandard inner producton
Rn.
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Example 6.1 In R3 (with the standard inner product), apply the Gram–Schmidt
process to the vectorsw1 = [1 2 2]>, w2 = [1 1 0]>, w3 = [1 0 0]>.

To simplify things, I will write(a1,a2,a3) instead of[a1 a2 a3 ]>.
We havew1 ·w1 = 9, so in the first step we put

v1 = 1
3w1 = (1

3, 2
3, 2

3).

Now v1 ·w2 = 1 andv1 ·w3 = 1
3, so in the second step we find

w′
2 = w2−v1 = (2

3, 1
3,−2

3),

w′
3 = w3− 1

3v1 = (8
9,−2

9, 2
9).

Now we apply Gram–Schmidt recursively tow′
2 andw′

3. We havew′
2 ·w′

2 = 1,
sov2 = w′

2 = (2
3, 1

3,−2
3). Thenv2 ·w′

3 = 2
3, so

w′′
3 = w′

3− 2
3v2 = (4

9,−4
9, 2

9).

Finally, w′′
3 ·w′′

3 = 4
9, sov3 = 3

2w′′
3 = (2

3,−2
3, 1

3).
Check that the three vectors we have found really do form an orthonormal

basis.

6.2 Adjoints and orthogonal linear maps

We saw in the last chapter that a bilinear form onV is the same thing as a linear
map fromV to its dual space. The importance of an inner product is that the
corresponding linear map is a bijection which maps an orthonormal basis ofV to
its dual basis inV∗.

Recall that the linear mapα : V →V∗ corresponding to a bilinear formb on
V satisfiesα(v)(w) = b(v,w); in our case,α(v)(w) = v ·w. Now suppose that
(v1, . . . ,vn) is an orthonormal basis forV, so thatvi ·v j = δi j . Then, ifα(vi) = fi ,
we havefi(v j) = δi j ; but this is exactly the statement that( f1, . . . , fn) is the dual
basis to(v1, . . . ,vn).

So, on an inner product spaceV, we have a natural way of matching upV with
V∗.

Recall too that we defined theadjointof α :V →V to be the mapα∗ :V∗→V∗

defined byα∗( f )(v) = f (α(v)), and we showed that the matrix representingα∗

relative to the dual basis is the transpose of the matrix representingα relative to
the original basis.

Translating all this to an inner product space, we have the following definition
and result:
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Definition 6.4 LetV be an inner product space, andα :V →V a linear map. Then
theadjoint of α is the linear mapα∗ : V →V defined by

v·α∗(w) = α(v) ·w.

Proposition 6.3 If α is represented by the matrix A relative to an orthonormal
basis of V , thenα∗ is represented by the transposed matrix A>.

Now we define two important classes of linear maps onV.

Definition 6.5 Let α be a linear map on an inner product spaceV.

(a) α is self-adjointif α∗ = α.

(b) α is orthogonalif it is invertible andα∗ = α−1.

Proposition 6.4 If α is represented by a matrix A (relative to an orthonormal
basis), then

(a) α is self-adjoint if and only if A is symmetric;

(b) α is orthogonal if and only if A>A = I.

Part (a) of this result shows that we have yet another equivalence relation on
real symmetric matrices:

Definition 6.6 Two real symmetric matrices are calledorthogonally similar if
they represent the same self-adjoint map with respect to different orthonormal
bases.

Then, from part (b), we see:

Proposition 6.5 Two real symmetric matrices A and A′ are orthogonally similar
if and only if there is an orthogonal matrix P such that A′ = P−1AP= P>AP.

HereP−1 = P> becauseP is orthogonal. We see that orthogonal similarity is a
refinement of both similarity and congruence. We will examine self-adjoint maps
(or symmetric matrices) further in the next section.
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Next we look at orthogonal maps.

Theorem 6.6 The following are equivalent for a linear mapα on an inner prod-
uct space V:

(a) α is orthogonal;

(b) α preserves the inner product, that is,α(v) ·α(w) = v·w;

(c) α maps an orthonormal basis of V to an orthonormal basis.

Proof We have
α(v) ·α(w) = v·α∗(α(w)),

by the definition of adjoint; so (a) and (b) are equivalent.
Suppose that(v1, . . . ,vn) is an orthonormal basis, that is,vi · v j = δi j . If (b)

holds, thenα(vi) ·α(v j) = δi j , so that(α(v1), . . . ,α(vn) is an orthonormal basis,
and (c) holds. Converesely, suppose that (c) holds, and letv= ∑xivi andw= ∑yivi

for some orthonormal basis(v1, . . . ,vn), so thatv·w = ∑xiyi . We have

α(v) ·α(w) =
(
∑xiα(vi)

)
·
(
∑yiα(vi)

)
= ∑xiyi ,

sinceα(vi) ·α(v j) = δi j by assumption; so (b) holds.

Corollary 6.7 α is orthogonal if and only if the columns of the matrix represent-
ing α relative to an orthonormal basis themselves form an orthonormal basis.

Proof The columns of the matrix representingα are just the vectorsα(v1), . . . ,α(vn),
written in coordinates relative tov1, . . . ,vn. So this follows from the equivalence
of (a) and (c) in the theorem. Alternatively, the condition on columns shows that
A>A = I , whereA is the matrix representingα; soα∗α = I , andα is orthogonal.

Example Our earlier example of the Gram–Schmidt process produces the or-
thogonal matrix  1

3
2
3

2
3

2
3

1
3 −2

3
2
3 −2

3
1
3


whose columns are precisely the orthonormal basis we constructed in the example.
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Symmetric and Hermitian matrices

We come to one of the most important topics of the course. In simple terms, any
real symmetric matrix is diagonalisable. But there is more to be said!

7.1 Orthogonal projections and orthogonal decom-
positions

We say that two vectorsv,w in an inner product space areorthogonalif v·w = 0.

Definition 7.1 Let V be a real inner product space, andU a subspace ofV. The
orthogonal complementof U is the set of all vectors which are orthogonal to
everything inU :

U⊥ = {w∈V : w ·u = 0 for all u∈U}.

Proposition 7.1 If V is an inner product space and U a subspace of V , with
dim(V) = n anddim(U) = r, then U⊥ is a subspace of V , anddim(U⊥) = n− r.
Moreover, V= U ⊕U⊥.

Proof Proving thatU⊥ is a subspace is straightforward from the properties of
the inner product. Ifw1,w2 ∈ U⊥, then w1 · u = w2 · u = 0 for all u ∈ U , so
(w1 + w2) ·u = 0 for all u∈U , whencew1 + w2 ∈U⊥. The argument for scalar
multiples is similar.

Now choose a basis forU and extend it to a basis forV. Then apply the Gram–
Schmidt process to this basis (starting with the elements of the basis forU), to
obtain an orthonormal basis(v1, . . . ,vn). Since the process only modifies vectors
by adding multiples of earlier vectors, the firstr vectors in the resulting basis will
form an orthonormal basis forU . The lastn− r vectors will be orthogonal to
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U , and so lie inU⊥; and they are clearly linearly independent. Now suppose that
w∈U⊥ andw= ∑civi , where(v1, . . . ,vn) is the orthonormal basis we constructed.
Thenci = w ·vi = 0 for i = 1, . . . , r; sow is a linear combination of the lastn− r
basis vectors, which thus form a basis ofU⊥. Hence dim(U⊥) = n−r, as required.

Now the last statement of the proposition follows from the proof, since we
have a basis forV which is a disjoint union of bases forU andU⊥.

Recall the connection between direct sum decompositions and projections. If
we have projectionsP1, . . . ,Pr whose sum is the identity and which satisfyPiPj =
O for i 6= j, then the spaceV is the direct sum of their images. This can be refined
in an inner product space as follows.

Definition 7.2 Let V be an inner product space. A linear mapπ : V → V is an
orthogonal projectionif

(a) π is a projection, that is,π2 = π;

(b) π is self-adjoint, that is,π∗ = π (whereπ∗(v) ·w= v·π(w) for all v,w∈V).

Proposition 7.2 If π is an orthogonal projection, thenKer(π) = Im(π)⊥.

Proof We know thatV = Ker(π)⊕ Im(π); we only have to show that these two
subspaces are orthogonal. So takev∈ Ker(π), so thatπ(v) = 0, andw∈ Im(π),
so thatw = π(u) for someu∈V. Then

v·w = v·π(u) = π
∗(v) ·u = π(v) ·u = 0,

as required.

Proposition 7.3 Let π1, . . . ,πr be orthogonal projections on an inner product
space V satisfyingπ1 + · · ·+ πr = I and πiπ j = O for i 6= j. Let Ui = Im(πi)
for i = 1, . . . , r. Then

V = U1⊕U2⊕·· ·⊕Ur ,

and if ui ∈Ui and uj ∈U j , then ui and uj are orthogonal.

Proof The fact thatV is the direct sum of the images of theπi follows from
Proposition 5.2. We only have to prove the last part. So takeui andu j as in the
Proposition, sayui = πi(v) andu j = π j(w). Then

ui ·u j = πi(v) ·π j(w) = π
∗
i (v) ·π j(w) = v·πi(π j(w)) = 0,

where the second equality holds sinceπi is self-adjoint and the third is the defini-
tion of the adjoint.

A direct sum decomposition satisfying the conditions of the theorem is called
anorthogonal decompositionof V.

Conversely, if we are given an orthogonal decomposition ofV, then we can
find orthogonal projections satisfying the hypotheses of the theorem.
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7.2 The Spectral Theorem

The main theorem can be stated in two different ways. I emphasise that these two
theorems are the same! Either of them can be referred to as theSpectral Theorem.

Theorem 7.4 If α is a self-adjoint linear map on a real inner product space V,
then the eigenspaces ofα form an orthogonal decomposition of V . Hence there
is an orthonormal basis of V consisting of eigenvectors ofα. Moreover, there
exist orthogonal projectionsπ1, . . . ,πr satisfyingπ1 + · · ·+ πr = I and πiπ j = O
for i 6= j, such that

α = λ1π1 + · · ·+λrπr ,

whereλ1, . . . ,λr are the distinct eigenvalues ofα.

Theorem 7.5 Let A be a real symmetric matrix. Then there exists an orthogonal
matrix P such that P−1AP is diagonal. In other words, any real symmetric matrix
is orthogonally similar to a diagonal matrix.

Proof The second theorem follows from the first, since the transition matrix from
one orthonormal basis to another is an orthogonal matrix. So we concentrate on
the first theorem. It suffices to find an orthonormal basis of eigenvectors, since
all the rest follows from our remarks about projections, together with what we
already know about diagonalisable maps.

The proof will be by induction onn= dim(V). There is nothing to do ifn= 1.
So we assume that the theorem holds for(n−1)-dimensional spaces.

The first job is to show thatα has an eigenvector.
Choose an orthonormal basis; thenα is represented by a real symmetric ma-

trix A. Its characteristic polynomial has a rootλ over the complex numbers. (The
so-called “Fundamental Theorem of Algebra” asserts that any polynomial overC
has a root.) We temporarily enlarge the field fromR to C. Now we can find a
column vectorv∈ Cn such thatAv= λv. Taking the complex conjugate, remem-
bering thatA is real, we haveAv = λv.

If v = [z1 z2 · · · zn ]>, then we have

λ (|z1|2 + |z2|2 + · · ·+ |zn|2) = λv>v

= (Av)>v

= v>Av

= v>(λv)
= λ (|z1|2 + |z2|2 + · · ·+ |zn|2),

so(λ −λ )(|z1|2+ |z2|2+ · · ·+ |zn|2) = 0. Sincev is not the zero vector, the second
factor is positive, so we must haveλ = λ , that is,λ is real.
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Now sinceα has a real eigenvalue, we can choose a real eigenvectorv, and
(multiplying by a scalar if necessary) we can assume that|v|= 1.

Let U be the subspacev⊥ = {u ∈ V : v ·u = 0}. This is a subspace ofV of
dimensionn−1. We claim thatα : U →U . For takeu∈U . Then

v·α(u) = α
∗(v) ·u = α(v) ·u = λv·u = 0,

where we use the fact thatα is self-adjoint. Soα(u) ∈U .
So α is a self-adjoint linear map on the(n− 1)-dimensional inner product

spaceU . By the inductive hypothesis,U has an orthonormal basis consisting of
eigenvectors ofα. They are all orthogonal to the unit vectorv; so, addingv to the
basis, we get an orthonormal basis forV, and we are done.

Remark The theorem is almost a canonical form for real symmetric relations
under the relation of orthogonal congruence. If we require that the eigenvalues
occur in decreasing order down the diagonal, then the result is a true canonical
form: each matrix is orthogonally similar to a unique diagonal matrix with this
property.

Corollary 7.6 If α is self-adjoint, then eigenvectors ofα corresponding to dis-
tinct eigenvalues are orthogonal.

Proof This follows from the theorem, but is easily proved directly. Ifα(v) = λv
andα(w) = µw, then

λv·w = α(v) ·w = α
∗(v) ·w = v·α(w) = µv·w,

so, if λ 6= µ, thenv·w = 0.

Example 7.1 Let

A =

10 2 2
2 13 4
2 4 13

 .

The characteristic polynomial ofA is∣∣∣∣∣∣
x−10 −2 −2
−2 x−13 −4
−2 −4 x−13

∣∣∣∣∣∣= (x−9)2(x−18),

so the eigenvalues are 9 and 18.
For eigenvalue 18 the eigenvectors satisfy10 2 2

2 13 4
2 4 13

x
y
z

=

18x
18y
18z

 ,
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so the eigenvectors are multiples of[1 2 2]>. Normalising, we can choose a
unit eigenvector[ 1

3
2
3

2
3 ]>.

For the eigenvalue 9, the eigenvectors satisfy10 2 2
2 13 4
2 4 13

x
y
z

=

9x
9y
9z

 ,

that is,x+ 2y+ 2z= 0. (This condition says precisely that the eigenvectors are
orthogonal to the eigenvector forλ = 18, as we know.) Thus the eigenspace is 2-
dimensional. We need to choose an orthonormal basis for it. This can be done in
many different ways: for example, we could choose[0 1/

√
2 −1/

√
2]> and

[−4/3
√

2 1/3
√

2 1/3
√

2]>. Then we have an orthonormal basis of eigenvec-
tors. We conclude that, if

P =

1/3 0 −4/3
√

2
2/3 1/

√
2 1/3

√
2

2/3 −1/
√

2 1/3
√

2

 ,

thenP is orthogonal, and

P>AP=

18 0 0
0 9 0
0 0 9

 .

You might like to check that the orthogonal matrix in the example in the last
chapter of the notes also diagonalisesA.

7.3 Quadratic forms revisited

Any real quadratic form is represented by a real symmetric matrix; and, as we
have seen, orthogonal similarity is a refinement of congruence. This gives us a
new look at the reduction of real quadratic forms. Recall that any real symmetric
matrix is congruent to one of the form Is O O

O −It O
O O O

 ,

where the numberssandt are uniquely determined:s+ t is the rank, ands− t the
signature, of the matrix (Sylvester’s Law of Inertia).
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Proposition 7.7 The rank of a real symmetric matrix is equal to the number of
non-zero eigenvalues, and the signature is the number of positive eigenvalues mi-
nus the number of negative eigenvalues (counted according to multiplicity).

Proof Given a real symmetric matrixA, there is an orthogonal matrixP such that
P>AP is diagonal, with diagonal entriesλ1, . . . ,λn, say. Suppose thatλ1, . . . ,λs

are positive,λs+1, . . . ,λs+t are negative, and the remainder are zero. LetD be a
diagonal matrix with diagonal entries

1/
√

λ1, . . . ,1/
√

λs,1/
√
−λs+1, . . . ,1/

√
−λs+t ,1, . . . ,1.

Then

(PD)>APD= D>P>APD=

 Is O O
O −It O
O O O

 .

7.4 Simultaneous diagonalisation

There are two important theorems which allow us to diagonalise more than one
matrix at the same time. The first theorem we will consider just in the matrix
form.

Theorem 7.8 Let A and B be real symmetric matrices, and suppose that A is
positive definite. Then there exists an invertible matrix P such that P>AP= I and
P>BP is diagonal. Moreover, the diagonal entries of P>BP are the roots of the
polynomialdet(xA−B) = 0.

Proof A is a real symmetric matrix, so there exists an invertible matrixP1 such
thatP>1 AP1 is in the canonical form for congruence (as in Sylvester’s Law of Iner-
tia). SinceA is positive definite, this canonical form must beI ; that is,P>1 AP1 = I .

Now considerP>1 BP= C. This is a real symmetric matrix; so, according to
the spectral theorem (in matrix form), we can find an orthogonal matrixP2 such
thatP>2 CP2 = D is diagonal. Moreover,P2 is orthogonal, soP>2 P2 = I .

Let P = P1P2. Then

P>AP= P>2 (P>1 AP1)P2 = P>2 IP2 = I ,

and
P>BP= P>2 (P>1 BP1)P2 = P>2 CP2 = D,

as required.
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The diagonal entries ofD are the eigenvalues ofC, that is, the roots of the
equation det(xI−C) = 0. Now we have

det(P>1 )det(xA−B)det(P1)= det(P>1 (xA−B)P1)= det(xP>1 AP1−P>1 BP1)= det(xI−C),

and det(P>1 ) = det(P1) is non-zero; so the polynomials det(xA−B) and det(xI−C)
are non-zero multiples of each other and so have the same roots.

You might meet this formula in mechanics. If a mechanical system hasn co-
ordinatesx1, . . . ,xn, then the kinetic energy is a quadratic form in the velocities
ẋ1, . . . , ẋn, and (from general physical principles) is positive definite (zero veloc-
ities correspond to minimum energy); near equilibrium, the potential energy is
approximated by a quadratic function of the coordinatesx1, . . . ,xn. If we simulta-
neously diagonalise the matrices of the two quadratic forms, then we can solven
separate differential equations rather than a complicated system withn variables!

The second theorem can be stated either for linear maps or for matrices.

Theorem 7.9 (a) Letα andβ be self-adjoint maps on an inner product space
V, and suppose thatαβ = βα. Then there is an orthonormal basis for V
which consists of vectors which are simultaneous eigenvalues forα andβ .

(b) Let A and B be real symmetric matrices satisfying AB= BA. Then there is
an orthogonal matrix P such that both P>AP and P>BP are diagonal.

Proof Statement (b) is just a translation of (a) into matrix terms; so we prove (a).
Let λ1, . . . ,λr be the distinct eigenvalues ofα. By the Spectral Theorem, have

an orthogonal decomposition

V = U1⊕·· ·⊕Ur ,

whereUi is theλi-eigenspace ofα.
We claim thatβ mapsUi to Ui . For takeu∈Ui , so thatα(u) = λiu. Then

α(β (u)) = β (α(u)) = β (λiu) = λiβ (u),

so β (u) is also an eigenvector ofα with eigenvalueλi . Henceβ (u) ∈ Ui , as
required.

Now β is a self-adjoint linear map on the inner product spaceUi , and so by the
spectral theorem again,Ui has an orthonormal basis consisting of eigenvectors of
β . But these vectors are also eigenvectors ofα, since they belong toUi .

Finally, since we have an orthogonal decomposition, putting together all these
bases gives us an orthonormal basis ofV consisting of simultaneous eigenvectors
of α andβ .
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Remark This theorem easily extends to an arbitrary set of real symmetric ma-
trices such that any two commute. For a finite set, the proof is by induction on
the number of matrices in the set, based on the proof just given. For an infinite
set, we use the fact that they span a finite-dimensional subspace of the space of
all real symmetric matrices; to diagonalise all the matrices in our set, it suffices to
diagonalise the matrices in a basis.



Chapter 8

The complex case

The theory of real inner product spaces and self-adjoint linear maps has a close
parallel in the complex case. However, some changes are required. In this chapter
we outline the complex case. Usually, the proofs are similar to those in the real
case.

8.1 Complex inner products

There are no positive definite bilinear forms over the complex numbers; for we
always have(iv) · (iv) =−v·v.

But it is possible to modify the definitions so that everything works in the same
way overC.

Definition 8.1 A inner producton a complex vector spaceV is a mapb :V×V →
C satisfying

(a) b is a linear function of its second variable, keeping the first variable con-
stant;

(b) b(w,v) = b(v,w), where denotes complex conjugation. [It follows that
b(v,v) ∈ R for all v∈V.]

(c) b(v,v)≥ 0 for all v∈V, andb(v,v) = 0 if and only ifv = 0.

As before, we writeb(v,w) asv ·w. This time,b is not linear as a function of
its first variable; in fact we have

b(v1 +v2,w) = b(v1,w)+b(v2,w), b(cv,w) = cb(v,w)

for v1,v2,v,w ∈ V andc ∈ C. (Sometimes we say thatb is semilinear(that is,
“ 1

2”-linear) as a function of its first variable, and describe it as asesquilinear form
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(that is, “11
2-linear”. A form satisfying (b) is calledHermitian, and one satisfying

(c) is positive definite. Thus an inner product is a positive definite Hermitian
sesquilinear form.)

The definition of an orthonormal basis is exactly as in the real case, and the
Gram–Schmidt process allows us to find one with only trivial modifications. The
standard inner product (with respect to an orthonormal basis) is given by

v·w = x1y1 + · · ·+xnyn,

wherev = [x1 . . . xn ]>, w = [y1 · · · yn ]>.
The adjoint ofα : V →V is defined as before by the formula

α
∗(v) ·w = v·α(w),

but this time there is a small difference in the matrix representation: ifα is rep-
resented byA (relative to an orthonormal basis), then its adjointα∗ is represented
by (A)>. (Take the complex conjugates of all the entries inA, and then transpose.)
So

• a self-adjoint linear map is represented by a matrixA satisfyingA = (A)>:
such a matrix is calledHermitian.

• a map which preserves the inner product (that is, which satisfiesα(v) ·
α(w) = v ·w, or α∗ = α−1) is represented by a matrixA satisfying(A)> =
A−1: such a matrix is calledunitary.

8.2 The complex Spectral Theorem

The spectral theorem for self-adjoint linear maps on complex inner product spaces
is almost identical to the real version. The proof goes through virtually unchanged.

The definition of an orthogonal projection is the same: a projection which is
self-adjoint.

Theorem 8.1 If α is a self-adjoint linear map on a complex inner product space
V, then the eigenspaces ofα form an orthogonal decomposition of V . Hence there
is an orthonormal basis of V consisting of eigenvectors ofα. Moreover, there
exist orthogonal projectionsπ1, . . . ,πr satisfyingπ1 + · · ·+ πr = I and πiπ j = O
for i 6= j, such that

α = λ1π1 + · · ·+λrπr ,

whereλ1, . . . ,λr are the distinct eigenvalues ofα.
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Theorem 8.2 Let A be a complex Hermitian matrix. Then there exists a unitary
matrix P such that P−1AP is diagonal.

There is one special feature of the complex case:

Proposition 8.3 Any eigenvalue of a self-adjoint linear map on a complex inner
product space (or of a complex Hermitian matrix) is real.

Proof Suppose thatα is self-adjoint andα(v) = λv. Then

λv·v = v·α(v) = α
∗(v) ·v = α(v) ·v = λv·v,

where in the last step we use the fact that(cv) ·w = cv·w for a complex inner
product. So(λ −λ )v·v = 0. Sincev 6= 0, we havev·v 6= 0, and soλ = λ ; that is,
λ is real.

We also have a theorem on simultaneous diagonalisation:

Proposition 8.4 Letα andβ be self-adjoint linear maps of a complex inner prod-
uct space V, and suppose thatαβ = βα. Then there is an orthonormal basis for
V consisting of eigenvectors of bothα andβ .

The proof is as in the real case. You are invited to formulate the theorem in
terms of commuting Hermitian matrices.

8.3 Normal matrices

The fact that the eigenvalues of a complex Hermitian matrix are real leaves open
the possibility of proving a more general version of the spectral theorem. We saw
that a real symmetric matrix is orthogonally similar to a diagonal matrix. In fact,
the converse is also true. For ifA is a realn×n matrix andP is an orthogonal
matrix such thatP>AP= D is diagonal, thenA = PDP>, and so

A> = PD>P> = PDP> = A.

In other words,a real matrix is orthogonally similar to a diagonal matrix if and
only if it is symmetric.

This is not true for complex Hermitian matrices, since such matrices have real
eigenvalues and so cannot be similar to non-real diagonal matrices.

What really happens is the following.

Definition 8.2 (a) Letα be a linear map on a complex inner-product spaceV.
We say thatα is normal if it commutes with its adjoint:αα∗ = α∗α.
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(b) Let A be ann×n matrix overC. We say thatA is normal if it commutes

with its conjugate transpose:AA
> = A

>
A.

Theorem 8.5 (a) Letα be a linear map on a complex inner product space V.
Then V has an orthonormal basis consisting of eigenvectors ofα if and only
if α is normal.

(b) Let A be an n×n matrix overC. Then there is a unitary matrix P such that
P−1AP is diagonal if and only if A is normal.

Proof As usual, the two forms of the theorem are equivalent. We prove it in the
first form.

If α has an orthonormal basis(v1, . . . ,vn) consisting of eigenvectors, then
α(vi) = λivi for i = 1, . . . ,n, whereλi are eigenvalues. We see thatα∗(vi) = λivi ,
and so

αα
∗(vi) = α

∗
α(vi) = λiλivi .

Sinceαα∗ andα∗α agree on the vectors of a basis, they are equal; soα is normal.
Conversely, suppose thatα is normal. Let

β = 1
2(α +α∗), γ = 1

2i(α −α∗).

(You should compare these with the formulaex = 1
2(z+ z), y = 1

2i(z− z) for the
real and imaginary parts of a quadratic form. The analogy is even closer, since
clearly we haveα = β + iγ.) Now we claim:

• β andγ are Hermitian.For

β
∗ = 1

2(α∗+α) = β ,

γ
∗ = 1

−2i(α
∗−α) = γ,

where we use the fact that(cα)∗ = cα∗.

• βγ = γβ . For

βγ =
1
4i

(α2−αα
∗+α

∗
α − (α∗)2) =

1
4i

(α2− (α∗)2),

γβ =
1
4i

(α2 +αα
∗−α

∗
α − (α∗)2) =

1
4i

(α2− (α∗)2).

(Here we use the fact thatαα∗ = α∗α.)

Hence, by the Proposition at the end of the last section, there is an orthonormal
basisB whose vectors are eigenvectors ofβ andγ, and hence are eigenvectors of
α = β + iγ.

Note that the eigenvalues ofβ andγ in this proof are the real and imaginary
parts of the eigenvalues ofα.



Chapter 9

Skew-symmetric matrices

We spent the last three chapters looking at symmetric matrices; even then we
could only find canonical forms for the real and complex numbers. It turns out
that life is much simpler for skew-symmetric matrices. We find a canonical form
for these matrices under congruence which works for any field whatever. (More
precisely, as we will see, this statement applies to “alternating matrices”, but these
are precisely the same as skew-symmetric matrices unless the characteristic of the
field is 2.)

9.1 Alternating bilinear forms

Alternating forms are as far from positive definite as they can be:

Definition 9.1 Let V be a vector space overK. A bilinear formb onV is alter-
nating if b(v,v) = 0 for all v∈V.

Proposition 9.1 An alternating bilinear form b satisfies b(w,v) =−b(v,w) for all
v,w∈V.

Proof

0 = b(v+w,v+w) = b(v,v)+b(v,w)+b(w,v)+b(w,w) = b(v,w)+b(w,v)

for anyv,w∈V, using the definition of an alternating bilinear form.

Now here is the analogue of the Gram–Schmidt process for alternating bilinear
forms.
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Theorem 9.2 Let b be an alternating bilinear form on a vector space V. Then
there is a basis(u1, . . . ,us,w1, . . . ,ws,z1, . . . ,zt) for V such that b(ui ,wi) = 1 and
b(wi ,ui) =−1 for i = 1, . . . ,s and b(x,y) = 0 for any other choices of basis vectors
x and y.

Proof If b is identically zero, then simply choose a basis(z1, . . . ,zn) and take
s= 0, t = n. So suppose not.

Choose a pair of vectorsu andw such thatc = b(u,w) 6= 0. Replacingw by
w/c, we haveb(u,w) = 1.

We claim thatu andw are linearly independent. For suppose thatcu+dw= 0.
Then

0 = b(u,cu+dw) = cb(u,u)+db(u,w) = d,

0 = b(w,cu+dw) = cb(w,u)+db(w,w) =−c,

soc = d = 0. We takeu1 = u andw1 = v as our first two basis vectors.
Now let U = 〈u,w〉 andW = {x ∈ V : b(u,x) = b(w,x) = 0}. We claim that

V = U ⊕W. The argument just above already shows thatU ∩W = 0, so we have
to show thatV = U +W. So take a vectorv∈V, and letx=−b(w,v)u+b(u,v)w.
Then

b(u,x) =−b(w,v)b(u,u)+b(u,v)b(u,w) = b(u,v),
b(w,x) =−b(w,v)b(w,u)+b(u,v)b(w,w) = b(w,v)

so b(u,v− x) = b(w,v− x) = 0. Thusv− x ∈W. But clearlyx ∈U , and so our
assertion is proved.

Now b is an alternating bilinear form onW, and so by induction there is a
basis of the required form forW, say(u2, . . . ,us,w2, . . . ,ws,z1, . . . ,zt). Putting in
u1 andw1 gives the required basis forV.

9.2 Skew-symmetric and alternating matrices

A matrix A is skew-symmetricif A> =−A.
A matrix A is alternatingif A is skew-symmetric and has zero diagonal. If the

characteristic of the fieldK is not equal to 2, then any skew-symmetric matrix is
alternating; but if the characteristic is 2, then the extra condition is needed.

Recall the matrix representing a bilinear formb relative to a basis(v1, . . . ,vn):
its (i, j) entry isb(vi ,v j).

Proposition 9.3 An alternating bilinear form b on a vector space overK is rep-
resented by an alternating matrix; and any alternating matrix represents an alter-
nating bilinear form. If the characteristic ofK is not2, we can replace “alternat-
ing matrix” by “skew-symmetric matrix”.



9.2. SKEW-SYMMETRIC AND ALTERNATING MATRICES 87

Proof This is obvious since ifb is alternating thena ji = b(v j ,vi) =−b(vi ,v j) =
−ai j andaii = b(vi ,vi) = 0.

So we can write our theorem in matrix form as follows:

Theorem 9.4 Let A be an alternating matrix (or a skew-symmetric matrix over a
field whose characteristic is not equal to2). Then there is an invertible matrix P

such that P>AP is the matrix with s blocks

[
0 1
−1 0

]
on the diagonal and all other

entries zero. Moreover the number s is half the rank of A, and so is independent
of the choice of P.

Proof We know that the effect of a change of basis with transition matrixP is to
replace the matrixA representing a bilinear form byP>AP. Also, the matrix in the
statement of the theorem is just the matrix representingb relative to the special
basis that we found in the preceding theorem.

This has a corollary which is a bit surprising at first sight:

Corollary 9.5 (a) The rank of a skew-symmetric matrix (over a field of char-
acteristic not equal to2) is even.

(b) The determinant of a skew-symmetric matrix (over a field of characteristic
not equal to2) is a square, and is zero if the size of the matrix is odd.

Proof (a) The canonical form in the theorem clearly has rank 2s.
(b) If the skew-symmetric matrixA is singular then its determinant is zero,

which is a square. So suppose that it is invertible. Then its canonical form has

s= n/2 blocks

[
0 1
−1 0

]
on the diagonal. Each of these blocks has determinant 1,

and hence so does the whole matrix. So det(P>AP) = det(P)2det(A) = 1, whence
det(A) = 1/(det(P)2), which is a square.

If the sizen of A is odd, then the rank cannot ben (by (a)), and so det(A) = 0.

Remark There is a function defined on skew-symmetric matrices called the
Pfaffian, which like the determinant is a polynomial in the matrix entries, and
has the property that det(A) is the square of the Pfaffian ofA: that is, det(A) =
(Pf(A))2.

For example,

Pf

[
0 a
−a 0

]
= a, Pf


0 a b c
−a 0 d e
−b −d 0 f
−c −e − f 0

= a f −be+cd.

(Check that the determinant of the second matrix is(a f −be+cd)2.)
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9.3 Complex skew-Hermitian matrices

What if we play the same variation that led us from real symmetric to complex
Hermitian matrices? That is, we are working in a complex inner product space,

and if α is represented by the matrixA, then its adjoint is represented byA
>

, the
conjugate transpose ofA.

The matrixA is Hermitian if it is equal to its adjoint, that is, ifA
> = A. So we

make the following definition:

Definition 9.2 The complexn×n matrixA is skew-Hermitianif A
> =−A.

Actually, things are very much simpler here, because of the following obser-
vation:

Proposition 9.6 The matrix A is skew-Hermitian if and only ifiA is Hermitian.

Proof Try it and see!

Corollary 9.7 Any skew-Hermitian matrix can be diagonalised by a unitary ma-
trix.

Proof This follows immediately from the Proposition preceding.
Alternatively, a skew-Hermitian matrix is obviously normal, and the Corollary

follows from our result about normal matrices (Theorem 8.5).

Since the eigenvalues of a Hermitian matrix are real, we see that the eigenval-
ues of a skew-Hermitian matrix are imaginary.
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Fields and vector spaces

Fields

A field is an algebraic structureK in which we can add and multiply elements,
such that the following laws hold:

Addition laws

(FA0) For anya,b∈K, there is a unique elementa+b∈K.

(FA1) For alla,b,c∈K, we havea+(b+c) = (a+b)+c.

(FA2) There is an element 0∈K such thata+0 = 0+a = a for all a∈K.

(FA3) For anya∈K, there exists−a∈K such thata+(−a) = (−a)+a= 0.

(FA4) For anya,b∈K, we havea+b = b+a.

Multiplication laws

(FM0) For anya,b∈K, there is a unique elementab∈K.

(FM1) For alla,b,c∈K, we havea(bc) = (ab)c.

(FM2) There is an element 1∈K, not equal to the element 0 from (FA2), such
thata1 = 1a = a for all a∈K.

(FM3) For anya ∈ K with a 6= 0, there existsa−1 ∈ K such thataa−1 =
a−1a = 1.

(FM4) For anya,b∈K, we haveab= ba.

Distributive law

(D) For alla,b,c∈K, we havea(b+c) = ab+ac.
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Note the similarity of the addition and multiplication laws. We say that(K,+)
is anabelian groupif (FA0)–(FA4) hold. Then (FM0)–(FM4) say that(K\{0}, ·)
is also an abelian group. (We have to leave out 0 because, as (FM3) says, 0 does
not have a multiplicative inverse.)

Examples of fields includeQ (the rational numbers),R (the real numbers),C
(the complex numbers), andFp (the integers modp, for p a prime number).

Associated with any fieldK there is a non-negative integer called itscharacter-
istic, defined as follows. If there is a positive integern such that 1+1+ · · ·+1= 0,
where there aren ones in the sum, then the smallest suchn is prime. (For ifn= rs,
with r,s> 1, and we denote the sum ofn ones byn·1, then

0 = n·1 = (r ·1)(s·1);

by minimality of n, neither of the factorsr ·1 ands·1 is zero. But in a field, the
product of two non-zero elements is non-zero.) If so, then this prime number is
the characteristic ofK. If no suchn exists, we say that the characteristic ofK is
zero.

For our important examples,Q, R andC all have characteristic zero, whileFp

has characteristicp.

Vector spaces

Let K be a field. Avector space VoverK is an algebraic structure in which we
can add two elements ofV, and multiply an element ofV by an element ofK (this
is calledscalar multiplication), such that the following rules hold:

Addition laws

(VA0) For anyu,v∈V, there is a unique elementu+v∈V.

(VA1) For all u,v,w∈V, we haveu+(v+w) = (u+v)+w.

(VA2) There is an element 0∈V such thatv+0 = 0+v = av for all v∈V.

(VA3) For anyv∈V, there exists−v∈V such thatv+(−v) = (−v)+v = 0.

(VA4) For anyu,v∈V, we haveu+v = v+u.

Scalar multiplication laws

(VM0) For anya∈K, v∈V, there is a unique elementav∈V.

(VM1) For anya∈K, u,v∈V, we havea(u+v) = au+av.

(VM2) For anya,b∈K, v∈V, we have(a+b)v = av+bv.

(VM3) For anya,b∈K, v∈V, we have(ab)v = a(bv).
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(VM4) For anyv∈V, we have 1v= v (where 1 is the element given by (FM2)).

Again, we can summarise (VA0)–(VA4) by saying that(V,+) is an abelian
group.

The most important example of a vector space over a fieldK is the setKn of
all n-tuples of elements ofK: the addition and scalar multiplication are defined
by the rules

(u1,u2, . . . ,un)+(v1,v2, . . . ,vn) = (u1 +v1,u2 +v2, . . . ,un +vn),
a(v1,v2, . . . ,vn) = (av1,av2, . . . ,avn).

The fact thatKn is a vector space will be assumed here. Proofs are straightfor-
ward but somewhat tedious. Here is a particularly easy one, the proof of (VM4),
as an example.

If v = (v1, . . . ,vn), then

1v = 1(v1, . . . ,vn) = (1v1, . . . ,1vn) = (v1, . . . ,vn) = v.

The second step uses the definition of scalar multiplication inKn, and the third
step uses the field axiom (FM2).
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Appendix B

Vandermonde and circulant
matrices

TheVandermonde matrix V(a1,a2, . . . ,an) is then×n matrix
1 1 . . . 1
a1 a2 . . . an

a2
1 a2

2 . . . a2
n

. . .
an−1

1 an−1
2 . . . an−1

n

 .

This is a particularly important type of matrix. We can write down its deter-
minant explicitly:

Theorem B.1

det(V(a1,a2, . . . ,an)) = ∏
i< j

(a j −ai).

That is, the determinant is the product of the differences between all pairs of
parametersai . From this theorem, we draw the following conclusion:

Corollary B.2 The matrix V(a1,a2, . . . ,an) is invertible if and only if the param-
eters a1,a2, . . . ,an are all distinct.

For the determinant can be zero only if one of the factors vanishes.

Proof To prove the theorem, we first regardan as a variablex, so that the de-
terminant∆ is a polynomial f (x) of degreen− 1 in x. We see thatf (ai) = 0
for 1≤ i ≤ n−1, since the result is the determinant of a matrix with two equal
columns. By the Factor Theorem,

∆ = K(x−a1)(x−a2) · · ·(x−an−1),
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whereK is independent ofx. In other words, the original determinant isK(an−
a1) · · ·(an−an−1). In the same way, all differences(a j −ai) for i < j are factors,
so that the determinant isK0 times the product of all these differences, whereK0

does not contain any ofa1, . . . ,an, that is,K0 is a constant.
To find K0, we observe that the leading diagonal of the matrix gives us a term

a2a2
3 · · ·an−1

n in the determinant with sign+1; but this product is obtained by
taking the term with larger index from each factor in the product, also giving sign
+1. SoK0 = 1 and the theorem is proved.

Another general type of matrix whose determinant can be calculated explicitly
is thecirculant matrix, whose general form is as follows:

C(a0, . . . ,an−1) =


a0 a1 a2 . . . an−1

an−1 a0 a1 . . . an−2

an−2 an−1 a0 . . . an−3

. . . . . .
a1 a2 a3 . . . a0

 .

Theorem B.3 Let C= C(a0, . . . ,an−1) be a circulant matrix over the fieldC. Let
ω = e2π i/n be a primitive nth root of unity. Then

(a) C is diagonalisable;

(b) the eigenvalues of C are∑n−1
j=0 a jω

jk, for k = 0,1, . . . ,n−1;

(c) det(C) is the product of the eigenvalues listed in (b).

Proof We can write down the eigenvectors. Fork = 0,1, . . . ,n−1, let
vk = [1 ωk . . . ω(n−1)k ]>. The jth entry inCvk is

an− j +an− j+1ω
k + · · ·+an− j−1ω

(n−1)k

= a0ω
jk + · · ·+an− j−1ω

(n−1)k +an− jω
nk+ · · ·+an−1ω

(n+ j−1)k

= ω
jk(a0 +a1ω

k + · · ·+an−1ω
(n−1)k),

using the fact thatωn = 1. This isa0 + a1ωk + · · ·+ an−1ω(n−1)k times the jth
entry invk. So

Cvk = (a0 +a1ω
k + · · ·+an−1ω

(n−1)k)vk,

as required.
Now the vectorsv0, . . . ,vn−1 are linearly independent. (Why? They are the

columns of a Vandermonde matrixV(1,ω, . . . ,ωn−1), and the powers ofω are
all distinct; so the first part of this appendix shows that the determinant of this
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matrix is non-zero, so that the columns are linearly independent.) Hence we have
diagonalisedC, and its eigenvalues are as claimed.

Finally, for part (c), the determinant of a diagonalisable matrix is the product
of its eigenvalues.

Example B.1 We have the identity

a3 +b3 +c3−3abc=

∣∣∣∣∣∣
a b c
c a b
b c a

∣∣∣∣∣∣= (a+b+c)(a+ωb+ω
2c)(a+ω

2b+ωc),

whereω = e2π i/3.
This formula has an application to solving cubic equations. Consider the equa-

tion
x3 +ax2 +bx+c = 0.

By “completing the cube”, puttingy = x+ 1
3a, we get rid of the square term:

y3 +dy+e= 0

for somed,e. Now, as above, we have

y3−3uvy+u3 +v3 = (y+u+v)(y+ωu+ω
2v)(y+ω

2u+ωv),

so if we can findu andv satisfying−3uv= d andu3 +v3 = e, then the solutions
of the equation arey =−u−v, y =−ωu−ω2v, andy =−ω2u−ωv.

LetU = u3 andV = v3. ThenU +V = eandUV =−d3/27. Thus we can find
U andV by solving the quadratic equationz2−ez−d3/27= 0. Nowu is a cube
root ofU , and thenv =−d/(3u), and we are done.

Remark The formula for the determinant of a circulant matrix works over any
field K which contains a primitiventh root of unity.
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Appendix C

The Friendship Theorem

TheFriendship Theoremstates:

Given a finite set of people with the property that any two have a
unique common friend, there must be someone who is everyone else’s
friend.

The theorem asserts that the configuration must look like this, where we rep-
resent people by dots and friendship by edges:

u
u u

u u
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�
�
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A
A

A
A

A
A

A
A

AA

u
u

u
u

��
���

���
��HH

HHH
HHH

HH

The proof of the theorem is in two parts. The first part is “graph theory”, the
second uses linear algebra. We argue by contradiction, and so we assume that we
have a counterexample to the theorem.

Step 1: Graph theory We show that there is a numberm such that everyone
has exactlym friends. [In the terminology of graph theory, this says that we have
a regular graph of valencym.]

To prove this, we notice first that ifP1 andP2 are not friends, then they have
the same number of friends. For they have one common friendP3; any further
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friend Q of P1 has a common friendR with P2, and conversely, so we can match
up the common friends as in the next picture.

u u
u

�
�
�
�
�

A
A

A
A
A

u u

�
�
�
�
�
�

D
D
D
D
D
D

u u
. . . . . .

Now let us suppose that there are two peopleP and Q who have different
numbers of friends. By the preceding argument,P andQ must be friends. They
have a common friendR. Any other personS must have a different number of
friends from eitherP or Q, and so must be the friend of eitherP or Q (but not
both). Now if S is the friend ofP but notQ, andT is the friend ofQ but notP,
then any possible choice of the common friend ofSandT leads to a contradiction.
So this is not possible; that is, either everyone else isP’s friend, or everyone else
is Q’s friend. But this means that we don’t have a counterexample after all.

So we conclude this step knowing that the number of friends of each person is
the same, saym, as claimed.

Step 2: Linear algebra We prove thatm= 2.
Suppose that there aren peopleP1, . . . ,Pn. Let A be then×n matrix whose

(i, j) entry is 1 ifPi andPj are friends, and is 0 otherwise. Then by assumption,
A is ann×n symmetric matrix. LetJ be then×n matrix with every entry equal
to 1; thenJ is also symmetric.

Consider the productAJ. Since every entry ofJ is equal to 1, the(i, j) entry
of AJ is just the number of ones in theith row of A, which is the number of
friends ofPi ; this is m, by Step 1. So every entry ofAJ is m, whenceAJ = mJ.
Similarly, JA = mJ. Thus,A andJ are commuting symmetric matrices, and so
by Theorem 7.9, they can be simultaneously diagonalised. We will calculate their
eigenvalues.

First let us considerJ. If j is the column vector with all entries 1, then clearly
J j = n j, so j is an eigenvector ofJ with eigenvaluen. The other eigenvalues ofJ
are orthogonal toj. Now v · j = 0 means that the sum of the components ofv is
zero; this implies thatJv= 0. So any vector orthogonal toj is an eigenvector ofJ
with eigenvalue 0.

Now we turn toA, and observe that

A2 = (m−1)I +J.
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For the(i, j) entry of A2 is equal to the number of peoplePk who are friends of
both Pi andPj . If i = j, this number ism, while if i 6= j then (by assumption)
it is 1. SoA2 has diagonal entriesm and off-diagonal entries 1, so it is equal to
(m−1)I +J, as claimed.

The all-one vectorj satisfiesA j = m j, so is an eigenvector ofA with eigen-
valuem. This shows, in particular, that

m2 j = A2 j = ((m−1)I +J) j = (m−1+n) j,

so thatn = m2−m+ 1. (Exercise: Prove this by a counting argument in the
graph.)

As before, the remaining eigenvectors ofA are orthogonal toj, and so are
eigenvectors ofJ with eigenvalue 0. Thus, ifv is an eigenvector ofA with eigen-
valueλ , not a multiple ofj, then

λ
2v = A2v = ((m−1)I +J)v = (m−1)v,

soλ 2 = m−1, andλ =±
√

m−1.
The diagonal entries ofA are all zero, so its trace is zero. So if we letf andg

be the multiplicities of
√

m−1 and−
√

m−1 as eigenvalues ofA, we have

0 = Tr(A) = m+ f
√

m−1+g(−
√

m−1) = m+( f −g)
√

m−1.

This shows thatm−1 must be a perfect square, saym−1 = u2, from which we
see thatm is congruent to 1 modu. But the trace equation is 0= m+( f −g)u; this
says that 0≡ 1 modu. This is only possible ifu = 1. But thenm= 2, n = 3, and
we have the Three Musketeers (three individuals, any two being friends). This
configuration does indeed satisfy the hypotheses of the Friendship Theorem; but
it is after all not a counterexample, since each person is everyone else’s friend. So
the theorem is proved.
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Appendix D

Who is top of the league?

In most league competitions, teams are awarded a fixed number of points for a
win or a draw. It may happen that two teams win the same number of matches and
so are equal on points, but the opponents beaten by one team are clearly “better”
than those beaten by the other. How can we take this into account?

You might think of giving each team a “score” to indicate how strong it is, and
then adding the scores of all the teams beaten by teamT to see how wellT has
performed. Of course this is self-referential, since the score ofT depends on the
scores of the teams thatT beats. So suppose we ask simply that the score ofT
should be proportional to the sum of the scores of all the teams beaten byT.

Now we can translate the problem into linear algebra. LetT1, . . . ,Tn be the
teams in the league. LetA be then×n matrix whose(i, j) entry is equal to 1 ifTI

beatsTj , and 0 otherwise. Now for any vector[x1 x2 . . . xn ]> of scores, the
ith entry ofAx is equal to the sum of the scoresx j for all teamsTj beaten byTi .
So our requirement is simply that

x should be an eigenvector ofA with all entries positive.

Here is an example. There are six teams A, B, C, D, E, and F. Suppose that

A beats B, C, D, E;

B beats C, D, E, F;

C beats D, E, F;

D beats E, F;

E beats F;

F beats A.
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The matrixA is 
0 1 1 1 1 0
0 0 1 1 1 1
0 0 0 1 1 1
0 0 0 0 1 1
0 0 0 0 0 1
1 0 0 0 0 0

 .

We see that A and B each have four wins, but that A has generally beaten the
stronger teams; there was one upset when F beat A. Also, E and F have the fewest
wins, but F took A’s scalp and should clearly be better.

Calculation with Maple shows that the vector

[0.7744 0.6452 0.4307 0.2875 0.1920 0.3856]>

is an eigenvector ofA with eigenvalue 2.0085. This confirms our view that A is
top of the league and that F is ahead of E; it even puts F ahead of D.

But perhaps there is a different eigenvalue and/or eigenvector which would
give us a different result?

In fact, there is a general theorem called thePerron–Frobenius theoremwhich
gives us conditions for this method to give a unique answer. Before we state it,
we need a definition.

Definition D.1 Let A be ann×n real matrix with all its entries non-negative. We
say thatA is indecomposableif, for any i, j with 1≤ i, j ≤ n, there is a numberm
such that the(i, j) entry ofAm is strictly positive.

This odd-looking condition means, in our football league situation, that for
any two teamsTi andTj , there is a chainTk0, . . . ,Tkm with Tk0 = Ti andTkm = Tj ,
sich that each team in the chain beats the next one. Now it can be shown that
the only way that this can fail is if there is a collectionC of teams such that each
team inC beats each team not inC. In this case, obviously the teams inC occupy
the top places in the league, and we have reduced the problem to ordering these
teams. So we can assume that the matrix of results is indecomposable.

In our example, we see that B beats F beats A, so the(2,1) entry in A2 is
non-zero. Similarly for all other pairs. SoA is indecomposable in this case.

Theorem D.1 (Perron–Frobenius Theorem)Let A be a n×n real matrix with
all its entries non-negative, and suppose that A is indecomposable. Then, up to
scalar multiplication, there is a unique eigenvector v= [x1 . . . xn ]> for A with
the property that xi > 0 for all i. The corresponding eigenvalue is the largest
eigenvalue of A.

So the Perron–Frobenius eigenvector solves the problem of ordering the teams
in the league.
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Remark Sometimes even this extra level of sophistication doesn’t guarantee a
result. Suppose, for example, that there are five teams A, B, C, D, E; and suppose
that A beats B and C, B beats C and D, C beats D and E, D beats E and A, and E
beats A and B. Each team wins two games, so the simple rule gives them all the
same score. The matrixA is

A =


0 1 1 0 0
0 0 1 1 0
0 0 0 1 1
1 0 0 0 1
1 1 0 0 0

 ,

which is easily seen to be indecomposable; and ifv is the all-1 vector, thenAv=
2v, so thatv is the Perron–Frobenius eigenvector. So even with this method, all
teams get the same score. In this case, it is clear that there is so much symmetry
between the teams that none can be put above the others by any possible rule.

Remark Further refinements are clearly possible. For example, instead of just
putting the(i, j) entry equal to 1 ifTi beatsTj , we could take it to be the number
of goals by whichTi won the game.

Remark This procedure has wider application. How does an Internet search
engine like Google find the most important web pages that match a given query?
An important web page is one to which a lot of other web pages link; this can be
described by a matrix, and we can use the Perron–Frobenius eigenvector to do the
ranking.
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Appendix E

Other canonical forms

One of the unfortunate things about linear algebra is that there are many types
of equivalence relation on matrices! In this appendix I say a few brief words
about some that we have not seen elsewhere in the course. Some of these will be
familiar to you from earlier linear algebra courses, while others arise in courses
on different parts of mathematics (coding theory, group theory, etc.)

Row-equivalence

Two matricesA andB of the same size overK are said to berow-equivalentif
there is an invertible matrixP such thatB = PA. Equivalently,A andB are row-
equivalent if we can transformA into B by the use of elementary row operations
only. (This is true because any invertible matrix can be written as a product of
elementary matrices; see Corollary 2.6.)

A matrix A is said to be inechelon formif the following conditions hold:

• The first non-zero entry in any row (if it exists) is equal to 1 (these entries
are called theleading ones);

• The leading ones in rows lower in the matrix occur further to the right.

We say thatA is in reduced echelon formif, in addition to these two conditions,
also

• All the other entries in the column containing a leading one are zero.

For example, the matrix0 1 a b 0 c
0 0 0 0 1 d
0 0 0 0 0 0


is in reduced echelon form, whatever the values ofa, . . . ,e.

105



106 APPENDIX E. OTHER CANONICAL FORMS

Theorem E.1 Any matrix is row-equivalent to a unique matrix in reduced echelon
form.

Coding equivalence

In the theory of error-correcting codes, we meet a notion of equivalence which lies
somewhere between row-equivalence and equivalence. As far as I know it does
not have a standard name.

Two matricesA andB of the same size are said to becoding-equivalentif B
can be obtained fromA by a combination of arbitrary row operations and column
operations of Types 2 and 3 only. (See page 16).

Using these operations, any matrix can be put into block form

[
Ir A
O O

]
, for

some matrixA. To see this, use row operations to put the matrix into reduced ech-
elon form, then column permutations to move the columns containing the leading
ones to the front of the matrix.

Unfortunately this is not a canonical form; a matrix can be coding-equivalent
to several different matrices of this special form.

It would take us too far afield to explain why this equivalence relation is im-
portant in coding theory.

Congruence over other fields

Recall that two symmetric matricesA andB, over a fieldK whose characteristic is
not 2, arecongruentif B= P>AP for some invertible matrixP. This is the natural
relation arising from representing a quadratic form relative to different bases.

We saw in Chapter 5 the canonical form for this relation in the cases whenK
is the real or complex numbers.

In other cases, it is usually much harder to come up with a canonical form.
Here is one of the few cases where this is possible. I state the result for quadratic
forms.

Theorem E.2 LetFp be the field of integers mod p, where p is an odd prime. Let
c be a fixed element ofFp which is not a square. A quadratic form q in n variables
overFp can be put into one of the forms

x2
1 + · · ·+x2

r , x2
1 + · · ·+x2

r−1 +cx2
r

by an invertible linear change of variables. Any quadratic form is congruent to
just one form of one of these types.



Appendix F

Worked examples

1. Let

A =

 1 2 4 −1 5
1 2 3 −1 3
−1 −2 0 1 3

 .

(a) Find a basis for the row space ofA.

(b) What is the rank ofA?

(c) Find a basis for the column space ofA.

(d) Find invertible matricesP andQ such thatPAQ is in the canon-
ical form for equivalence.

(a) Subtract the first row from the second, add the first row to the third, then
multiply the new second row by−1 and subtract four times this row from the
third, to get the matrix

B =

1 2 4 −1 5
0 0 1 0 2
0 0 0 0 0

 .

The first two rows clearly form a basis for the row space.

(b) The rank is 2, since there is a basis with two elements.

(c) The column rank is equal to the row rank and so is also equal to 2. By
inspection, the first and third columns ofA are linearly independent, so they form
a basis. The first and second columns are not linearly independent, so we cannot
use these! (Note that we have to go back to the originalA here; row operations
change the column space, so selecting two independent columns ofB would not
be correct.)
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(d) By step (a), we havePA= B, whereP is obtained by performing the same
elementary row operations on the 3×3 identity matrixI3:

P =

 1 0 0
1 −1 0
−3 4 1

 .

Now B can be brought to the canonical form

C =

1 0 0 0 0
0 1 0 0 0
0 0 0 0 0


by subtracting 2, 4,−1 and 5 times the first column from the second, third, fourth
and fifth columns, and twice the third column from the fifth, and then swapping
the second and third columns; soC = BQ (whenceC = PAQ), whereQ is obtained
by performing the same column operations onI5:

Q =


1 −4 −2 1 3
0 0 1 0 0
0 1 0 0 −2
0 0 0 1 0
0 0 0 0 1

 .

Remark: P andQ can also be found by multiplying elementary matrices, if
desired; but the above method is simpler. You may find it easier to write an identity
matrix afterA and perform the row operations on the extended matrix to findP,
and to put an identity matrix underneathB and perform the column operations on
the extended matrix to findQ.

2. A certain country hasn political partiesP1, . . . , Pn. At the
beginning of the year, the percentage of voters who supported the
partyPi wasxi . During the year, some voters change their minds; a
proportionai j of former supporters ofP j will supportPi at the end
of the year.

Let v be the vector[x1 x2 · · · xn ]> recording support for the par-
ties at the beginning of the year, andA the matrix whose(i, j) entry is
ai j .

(a) Prove that the vector giving the support for the parties at the end
of the year isAv.
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(b) In subsequent years, exactly the same thing happens, with the
same proportions. Show that the vector giving the support for
the parties at the end ofm years isAmv.

(c) Suppose thatn = 2 and that

A =
[

0.9 0.3
0.1 0.7

]
.

Show that, after a long time, the support for the parties will be
approximately 0.75 forP1 to 0.25 forP2.

(a) Let yi be the proportion of the population who supportPi at the end of
the year. From what we are given, the proportion supportingP j at the beginning
of the year wasx j , and a fractionai j of these changed their support toPi . So
the proportion of the whole population who supportedP j at the beginning of the
year andPi at the end isai j x j . The total support forPi is found by adding these
up for all j: that is,

yi =
n

∑
j=1

ai j x j ,

or v′ = Av, wherev′ is the vector[y1 . . . yn ]> giving support for the parties at
the end of the year.

(b) Let vk be the column vector whoseith component is the proportion of the
population supporting partyPi after the end ofk years. In part (a), we showed
thatv1 = Av0, wherev0 = v. An exactly similar argument shows thatvk = Avk−1
for anyk. So by induction,vm = Pmv0 = Pmv, as required. (The result of (a) starts
the induction withm= 1. If we assume thatvk−1 = Ak−1v, then

vk = Avk−1 = A(Ak−1v) = Akv,

and the induction step is proved.)

(c) The matrixP has characteristic polynomial∣∣∣∣x−0.9 −0.3
−0.7 x−0.7

∣∣∣∣= x2−1.6x+0.6 = (x−1)(x−0.6).

So the eigenvalues ofP are 1 and 0.6. We find by solving linear equations that

eigenvectors for the two eigenvalues are

[
3
1

]
and

[
1
−1

]
respectively. As in the

text, we compute that the corresponding projections are

P1 =
[

0.75 0.75
0.25 0.25

]
, P2 =

[
0.25 −0.75
−0.25 0.75

]
.
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(Once we have foundP1, we can findP2 asI −P1.) ThenP is diagonalisable:

A = P1 +0.6P2.

From this and Proposition 4.6 we see that

Am = P1 +(0.6)mP2.

As m→ ∞, we have(0.6)m→ 0, and soA→ P1. So in the limit, ifv0 =
[

x
y

]
is

the matrix giving the initial support for the parties, withx+y = 1, then the matrix
giving the final support is approximately[

0.75 0.75
0.25 0.25

][
x
y

]
=
[

0.75(x+y)
0.25(x+y)

]
=
[

0.75
0.25

]
.

As a check, use the computer with Maple to work outPm for some large value
of m. For example, I find that

P10 =
[

0.7515116544 0.7454650368
0.2484883456 0.2545349632

]
.

3. The vectorsv1,v2,v3 form a basis forV = R3; the dual basis ofV∗

is f1, f2, f3. A second basis forV is given byw1 = v1 +v2 +v3, w2 =
2v1 +v2 +v3, w3 = 2v2 +v3. Find the basis ofV∗ dual tow1,w2,w3.

The first dual basis vectorg1 satisfiesg1(w1) = 1, g1(w2) = g1(w3) = 0. If
g1 = x f1 +y f2 +z f3, we find

x+y+z = 1,

2x+y+z = 0,

2y+z = 0,

giving x =−1, y =−2, z= 4. Sog1 =− f1−2 f2 +4 f3. Solving two similar sets
of equations givesg2 = f1 + f2−2 f3 andg3 = f2− f3.

Alternatively, the transition matrixP from thevs to thews is

P =

1 2 0
1 1 2
1 1 1

 ,

and we showed in Section 5.1.2 that the transition matrix between the dual bases
is

(P−1)> =

−1 1 0
−2 1 1
4 −2 −1

 .

The coordinates of thegs in the basis off s are the columns of this matrix.
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4. TheFibonacci numbers Fn are defined by the recurrence relation

F0 = 0, F1 = 1, Fn+2 = Fn +Fn+1 for n≥ 0.

Let A be the matrix

[
0 1
1 1

]
. Prove that

An =
[

Fn−1 Fn

Fn Fn+1

]
,

and hence find a formula forFn.

The equation forFn is proved by induction onn. It is clearly true forn = 1.
Suppose that it holds forn; then

An+1 = An ·A=
[

Fn−1 Fn

Fn Fn+1

][
0 1
1 1

]
=
[

Fn Fn−1 +Fn

Fn+1 Fn +Fn+1

]
=
[

Fn Fn+1

Fn+1 Fn+2

]
.

So the induction step is proved.
To find a formula forFn, we show thatA is diagonalisable, and then write

A = λ1P1 + λ2P2, whereP1 andP1 are projection matrices with sumI satisfying
P1P2 = P2P1 = 0. Then we getAn = λ n

1 P1 + λ n
2 P2, and taking the(1,2) entry we

find that
Fn = c1λ

n
1 +c2λ

n
2 ,

wherec1 andc2 are the(1,2) entries ofP1 andP2 respectively.
From here it is just calculation. The eigenvalues ofA are the roots of 0=

det(xI−A) = x2− x−1; that is,λ1,λ2 = 1
2(1±

√
5). (Since the eigenvalues are

distinct, we know thatA is diagonalisable, so the method will work.) Now because
P1 +P2 = I , the(1,2) entries of these matrices are the negatives of each other; so
we haveFn = c(λ n

1 − λ n
2 ). Rather than findP1 explicitly, we can now argue as

follows: 1= F1 = c(λ1−λ2) = c
√

5, so thatc = 1/
√

5 and

Fn =
1√
5

((
1+

√
5

2

)n

−

(
1−

√
5

2

)n)
.

5. LetVn be the vector space of real polynomials of degree at mostn.

(a) Show that the function

f ·g =
∫ 1

0
f (x)g(x)dx

is an inner product onVn.
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(b) In the casen= 3, write down the matrix representing the bilinear
form relative to the basis 1,x,x2,x3 for V3.

(c) Apply the Gram–Schmidt process to the basis(1,x,x2) to find
an orthonormal basis forV2.

(d) LetWn be the subspace ofVn consisting of all polynomialsf (x)
of degree at mostn which satisfyf (0) = f (1) = 0. LetD :Wn→
Wn be the linear map given by differentiation:(D f )(x) = f ′(x).
Prove that the adjoint ofD is−D.

(a) Putb( f ,g) =
∫ 1

0 f (x)g(x)dx. The functionb is obviously symmetric. So
we have to show that it is linear in the first variable, that is, that∫ 1

0
( f1(x)+ f2(x))g(x)dx =

∫ 1

0
f1(x)g(x)dx+

∫ 1

0
f2(x)g(x)dx,∫ 1

0
(c f(x))g(x)dx = c

∫ 1

0
f (x)g(x)dx,

which are clear from elementary calculus.
We also have to show that the inner product is positive definite, that is, that

b( f , f ) ≥ 0, with equality if and only if f = 0. This is clear from properties of
integration.

(b) If the basis isf1 = 1, f2 = x, f3 = x2, f4 = x3, then the(i, j) entry of the
matrix representingb is ∫ 1

0
xi−1x j−1dx =

1
i + j−1

,

so the matrix is 
1 1

2
1
3

1
4

1
2

1
3

1
4

1
5

1
3

1
4

1
5

1
6

1
4

1
5

1
6

1
7

 .

(c) The first basis vector is clearly 1. To makex orthogonal to 1 we must
replace it byx+a for somea; doing the integral we find thata =−1

2. To makex2

orthogonal to the two preceding is the same as making it orthogonal to 1 andx, so
we replace it byx2 +bx+c; we find that

1
3 + 1

2b+c = 0,
1
4 + 1

3b+ 1
2c = 0,

so thatb =−1 andc = 1
6.
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Now 1·1 = 1, (x− 1
2) · (x− 1

2) = 1
12, and(x2−x+ 1

6) · (x2−x+ 1
6) = 1

180; so
the required basis is

1,
1

2
√

3
(x− 1

2
),

1

6
√

5
(x2−x+

1
6
).

(d) Integration by parts shows that

f ·D(g) =
∫ 1

0
f (x)g′(x)dx

= [ f (x)g(x)]10−
∫ 1

0
f ′(x)g(x)dx

= −(D f ) ·g,

where the first term vanishes because of the condition on polynomials inWn. Thus,
by definition, the adjoint ofD is−D.

6. Let A andB be real symmetric matrices. Is each of the following
statements true or false? Give brief reasons.

(a) If A andB are orthogonally similar then they are congruent.

(b) If A andB are orthogonally similar then they are similar.

(c) If A andB are congruent then they are orthogonally similar.

(d) If A andB are similar then they are orthogonally similar.

Recall thatA andB are similar ifB= P−1AP for some invertible matrixP; they
are congruent ifB= P>AP for some invertible matrixP; and they are orthogonally
similar if B = P−1AP for some orthogonal matrixP (invertible matrix satisfying
P> = P−1). Thus it is clear that both (a) and (b) are true.

The Spectral Theorem says thatA is orthogonally congruent to a diagonal
matrix whose diagonal entries are the eigenvalues. IfA andB are similar, then
they have the same eigenvalues, and so are orthogonally congruent to the same
diagonal matrix, and so to each other. So (d) is true.

By Sylvester’s Law of Inertia, any real symmetric matrix is congruent to a
diagonal matrix with diagonal entries 1,−1 and 0. If we choose a symmetric
matrix none of whose eigenvalues is 1,−1 or 0, then it is not orthogonally similar
to the Sylvester form. For example, the matricesI and 2I are congruent but not
orthogonally similar. So (c) is false.

7. Find an orthogonal matrixP such thatP−1AP andP−1BP are di-
agonal, where

A =


1 1 1 1
1 1 1 1
1 1 1 1
1 1 1 1

 , B =


0 1 0 1
1 0 1 0
0 1 0 1
1 0 1 0

 .
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Remark A andB are commuting symmetric matrices, so we know that the ma-
trix P exists.

First solution We have to find an orthonormal basis which consists of eigenvec-
tors for both matrices.

Some eigenvectors can be found by inspection. Ifv1 = (1,1,1,1) thenAv1 =
4v1 andBv1 = 2v1. If v2 = (1,−1,1,−1) thenAv2 = 0 andBv2 = −2v2. Any
further eigenvectorv = (x,y,z,w) should be orthogonal to both of these, that is,
x+y+z+w= 0= x−y+z−w. Sox+z= 0 andy+w= 0. Conversely, any such
vector satisfiesAv= 0 andBv= 0. So choose two orthogonal vectors satisfying
these conditions, say(1,0,−1,0) and (0,1,0,−1). Normalising, we obtain the
required basis:(1,1,1,1)/2, (1,−1,1,−1)/2, (1,0,−1,0)/

√
2, (0,1,0,−1)/

√
2.

So

P =


1
2

1
2

1√
2

0
1
2 −1

2 0 1√
2

1
2

1
2 − 1√

2
0

1
2 −1

2 0 − 1√
2

 .

Second solution Observe that bothA andB are circulant matrices. So we know
from Appendix B that the columns of the Vandermonde matrix

1 1 1 1
1 i −1 −i
1 −1 1 −1
1 −i −1 i


are eigenvectors of both matrices. The second and fourth columns have corre-
sponding eigenvalues 0 for both matrices, and hence so do any linear combina-
tions of them; in particular, we can replace these two columns by their real and
imaginary parts, giving (after a slight rearrangement) the matrix

1 1 1 0
1 −1 0 1
1 1 −1 0
1 −1 0 −1

 .

After normalising the columns, this gives the same solution as the first.
The results of Appendix B also allow us to write down the eigenvalues ofA

andB without any calculation. For example, the eigenvalues ofB are

1+1 = 2, i− i = 0, −1−1 =−2, −i + i = 0.
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Remark A more elegant solution is the matrix

1
2


1 1 1 1
1 −1 1 −1
1 1 −1 −1
1 −1 −1 1

 .

This matrix (without the factor12) is known as aHadamard matrix. It is ann×n
matrix H with all entries±1 satisfyingH>H = nI. It is known that ann× n
Hadamard matrix cannot exist unlessn is 1, 2, or a multiple of 4; however, nobody
has succeeded in proving that a Hadamard matrix of any sizen divisible by 4
exists.

The smallest order for which the existence of a Hadamard matrix is still in
doubt is (at the time of writing)n = 668. The previous smallest,n = 428, was
resolved only in 2004 by Hadi Kharaghani and Behruz Tayfeh-Reziae in Tehran,
by constructing an example.

As a further exercise, show that, ifH is a Hadamard matrix of sizen, then[
H H
H −H

]
is a Hadamard matrix of size 2n. (The Hadamard matrix of size 4

constructed above is of this form.)

8. LetA =
[

1 1
1 2

]
andB =

[
1 1
1 0

]
.

Find an invertible matrixP and a diagonal matrixD such thatP>AP=
I andP>BP= D, whereI is the identity matrix.

First we take the quadratic form corresponding toA, and reduce it to a sum of
squares. The form isx2+2xy+2y2, which is(x+y)2+y2. (Note:This is the sum
of two squares, in agreement with the fact thatA is positive definite.)

Now the matrix that transforms(x,y) to (x+y,y) is Q =
[

1 1
0 1

]
, since

[
1 1
0 1

][
x
y

]
=
[

x+y
y

]
.

Hence

[x y]Q>Q

[
x
y

]
= x2 +2xy+2y2 = [x y]A

[
x
y

]
,

so thatQ>Q = A.

Now, if we putP = Q−1 =
[

1 −1
0 1

]
, we see thatP>AP= P>(Q>Q)P = I .
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What aboutP>BP? We find that

P>BP=
[

1 0
−1 1

][
1 1
1 0

][
1 −1
0 1

]
=
[

1 0
0 −1

]
= D,

the required diagonal matrix. So we are done.

Remark 1: In general it is not so easy. The reduction of the quadratic form will
give a matrixP1 such thatP>1 AP1 = I , but in generalP>1 BP1 won’t be diagonal;
all we can say is that it is symmetric. So by the Spectral Theorem, we can find an
orthogonal matrixP2 such thatP>1 (P>1 BP1)P2 is diagonal. (P2 is the matrix whose
columns are orthonormal eigenvectors ofP>1 BP1.) Then becauseP2 is orthogonal,
we have

P>2 (P>1 AP1)P2 = P>2 IP2 = I ,

so thatP = P1P2 is the required matrix.

Remark 2: If you are only asked for the diagonal matrixD, and not the matrix
P, you can do an easier calculation. We saw in the lectures that the diagonal
entries ofD are the roots of the polynomial det(xA−B) = 0. In our case, we have∣∣∣∣x−1 x−1

x−1 2x

∣∣∣∣= x2−1 = (x−1)(x+1),

so the diagonal entries ofD are+1 and−1 (as we found).
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