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Preface

Combinatorics is a subject which stands in an uneasy relation with the rest of
mathematics, and has often been treated with scorn by traditional mathematicians.
(Many people know Henry Whitehead'’s reported remark, “Combinatorics is the
slums of topology”.)

In defence of the subject, several eminent practitioners (notably Gian-Carlo
Rota and Ande Joyal) have attempted to take at least part of combinatorics and
re-formulate it as mathematics in the axiomatic, twentieth-century style. This
has led to many important developments (matroid theory, teitv function,
species) some of which are touched on here. In my view, though, this approach
has not been completely successful, since combinatorics by its nature escapes any
attempt to define it.

| find more congenial the view eloquently put by someone with impeccable
credentials, Tim Gowers, in his paper “The two cultures of mathematics”. He
argues that, in combinatorics, ittschniquesvhich play the role that big theorems
do in more traditional mathematics.

Accordingly, these notes are not laden with theorems, big or small. If you need
a particular binomial identity or the enumeration of a particular class of graphs,
chances are you won't find it here. Instead, you may possibly find the technique
which will help you to prove the identity or count the graphs yourself. (I have
been asked by colleages such questions as “How many partially ordered sets can
be obtained from the trivial poset by nesting and crossing?” or “How many orbits
does afinite linear group have artuples of vectors?” You won't find the answers
here, but you will find the techniques needed to answer these questions.)

If you require a much more complete compendium, you are referred to the
books by Goulden and Jackson and by Stanley listed in the bibliography. Stanley’s
book is particularly rich in exercises, which are the lifeblood of the subject.

These notes began as the course notes for the course MTHM C50, “Enumera-
tive and asymptotic combinatorics”, which | taught at Queen Mary, University of
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London, in the spring of 2003. This is a second course in combinatorics for those
who have already taken the equivalent of the undergraduate course MAS 219. The
syllabus for the course reads:

1. Techniques: Inclusion-exclusion, recurrence relations and gen-
erating functions.

2. Subsets, partitions, permutations: binomial coefficients; parti-
tion, Bell, and Stirling numbers; derangementpanalogues:
Gaussian coefficientg;binomial theorem.

3. Linear recurrence relations with constant coefficients.

4. Counting up to group action: Orbit-counting lemma, cycle index
theorem.

5. Posets and Bbius inversion, Mbius function of projective space.

6. Asymptotic techniques: Order notatioD; o, ~. Stirling’s for-
mula. Techniques from complex analysis including Hayman’s
Theorem.

| am grateful to the students on the course for their critical comments and for
debugging the notes. (In particular, a solution by Pablo Spiga to one of the prize
guestions is included.) Any remaining errors are, of course, mine. Also, there are
some topics included here which were not in the lecture course.

Peter J. Cameron
April 10, 2003
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Chapter 1

Introduction

This course is about counting. Of course this doesn’t mean just counting a single
finite set. Usually, we have a family of finite sets indexed by a natural number
and we want to findr (n), the cardinality of theath set in the family.

1.1 Whatis counting?

There are several kinds of answer to this question:

e An explicit formula (which may be more or less complicated, and in partic-
ular may involve a number of summations).

e Arecurrence relation expressifign) in terms of values of (m) for m< n.

¢ A closed form for egenerating functioffior F. (The two types of generating
function most often used are ttedinary generating functiory F(n)x",
and theexponential generating functiopF (n)x"/n!.) These are elements
of the ringQ|[x]] of formal power seriesThey may or may not converge if
a given non-zero complex number is substitutedkfqFormal power series
are discussed further in the next section.)

If a generating function converges, it is possible to find the coefficients by
analytic methods (differentiation or contour integration).

e An asymptotic estimate foF (n) is a functionG(n), typically expressed
in terms of the standard functions of analysis, such @) — G(n) is of
smaller order of magnitude thag(n). (If G(n) does not vanish, we can

1



2 CHAPTER 1. INTRODUCTION

write this ag- (n)/G(n) — 1 asn — «.) We writeF (n) ~ G(n) if this holds.
This might be accompanied by an asymptotic estimat€ fay — G(n), and
SO on; we obtain amsymptotic seriegor F. (The basics of asymptotic
analysis are described further in the third section of this chapter.)

¢ Related to counting combinatorial objects is the question of generating them.
The first thing we might ask for is a system of sequential generation, where
we can produce an ordered list of the objects. Again there are two possibil-
ities.
If the number of objects i& (n), we might ask for a construction which,
giveni with 0 <i < F(n) — 1, produces thé&h object on the list directly.

Alternatively, we may simply require a method of moving from each object
to the next.

e We could also ask for a method for random generation of an object. If we
have a technique for generating ftitle object directly, we simply choose a
random number in the rand@, ..., F(n) — 1} and generate the correspond-
ing object. If not, we have to rely on other methods such as Markov chains.

Here are a few examples. These will be considered in more detail later in the
course.

Example: subsets The number of subsets ¢f,...,n} is 2". Not only is this
a simple formula to write down; it is easy to compute as well. At most 2iog
integer multiplications are required.

To see this, writen in base 2:n = 2% +2% 4 ... + 2% 'wherea; > --- > a.
Now we can computeZ2for 1 < i < a; by a; successive squarings (noting that

i i\ 2 a . o
22"t — (22) ); then 2 = (22%) ... (22") requiresr — 1 further multiplications.
There is a simple recurrence relation fom) = 2", namely

F(0) =1, F(n)=2F(n—1)forn> 1.

Using this,F (n) can be found with jush — 1 integer doublings.

The ordinary generating function of the sequeli2® is 1/(1— 2x), while
the exponential generating function is €2p). (I will use exgx) instead of &in
these notes, except in some places involving calculus.)

No asymptotic estimate is needed, since we have a simple exact formula.
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Choosing a random subset, or generating all subsets in order, are easily achieved
by the following method. For eadte {0,...,2"— 1}, writei in base 2, producing
a string of lengtm of zeros and ones. Noybelongs to theth subset if and only
if the jth symbol in the string is 1.

Example: permutations The number of permutations ¢f.,...,n} is n!, de-
fined as usual as the product of the natural numbers frornl This formula is
not so satisfactory, involving amfold product. It can be expressed in other ways,

as a sum. .
=5 ()" (n—k)",
M= 3D (k)m )

or as an integral:
(o]
n! :/ x"e " dx.
0

Neither of these is easier to evaluate than the original definition.
The recurrence relation fét(n) = n! is

F(0) =1, F(n)=nF(n—1)forn> 1.

This leads to the same method of evaluation as we saw earlier.
The ordinary generating function fér(n) = n! fails to converge anywhere.
The exponential generating function is(1 — x), convergent fofx| < 1.
As an example to show that convergence is not necessary for a power series to

be useful, let
-1
1+ § nix" =1-5 c(n)x".
( ngl > ngl

Thenc(n) is the number of connected permutations{@n ..,n}. (A permutation
TUis connectedf there does not exisk with 1 < k < n— 1 such thatrt maps
{1,... k} toitself.)

An asymptotic estimate fawl is given byStirling’s formula

n! N\/ﬁ<g>n.

It is possible to generate permutations sequentially, or choose a random per-
mutation, by a method similar to that for subsets.
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Example: derangements A derangementis a permutation with no fixed points.
Letd(n) be the number oflerangementsf n.

There is a simple formula fad(n): it is the nearest integer ta /e. This is
also satisfactory as an asymptotic expressiomfay; we can supplement it with
the fact thatd(n) —n!/e| < 1/(n+1) for n > 0.

This formula is not very good for calculation, since it requires accurate knowl-
edge of e and operations of real (rather than integer) arithmetic. There are, how-
ever, two recurrence relations fd(n); the second, especially, leads to efficient
calculation:

d(0)=1,d(1)=0, d(n)=(n—-21)(d(n—1)+d(n—2))forn>2;
d0)=1, d(n)=nd(n—1)+(-1)"forn>1.
The ordinary generating function fdin) fails to converge, but the exponen-
tial generating function is equal to expx) /(1 — X).
Since the probability that a random permutation is a derangement is afeut 1
we can choose a random derangement as follows: repeatedly choose a random

permutation until a derangement is obtained. The expected number of choices
necessary is about e.

Example: partitions Thepartition number gn) is the number of non-increasing
sequences of positive integers with samThere is no simple formula fgo(n).
However, quite a bit is known about it:

e The ordinary generating function is

zo p(n)x" = [T(2—x9 7"

K>1
e There is a recurrence relation:

p(n) = 3 (~1)* Lp(n—k(3k—1)/2),

where the sum is over all non-zero valueskppositive and negative, for
whichn—k(3k—1)/2 > 0. Thus,

p(n) =p(n—1)+p(n—2)—p(n—=5)—p(n—=7)+p(n—12) +---,

where there are aboyt'8n/3 terms in the sum.
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e The asymptotics op(n) are rather complicated, and were worked out by
Hardy, Littlewood, and Rademacher:

1 /2n/3
pn)~——€
( ) 4||\/§

(more precise estimates, including a convergent series representation, exist).

Example: set partitions The Bell number Bn) is the number of partitions of
the set{1,...,n}. Again, no simple formula is known, and the asymptotics are
very complicated. There is a recurrence relation,

1 /n-1
B(n) = k; (k— 1) B(n—k),
and the exponential generating function is

z B(rr:!) X = exp(exp(x) — 1).

Based on the recurrence one can derive a sequential generation algorithm.

1.2 Formal power series

Let R be a commutative ring with identity. formal power seriegverRis just a
function from the natural numbers R) that is, an infinite sequence

ro,f1,r2,....rn,... (1.1)

of elements oR. We define addition and multiplication of such infinite series to
make the set of formal power series into a ring. The definitions look more natural
if we write the sequence (1.1) as

o4 X+ IoX 4o+ rpX" - (1.2)

The symbok in this expression is just a dummy with no meaning; the “power”
of x allows us to keep track of our place in the series. No infinite summation is
actually involved! We denote the set of all formal power serieRfy|]. If we
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had used a different symbol, sgyin the expression (1.2), we would wrik]y]]
instead. We often abbreviate (1.2) to

%rnx”. (1.3)

A polynomialis simply a formal power series in which all but finitely many
of the terms are zero. Thiegreeof a polynomial is the index of the last non-zero
term. The set of polynomials is denoted Rj|.

We define addition and multiplication of formal power series by

(Zornxn> - (%&X") = Zo(rn+sn)><”,
(Z rnx“> : (%snx”> = %tnx”,
n>0 n> n=

n
th= ) ISk
kZO

where

Note that these operations involve only finite additions and multiplications of ring
elements.

With these operationd}[[X]] is a ring, andR[x] a subring. We don't stop to
prove this, as the verifications are routine.

Various other apparently “infinitary” operations can be defined which only
involve finite sums and products. For example,

e Suppose thaly, f1,... € R[[x]] have the property that the index of the small-
est non-zero term itfi, tends to infinity withn. Then

2"

is defined. In particular, iff, = rpx", the condition is satisfied, and this
definition of the infinite sum agrees with our notation for the formal power
seriesy rpx".

e With the same conditions,

I_L(1+ fn)
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is defined: it is the sum of terms, each of which is the product of finitely
many f, (taking 1 from the remaining factors in the infinite product); and
by assumption only finitely many such products contribute to the coefficient
of X" for anyn.

e Let f andg be formal power series in which the constant terng &f zero.
Then the result of substituting into f is defined: if f (x) = S rnx", then

f(g(x)) =3 rng".

e We can differentiate formal power series. The rule is, as you would expect,

d
— Zoanx“ =5 nax" 1.
dx & =1

(No calculus needed, and no need to wonder if a function has a derivative!)
The usual calculus rules for differentiating sums, products, and composite
functions (the chain rule) are valid. Note that, if we differentiatémes

and putx = 0 (that is, take the constant term), we obtalia,.

A result which is important for enumeration is the following, though we are
more concerned with the method of proof than the statement.

Proposition 1.1 A formal power series is invertible if and only if its constant term
is invertible.

Proof Suppose thaf = 5 rpx" andg = 5 s,x" satisfy fg = 1. Considering the
term of degree zero, we see thgdy = 1, so thatyg is invertible.
Conversely, suppose thafso = 1, wheref = 5 rpx". The inversgy = § sx"

must satisfy
n

forn>0; so
n
S1="—% ) kShk-
K=1

Thus the coefficients of satisfy a linear recurrence relation, and can be deter-
mined recursively.

In general, knowledge of the inverse of a formal power series is equivalent to
knowledge of a linear recurrence relation for its coefficients.
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Example: Fibonacci numbers Let f(x) = 1—x—x2. Then the coefficients of
the inversg 1 —x— x?)~! = 5 s,x" satisfy the recurrence

S=s1=1 = Ssi=si-1+s-2forn>2;

in other words, they are the Fibonacci numbers.

For the purposes of enumeration, the coefficients of formal power series are
usually integers or rational numbers. Often it is convenient to consider them as
real numbers, and apply to them the processes of analysis.

For example, considering the Fibonacci numbers abovey ktd 3 be the
roots of the quadratic equatio® —z— 1 = 0: thus,a = (v/5+1)/2 andp =
(—v/5+1)/2. Then

1 1 a B
1-x—x2 G—B(l—ax_l—ﬁx>

= i ZOGnJran . Z)Bm—lxn :
S n> n>
so thenth Fibonacci number is
Fn= i<an+l - Bn+l)~
NG

Since|B| < 1, we see thaf, is the nearest integer td*1/./5.

Particular formal power series of great importance include

Xn
exp(x) = Zoﬁy
n>o "

(_ 1) n— 1Xn

log(1+x) = -

n>1

1.3 Asymptotics

We introduce the notation for describing the asymptotic behaviour of functions
here, though we will not do any serious asymptotic estimation for a while.

LetF andG be functions of the natural numberFor convenience we assume
thatG does not vanish. We write
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e F=0(G) if F(n)/G(n) is bounded above as— o;
e F=0(G) if F(n)/G(n) is bounded below as— o;
e F=0(G) if F(n)/G(n) — 0 asn — oo;

e F~Gif F/G— 1asn— o.

Typically, F is a combinatorial enumeration function, add combination of
standard functions of analysis. For example, Stirling’s formula gives the asymp-
totics of the number of permutations €f,...,n}. We give the proof as an illus-
tration.

Theorem 1.2
n ~v2m <g>n

Proof Consider the graph of the functigh= logx betweenx = 1 andx = n,
together with the piecewise linear functions shown in Figure 1.1.

Figure 1.1: Stirling’s formula

Let f(x) = logx, let g(x) be the function whose value is lagfor m < x <
m+1, and let(x) be the function defined by the polygon with verti¢eslogm),
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for 1< m<n. Clearly
n
/ g(x) dx=1og2+---+logn=logn!.
1

The difference between the integrals gofand h is the sum of the areas of
triangles with base 1 and total height lughat is,  logn.

Some calculusshows that the difference between the integrald @find g
tends to a finite limit asn — co.

Finally, a simple integration shows that

n
/ f(x) dx=nlogn—n—+1.
1
We conclude that
logn! = nlogn—n+ 3logn+ (1-c)+0(1),

so that

Cnn+1/2
n' ~ .

To identify the constar, we can proceed as follows. Consider the integral
/2
In = / sin"xdx.
0

Integration by parts shows that

n—1
n

Let F(x) = f(x) —g(x). The convexity of log shows thaF (x) > 0 for all x € [m,m+1]. For
an upper bound we use the fact, a consequence of Taylor's Theorem, that

|n - |n727

logx < logm-+ >—" < o m+1
gx<log = g m

for x e [m,m+1]. Then

1 1 1 1
F(x) = logx—logm—log <1+ m> (x—m) < a—log (1+m> < o2

where the last inequality comes from another application of Taylor's Theorem which yields
log(1+x) > x—x2/2 forx € [0,1]. Now ¥ (1/m?) converges, so the integral is bounded.
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and hence
L - (2n)!'mt
2n = 22n+1(n1)2’
22n(n! )2
I2nt1 Zns1)

On the other hand,
lon2 < long1 < lon,

from which we get

(2n+Dm _ 2°0(nh)4
4n+1) — (2n)!(2n+1)!

Tt
§§7

and so
20(nh)4 Tl

lim .
2

I iz D

Puttiingn! ~ Cn**1/2/¢" in this result, we find that

C2e 1 —(2n+3/2) T
— Iim ( 1+ — ==
4 an( +2n) 2

so thatC = /21t

The last part of this proof is taken from Alan Slomsa@m Introduction to
Combinatorics Chapman and Hall 1991. It is more-or-less the proof of Wallis’
product formula fort.

The serieGo(n) + G1(n) + Go(n) + - - - is anasymptotic seriefor F(n) if
i—1
F(n) - J_Z)GJ (n) ~ Gi(n)
fori > 0. (So in particulaF (n) ~ Go(n), F(n) — Gp(n) ~ G1(n), and so on. Note

thatGi(n) = o(G;j_1(n)) for all i.)
Warnings:

e an asymptotic series is not necessarily convergent;
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e it is not necessarily the case that taking more terms in the series gives a
better approximation t& (n) for a fixedn.

For example, Stirling’s formula can be extended to an asymptotic seriag, for
namely

ny\n 1 1
vam(g) (“EJF 28812+"'> '

Regarding a generating function for a sequence as a function of a real or com-
plex variable is a powerful method for studying the asymptotic behaviour of the
sequence. We will see examples of this later; here is a simple observation.

Suppose thak(z) = ¥ ayZ" defines a function which is analytic in some neigh-
bourhood of the origin in the complex plane. Suppose that the smallest modulus
of a singularity ofA(z) isR. Then lim sum;l]/” =1/R, soay is bounded byc+¢€)"
but not by(c — ¢)" for largen, wherec = 1/R.

For example, we saw that the generating function of the Fibonacci numbers is
1/(1—z—2%). So these numbers grow roughly liké, wherea is the reciprocal
of the smaller root of - z— 22 = 0, namelya = (1+/5)/2.

On the other hand, i\(z) is analytic everywhere, theay, < €" for n > np(¢),
for any positivee. Indeeda, = o(e") for any positivet.

For example, iBB(n) is thenth Bell number, then

BN)Z' &4

= e ,
n; n!

which is analytic everywhere. S8(n) = o(e"n!), for any positivet.

1.4 Complexity

A formula like 2" (the number of subsets of arset) can be evaluated quickly for

a given value oh. A more complicated formula with multiple sums and products
will take longer to calculate. We could regard a formula which takes more time
to evaluate than it would take to generate all the objects and count them as being
useless in practice, even if it has theoretical value.

Traditional computational complexity theory refers to decision problems, where
the answer is just “yes” or “no” (for example, “Does this graph have a Hamilto-
nian circuit?”). The size of an instance of a problem is measured by the number of
bits of data required to specify the problem (for example,— 1) /2 bits to spec-
ify a graph onn vertices). Then the time complexity of a problem is the function
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f, wheref (n) is the maximum number of steps required by a Turing machine to
compute the answer for an instance of siz&o allow for variations in the format

of the input data and in the exact specification of a Turing machine, complexity
classes are defined with a broad brush: for exan®l&r “polynomial-time”)
consists of all problems whose time complexity is at mSgbr some constart.

(For more details, see Garey and Johngtwmputers and Intractability

For counting problems, the answer is a number rather than a single Boolean
value (for example, “How many Hamiltonian circuits does this graph have?”).
Complexity theorists have defined the complexity ciéBg“numberP”) for this
purpose.

Even this class is not really appropriate for counting problems of the type
we mostly consider. Consider, for example, the question “How many patrtitions
does am-set have?” The input data is the integemvhich (if written in base 2)
requires onlym = |1+ log, n] bits to specify. The question asks us to calculate
the Bell numbemB(n), which is greater than"2? for n > 2, and so it takes time
exponential inm simply to write down the answer! To get round this difficulty,
it is usual to pretend that the size of the input data is actuatbther than log.

(We can imagine that is given by writingn consecutive 1s on the input tape of
the Turing machine, that is, by writingas a tally rather than in base 2.)

We have seen that computing @he number of subsets of arset) requires
only O(logn) integer multiplications. But the integers may have as mang as
digits, so each multiplication tak€3(n) Turing machine steps. Similarly, the so-
lution to a recurrence relation can be computed in time polynomial imovided
that each individual computation can be.

On the other hand, a method which involves generating and testing every sub-
set or permutation will take exponentially long, even if the generation and testing
can be done efficiently.

A notion of complexity relevant to this situation is the polynomial delay model,
which asks that the time required to generate each object should be at®fmrst
some fixedc, even if the number of objects to be generated is greater than poly-
nomial.

Of course, it is easy to produce combinatorial problems whose solution grows
faster than, say, the exponential of a polynomial. For example, how many inter-
secting families of subsets of arset are there? The total number, foodd, lies
between 2" and 2", so that even writing down the answer takes time exponen-
tial in n.

We will not consider complexity questions further in this course.
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Exercises

1.1. Prove directly thatl —x)~1 = Sn>o0X" (in the ring of formal power series).

1.2. Suppose that a collection of complex power series all define functions ana-
lytic in some neighbourhood of the origin, and satisfy some identity there. Are we
allowed to conclude that this identity holds between the series regarded as formal
power series?

1.3. Suppose tha(x), B(x) andC(x) are the exponential generating functions
of sequences$a,), (b,) and(c,) respectively. Show thak(x)B(x) = C(x) if and

only if
()2
Ch = aDOn—k,
2 \k

(1) = e

1.4. Show that the identity exiog(1+ X)) = 1+ x between formal power series
Is equivalent to the equation

where

n (_1)k
k!

T(n,k) =0,
k=1

for n > 1, whereT (n,k) is computed as follows: writa as an ordered sum &f
positive integersy, ..., ax in all possible ways; for each such expression compute

the producty - - - ac; and sum the reciprocals of the resulting numbers.
What is the analogous interpretation of the identity(lbg (exp(x) — 1)) = x?

1.5. Show that the identity exp+Yy) = exp(x) exp(y) is equivalent to the Bino-
mial Theorem for all positive integer exponents.

1.6. Prove that = o(c") for any constantk > 0 andc > 1, and that log = o(n¢)
for anye > 0.

1.7. Letf(n) be the number of partitions of anset into parts of size 2.

(a) Prove that

i — 0 if nis odd;
(M=11.3.5...(n—1) if nis even.
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(b) Prove that the exponential generating function for the sequéf(eg) is
exp(x?).

(c) Prove that
2m\ ™
f(n)~v2(=—
e
forn=2m.

1.8. Show that it is possible to generate all subsetSlof.. . n} successively in
such a way that each subset differs from its predecessor by the addition or removal
of precisely one element. (Such a sequence is knowrGraycode)
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Chapter 2

Subsets, partitions and permutations

The basic objects of combinatorics are subsets, partitions and permutations. In
this chapter, we consider the problem of counting these. The counting functions
have two parameterd, the size of the underlying set; akda measure of the
object in question (the number of elements of a subset, parts of a partition, or
cycles of a permutation respectively).

2.1 Subsets

The number ok-element subsets of the st ..., n} is thebinomial coefficient

n O( " ) ifk<Oork>n;
—Jdnn-1)---(n—k+1) .
- <k<n.
(k) { (k= 1)1 ifo<k<n

For, if0< k<n, there are(n—1)--- (n—k) ways to choose in ordérdistinct
elements from{1,...,n}; eachk-element subset is obtained frddnsuch ordered
selections. The result fér< 0 ork > nis clear.

Proposition 2.1 The recurrence relation for the binomial coefficients is
n n n n—-1 n—1
90+ (-G oocrer

Proof Partition thek-element subsets into two classes: those contam{mdnich
have the form{n} UL, whereL is a(k— 1)-element subset df1,...,n— 1}, and

17
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so are([_1) in number); and those not containingwhich arek-element subsets
of {1,...,n—1}, and so ard", ') in number).

TheBinomial Theorenfior natural number exponentsasserts:
D /n
Proposition 2.2 (x+y)" = % (k) XKk,
k=

Proof The proof is straightforward. On the left we have the product
(X+Y)(X+Y)--- (X+Y) (n factors);

multiplying this out we get the sum of'2Zerms, each of which is obtained by
choosingy from a subset of the factors amdrom the remainder. There af(g)
subsets of sizk, and each contributes a tesdit Ky¥ to the sum, fok=0,...,n.

The Binomial Theorem can be looked at in various ways. From one point of
view, it gives the generating function for the binomial coefficie(rﬂl)sfor fixed n:

k; (E)yk: (L+y)"

Since the binomial coefficients have two indices, we could ask for a two-variable
generating function:

n n n n
XY= 5 x(1+y)
PRV
1
1-x(1+y)
If we expand this in powers of, we obtain

1 1 1

(1-x)—xy  1-x 1—(x/(1—X))y

XK
- 3 ()

k>0

so that we have the following:
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XK

n
Proposition 2.3 < )x” -,

Our next observation on the Binomial Theorem concd®ascal’s Triangle
the triangle whosetth row contains the numberg) for 0 < k < n. (Despite
the name, this triangle was not invented by Pascal but occurs in earlier Chinese
sources. Figure 2.1 shows the triangle as given in Chu Shi-CHseshisYuan &
Chien dated 1303.) The recurrence relation shows that each entry of the triangle
is the sum of the two above it.

I —
B oA & r o

Figure 2.1: Chu Shi-Chieh’s Triangle

At risk of making the triangle asymmetric, we turn it into a maix= (bpy),
wherebn = (E) for n,k > 0. This infinite matrix is lower triangular, with ones on
the diagonal. Now when two lower triangular matrices are multiplied, each term
of the product is only a finite sum: the, k) entry ofBCis S y,bnmCmk, and this is
non-zero only fok < m< n. In particular, we can ask “What is the inverseB3’

The signed matrix of binomial coefficienis the matrixB* with (n,k) entry
(=D)"K(}). Thatis, it is the same &8 except that signs of alternate terms are
changed in a chessboard pattern. Now:
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Proposition 2.4 The inverse of the matrix B of binomial coefficients is the matrix
B* of signed binomial coefficients.

Proof We consider the vector space of polynomials (dRgr There is a natural
basis consisting of the polynomialsxix?, . ... Now, since

(1+x)" = ) (E)xk,

we see thaB represents the change of basis g §, ..., wherey = 1+x. Hence
the inverse oB represents the basis change in the other direction, given=by

y—1. Since
=17 = 50

the matrix of this basis changeBs.

The other aspect of the Binomial Theorem is its generalisation to arbitrary
real exponents (due to Isaac Newton). This depends on a revised definition of the
binomial coefficients.

Let a be an arbitrary real (or complex) number, dnd non-negative integer.

Define
a\ a(a-1)---(a—k+1)
() ="
Note that this agrees with the previous definition in the case whisna non-
negative integer, sincelkf> nthen one of the factors in the numerator is zero. We
do not define this version of the binomial coefficientk i§ not a natural number.
Now theBinomial Theorenasserts that, for any real numtsmwe have

(1+x)3= kgo (E) X 2.1)

Is this a theorem or a definition? If we regard it as an equation connecting real
functions (where the left-hand side is defined by

(1+x)* = exp(alog(1+x)), (2.2)

and the series on the right-hand side is convergenkfer 1), it is a theorem, and
was understood by Newton in this form. As an equation connecting formal power
series, we may follow the same approach, or we may instead choose to regard
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(2.1) as the definition and (2.2) as the theorem, according to taste. Whichever
approach we take, we need to know that the laws of exponents hold:

(1+x)2-(1+y)? = (14 (x+y+xy)4,
1+x2™ = (1+x)? (1+x)",
(1+x® = ((14+x)?3)°.

If (2.1) is our definition, these verifications will reduce to identities between bino-
mial coefficients; if (2.2) is the definition, they depend on properties of the power
series for exp and log, defined as in the last chapter.

Binomial coefficients can be estimated by using Stirling’s formula. (See Ex-
ercise 2.4, for example.)

The Central Limit Theorenfrom probability theory can also be used to get
estimates for binomial coeffients. Suppose that a fair coin is tassates. Then
the probability of obtaininds heads is equal t(J{:)/Z“. Now the number of heads
is a binomial random variabl€; so we have

P(X = k) — (E) ed 2.3)

According to the Central Limit Theorem, iifis large therX is approximated
by a normal random variabMé with the same expected valug?2 and variance
n/4. The probability density function &f is given by

fe(y) = %/Zezw—n/a%. (2.4)

If k=n/2+40O(y/n) andn — oo, then a precise statement of the Central Limit
Theorem shows that (2.4) gives an asymptotic formula for (2.3). In particular,
whenk = n/2, we obtain the result of Exercise 2.4.

2.2 Partitions

The Bell number Bn) is the number of partitions of the sél,...,n}. There
is a related “unlabelled” counting numbg(n), the partition numbey which is
the number of partitions of the numbe(that is, lists in non-increasing order of
positive integers with sum). Thus, given any set partition, the list of sizes of its
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parts is a number partition; and two set partitions are equivalent under relabelling
the elements of the underlying set (that is, under permutatiofis, of. , n}) if and
only if the corresponding number partitions are equal.

What would be the analogous “unlabelled” counting function for subsets? Two
subsets of 1,...,n} are equivalent under permutations if and only if they have
the same cardinality; so the unlabelled counting funcfidor subsets would be
simply f(n) =n+1.

Set partitions

The Stirling numbers of the second kindenoted byS(n, k), are defined by the
rule thatS(n, k) is the number of partitions df1,...,n} into k parts if 1< n <Kk,
and zero otherwise. Clearly we have

S k) = B(n),
kZlS(n) (n)

where the Bell numbdB(n) is the total number of partitions dfL,.. . n}.
Proposition 2.5 The recurrence relation for the Stirling numbers is

S(n,1) =S(n,n) =1, S(n,k) =S(n—1,k—1)+kSn—1,k) for 1<k < n.

Proof We split the partitions into two classes: those for whiof is a single part
(obtained by adjoining this part to a partition £f,...,n— 1} into k— 1 parts),
and the remainder (obtained by taking a partition{ f...,n— 1} into k parts,
selecting one part, and addindo it).

Proposition 2.6 (a) The Stirling numbers satisfy the recurrence

S(n,k) = ni <?:11>S(n—i,k—1).

(b) The Bell numbers saisfy the recurrence

B(n) = ii (T:ll) B(n—i).
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Proof Consider the part containingof an arbitrary partition wittk parts; sup-
pose that it has cardinalify Then there aréﬂj) choices for the remaininig— 1
elements in this part, arin— i,k — 1) partitions of the remaining— i elements
into k— 1 parts. This proves (a); the proof of (b) is almost identical.

The Stirling numbers also have the following property. e denote the
polynomialx(x—1)--- (x—k+1).
n
Proposition 2.7 X" = > S(n, k) (X)k-
K=1

Proof We prove this first whex is a positive integer. We take a s¢twith x
elements, and count the numbermstuples of elements of. The total number
is of coursex". We now count them another way. Given mstuple (x1,...,%n),
we define an equivalence relation ¢h,...,n} by i = j if and only if x; = X;.
If this relation hask different classes, then there dalistinct elements among
X1,...,%Xn, SAyVyi,...,Yk (listed in order). The choice of the partition and the
tuple (y1,...,Yk) uniquely determinesx,...,xn). So the number ofi-tuples is
given by the right-hand expression also.

Now this equation between two polynomials of degndmlds for any positive
integerx, so it must be a polynomial identity.

Stirling numbers are involved in the substitution of &¥p- 1 for x in formal
power series. The result depends on the following lemma:

Lemma 2.8

S(nK)X"  (exp(x) — 1)K

n; n KW

Proof The proof is by induction oik, the result being true whek= 1 since
S(n,1) = 1. Suppose that it holds whén=| — 1. Then (settingS(n,k) = O if
n < k) we have

(exp) -1 1.
[l |
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The coefficient ok"/n! here is
n"l1 sn-il-1) 1"t /n
TN e I_i;<i
= [(Sh+11)-Snl -1),

using the recurrence relation of Proposition 2.6(a). Finally, the recurrence relation
of Proposition 2.5 shows that this$n, 1), as required.

)S(n—i,l -1)

Proposition 2.9 Let (ap,as,...) and (bp,bs,...) be two sequences of numbers,
with exponential generating functiong>) and Bx) respectively. Then the fol-
lowing two conditions are equivalent:

(@ bp=apand b=y} ;SN k)ax forn>1;

(b) B(x) = A(exp(x) — 1).
Proof Suppose that (a) holds. Without loss of generality we may assume that
ap =bp=0. Then

bLx"
n!

B(x) = 21
B nZl% k;S(n, Ko
B S(n, k)x"
a kZlaank n!

ax(exp(x) — 1)

=2 k!

K>1
= A(exp(x) — 1),

by Lemma 2.8.
The converse is proved by reversing the argument.
Corollary 2.10 The exponential generating function for the Bell numbers is

Z)%I)Xn = exp(exp(x) — 1).

Proof Apply Proposition 2.9 to the sequence wdh= 1 for all n; or sum the
equation of Lemma 2.8 ovédx
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Number partitions

The partition numbep(n) is the number of partitions of amset, up to permuta-
tions of the set.
The key to evaluating(n) is its generating function:

—1
n_ K
n;)p(n)x = <k|:|1(1 X )) .

For (1— X"t =14xK4+x% ..., Thus a term ink" in the product, with coef-
ficient 1, arises from every expression= S ck, where thec, are non-negative
integers, all but finitely many equal to zero. This numbep(is), since we can
regardn = S ckk as an alternative expression for a partitiomof

We will use this in the next chapter to give a recurrence relatiompfoy.

2.3 Permutations

A permutation of{1,...,n} is a bijective function from this set to itself,

In the nineteenth century, a more logical terminology was used. Such a func-
tion was called a substitution, while a permutation was a sequUeRt®, . . ., an)
containing each element of the set precisely once. Since there is a natural or-
dering of{1,2,...,n}, there is a one-to-one correspondence between “permuta-
tions” and “substitutions”: the sequen(®, a,...,a,) corresponds to the func-
tiont:i—aq, fori=1...,n.

The correspondence between permutations and total orderingedetrhas
profound consequences for a number of enumeration problems. For now we re-
turn to the usage “permutation = bijective function”. We refer to the sequence
(a1,...,an) as thepassive fornof the permutationt in the last paragraph; the
function is theactive formof the permutation.

Following the conventions of algebra, we write a permutation on the right of
its argument, so thattis the image of under the permutatiorn (that is, theith
term of the passive form af).

The set of permutations dfL, ..., n}, with the operation of composition, is a
group, called thesymmetric group & Products, identity, and inverses of permu-
tations always refer to the operations in this group.
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Unlabelled permutations

As for partitions, we can consider unlabelled or labelled permutations, that is,
permutations of am-set or equivalence classes of permutations. We dispose of
unlabelled permutations first.

Two permutationsy andtp of {1,...,n} are equivalent if there is a bijection
oof {1,...,n} (thatis, a permutation!) such that, for alt {1,...,n}, we have

(io)lp=jo ifandonlyif im = j,

in other words,jot, = iTyo for all i, so thatm, = o~ 1mo. Thus, this equiva-
lence relation is the algebraic relation@injugacyin the symmetric group; the
unlabelled permutations are conjugacy classe3, of

Now recall thecycle decompositioaf permutations:

Any permutation of a finite set can be written as the disjoint union
of cycles, uniquely up to the order of the factors and the choices of
starting points of the cycles.

Moreover,

Two permutations are equivalent if and only if the lists of cycle lengths
of the two permutations (written in non-increasing order) are equal.

Thus equivalence classes of permutations correspond to partitions of the inte-
gern. This means that the enumeration theory for “unlabelled permutations” is
the same as that for “unlabelled partitions”, discussed in the last section.

Labelled permutations

Theparity of a permutatiortof {1,...,n} is defined as the parity of— k, where
k is the number of cycles af(in its decomposition as a product of distinct cycles).
Thesignof 1tis (—1)P, wherep is the parity ofrt

Parity and sign have various important algebraic properties. For example,

¢ the parity ofrtis equal to the parity of the number of factors in any expres-
sion formtas a product of disjoint cycles;

e parity is a homomorphism from the symmetric grdayto the grouZ/(2)
of integers mod 2, and hence sign is a homomorphism to the multiplicative

group{=£1}.
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e Forn> 1, these homomorphisms are onto; their kernel (the set of permuta-
tions of even parity, or of sigr-1) is a normal subgroup of index 2 &,
called thealternating group A.

The Stirling numbers of the first kindre defined by the rule thatn, k) is
(—1)"k times the number of permutations £f, ..., n} havingk cycles. Some-
times the number of such permutations is referred to asrikgned Stirling num-
ber.

Clearly we have

Slightly less obviously,
n
z s(n,k) =0
K=1

for n > 1. The algebraic proof of this depends on the fact that sign is a homo-
morphism to{£1}, so that the two values are taken equally often. We will see a
combinatorial proof later.

Proposition 2.11 The recurrence relation for the Stirling numbers is

s(n1) = (-)"Yn-1)!, snn =1,
s(n,k) =s(h—1,k—1)—(n—1)s(hn—1,k) forL<k<n.

Proof We split the permutations into two classes: those for wiighs a single
part (obtained by adjoining this cycle to a permutatiogbf .., n— 1} with k—1
cycles), and the remainder (obtained by taking a permutatiofiof. n— 1}
with k cycles and interpolating at some position in one of the cycles). The
second construction, but not the first, changes the sign of the permutations.

To see that there af@ — 1)! permutations with a single cycle, note that if we
choose to start the cycle with 1 then the remainingl elements can be written
into the cycle in any order.

Note that, if we instead defirgn, 0) ands(n,n+ 1) to be equal to 0 fon > 1,
then the recurrence holds also foe= 1 andk = n. We use this below.
The generating function is given by the following result:
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n
Proposition 2.12 % s(n, k)X = (X)n.
=1

Proof The resultis clear fon= 1, Suppose that it holds for=m-— 1.

g s(m k)X = g s(m—1,k—1)xk— g(m— 1)s(m—1,k)x
k=1 k=1 k=1

= (X—m+1)(X)m-1

= (¥)m

Note that substituting = 1 into this equation shows thgt,s(n,k) = 0 for
n>2.

Corollary 2.13 The triangular matrices Sand $ whose entries are the Stirling
numbers of the first and second kinds are inverses of each other.

Proof Propositions 2.7 and 2.12 show tt&tand$S, are the transition matrices
between the baség" : n > 1) and((x), n > 1) of the space of real polynomials
with constant term zero.

Proposition 2.14 Let (ap,as,...) and (bp, by, ...) be two sequences of numbers,
with exponential generating functiong>@) and B(x) respectively. Then the fol-
lowing two conditions are equivalent:

(@) bp=apand by = y}_;s(n,k)a forn> 1;
(b) B(x) = A(log(1+Xx)).

Proof This is the “inverse” of Proposition 2.9.

We have counted permutations by number of cycles. A more refined count is
by the list of cycle lengths.
Let ck(11) be the number dk-cycles in the cycle decomposition Tf

Proposition 2.15 The size of the conjugacy classroh S, is

n!
Mick&Me (!
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Proof Write out the pattern for the cycle structure of a permutation \gjithm)
cycles of lengthk for all k, leaving blank the entries in the cycles. There are
n! ways of entering the numbers.1.,n in the pattern. However, each cycle of
lengthk can be written irk different ways, since the cycle can start at any point;
and the cycles of lengthican be written in any of the(1)! possible orders. So the
number of ways of entering the numbers.1, n giving rise to each permutation
in the conjugacy class g kM ¢y (10! .

The cycle indexof the symmetric grouf, is the generating function for the
numbersc (), fork=1,...,n. By convention it is normalised by dividing by.
Thus,

n

280 =3 T
ES, k=

Because of the normalisation, this can be thought of as the probability gener-
ating function for the cycle structure of a random permutation: that is, the coef-
ficient of the monomiaf] gfk (wherey ko, = n) is the probability that a random
permutatiornrthascy(m) = a, fork=1,...,n—this is

1

One result which we will meet later is the following. We adopt the convention
thatZ(S) = 1.

iy S
Proposition 2.16 y Z(S,) = exp( —) .
n;) kgl k

Proof The left-hand side is equal to

_ S
ZO a% n k|:|1 kakak' al,;z,... kI;ll kakay!
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as required. (The sum on the right-hand side of the first line is over all infinite
sequences of natural numbdig, ay,...) with only finitely many entries non-
zero.)

We will see much more about cycle index in the chapter on orbit counting.

2.4 More on formal power series

The enumeration of subsets and partitions makes an unexpected appearance in the
rules for differentiating products and composites of formal power series. In fact,
the formulae below work as well for-times differentiable functions in the usual
sense of calculus, since the depend only on the standard rules for differentiating
sums and products and the Chain Rule.

For brevity, we usée (" (x) for the result of differentiating (x) n times, and
write f/(x) for f(1)(x).

Products The standard product rule

£ (1(9900) = 109909 + £ (95 ()

extends td_eibniz’s rule
Proposition 2.17

d" = (M £09 (50K
@(NX)Q(X)):kZO ) (x)g" 7 (X).

Proof The proof is by induction. By the product rule, termsfit) (x)g(" % (x)
arise by differentiating terms i< (x)g" % (x) or £ (x)g"k-V(x), so the
coefficient off K (x)g("kK (x) is

n-1 n—1\ /n
)+ ()= ()
Taking f (x) = €* andg(x) = €%, we obtain

(a+b)"= i (E) ap" K,

k=0
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the Binomial Theorem for positive integer exponents. Similarly, takifpg = x2
andg(x) = x°, we obtain

D /n
@+b)m=> (k) a(k)bn—k)-
=

Substitution The Chain Rule tells us that

d / /
ax [ 909) = T(9(x))g (x).

As we have seen, the substitutiongoifh f is valid provided thag(0) = 0.

The generalisation of this to repeated derivativeBaa di Bruno’s rule If
ai,...,ax are positive integers with sum let P(n;ay,...,ax) be the number of
partitions of{1,...,n} into parts of sizey, ..., a.

Proposition 2.18
dn

g @)= > P(ma,... ) F4(g(x))g® (x) - g (x).

X at+--+ag=n
Proof Again by induction. Suppose that we have a bijection between partitions
of {1,...,n} and terms in thath derivative off (g(x)). When we differentiate the
term M (g(x))g¥(x)---g'®(x), corresponding to a partition dfl,...,n} into
parts of sizesy, ..., a, we obtaink+ 1 terms:

o D (g(x))g2(x) - - g (x)g (x), corresponding to the partition 1, ..., n+

1} in whichn+ 1 is a singleton part;

o FM(g(x)gPt(x)---g@+D(x)---g@(x), in whichn+ 1 is adjoined to the
ith part of the partition.

So each partition of1,...,n+ 1} corresponds to a unique term in the sum, and
we are done.

For example, we have
n

% f(exp(x) — 1) = kis(n, k) f %) (exp(x) — 1) exp(kx),

since the sum oP(n;ay,...,ax) over all(ay, ..., a) with fixed n andk is just the
numberS(n, k) of partitions withk parts. Puttingc = O we obtain the formula

n
bn = z S(na k)ak
k=1

relating the coefficients off (x) and f (exp(x) — 1).
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Exercises

2.1. Show that the number of ways of selectingbjects from a set af distin-
guished objects, if we allow the same object to be chosen more than once and pay

) . ) i n+k—1
no attention to the order in which the choices are madé, |§L K ) )

2.2. Prove that, ihis even, then

n
2 (0 <2
n+1—-\n/2) —

Use Stirling’s formula to prove that

(o2)~ 72
n/2 ™m/2
How accurate is this estimate for smaf

2.3. Use the method of the preceding exercise, together with the Central Limit
Theorem, to deduce the constant in Stirling’s formula.

2.4. Prove directly that, if & k < n, then

7 )3 ) -

2.5. Formulate and prove an analogue of Proposition 2.9 for binomial coeffi-
cients.

2.6. LetB(n) be the number of partitions dfL, ..., n}. Prove that

vl <B(n) <nt.

2.7. Prove that log! is greater thamlogn —n+ 1 and differs from it by at
most3 logn. Deduce that

" nn+1/2
|
o1 <n < o
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2.8. Letc(n) be the number of connected permutationg@n..,n}. (A permu-
tationTtis connectedf there does not exigk with 1 < k < n— 1 such thattmaps
{1,...,k} to itself.) Prove that

and deduce that

2.9. Prove that

) (")

for 0 < k < n. Use this and Proposition 2.3 to prove the Binomial Theorem for
negative integer exponents.

2.10. Prove that
s(n,k)x"  (log(1+4x))K

n; N KW

for k > 1. What happens when this equation is summed k¥ver

2.11. What is the relation between the numbE(g, k) defined in Exercise 1.4
and Stirling numbers?

2.12. Atotal preorderon a setX is a binary relatiorp on x which is symmetric
and transitive and satisfies the condition that, foxalle X, eitherxpyoryp x
holds.

(a) Letp be a total preorder oM. Define a relatiomw on X by the rule thak o y if
and only if bothx p y andy p x hold. Prove that is an equivalence relation
whose equivalence classes are totally ordereg.bghow thatp is deter-
mined byo and the ordering of its equivalence classes. Show further that
any equivalence relation and any total ordering of its equivalence classes
aise in this way from a total preorder.

(b) Show that the number of total preorders ofraset is

i S(n,k)k! .
K=1
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(c) Show that the exponential generating function for the sequence in (b) is

1/(2—exp(x)).
(d) What can you deduce about the asymptotic behaviour of the sequence?

2.13. For 1< k < n, theLah number Kn, k) is defined by the formula

L(n,k) = §k|s(n, m)|S(m, k).

(That is, the Lah numbers form a lower triangular matrix which is the product of
the matrices of unsigned Stirling numbers of the first and second kinds. They are
sometimes called Stirling numbers of the third kind.) Prove that

L(n,K) = E—:(Ej)

2.14. Prove that

£ \k nj)’
n 2 0 if nis odd;
1\n/2 n . .
{( 1) <n/2) if nis even.

~3

2.15. Prove that the generating function for the central binomial coefficients is

5 (2n> X = (1—4x) 12,
n>0 n

() Cd) -

[Note: Finding a counting proof of this identity is quite challenging!]

and deduce that

2.16. Find a formula for the numb@(n;ay,...,ax) appearing in Fadi Bruno’s
formula.
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A prize question
In the course, a prize was offered for the first solution to this question.

The following problem arises in the theory of clinical trials. A new
drug is to be tested out. OhZubjects in the trialn will receive the

new drug and will get a placebo. To avoid bias, it is important that
the doctor administering the treatments does not know, and cannot
reliably guess, which treatment each patient receives. The patients
enter the trial one at a time, and are numbered from hto 2

If the treatments were allocated randomly with probabilif2 1the
doctor’s guesses could be no better than random (so that the expected
values for the numbers of correct and incorrect guesses arenpoth

but then the numbers of patients receiving drug and placebo would
be unlikely to be equal. Given that they must balance, the doctor can
certainly guess at least the last patient’s treatment correctly.

If we allocated the drug and the placebo randomly to patieints12
and 2 fori =1,...,n, then the doctor can correctly guess the treat-
ment for each even-numbered patient.

Suppose that instead we choose a random sepafients to allocate

the drug to, and the remainimgget the placebo; each of tHé) sets

is equally likely. Suppose also that the doctor guesses according to the
following rule. If the number of patients so far having the drug and
the placebo are equal, he guesses at random about the next treatment.
If the drug has occurred more often than the placebo, he guesses that
the next treatment is the placebo, aride versaif the placebo has
occurred more often than the drug.

Find a formula, and an asymptotic estimate, for the expected value of
the difference between the number of correct guesses and the number
of incorrect guesses that the doctor makes.

Solution We use the result of Problem 2.15 above, the identity

S0

Following the hint, we first calculate the expected number of times during the
trial when the numbers of patients receiving drug and placebo are equal. This
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is obtained by summing, over aitelement subset of {1,...,2n}, the number
of values ofk for which |AN{1,...,2k}| = k, and dividing by the numbef?")
of subsets. Now the sum can be calculated by counting, for each vakjehaf
number ofn-subsetsA for which |[AN{1,...,2k}| = k, and summing the result
overk.

For a givenk, the number of subsets (&) (2"¥)), since we must choode
of the numbers 1..,2k, andn— k of the numbersR+ 1, ...,2n. Hence, by the
stated result, the sum i€ and the average i€%/ (*").

Now consider the doctor’s guesses in any particular trial. At any stage where
equally many patients have received drug and placebo, he guesses at random,
and is equally likely to be right as wrong. Such points contribute zero to the
expected number of correct minus incorrect guesses. In each interval between
two consecutive such stages, s&y &nd 2, the doctor will guess right one more
time than he guesses wrong. (For example, if tkié patient gets the drug, then
between stagesk2- 1 and 2 the number of patients getting the drud isk—1
and the number getting the placebol is k, but the doctor will always guess
the placebo.) So the expected number of correct minus incorrect guesses is the
number of such intervals, which is one less than the number of times that the
numbers are equal.

So the expected number i (") — 1, which is asymptotically/mm, by the
result of Problem 2.2.



Chapter 3

Recurrence relations

A recurrence relation expresses it term of a sequence as a function of the
preceding terms. The most general form of a recurrence relation takes the form

Xn = Fn(Xo, . ..,Xn—1) forn> 0.

Clearly such a recurrence has a unique solution. (Note that this allows the possi-
bility of prescribing some initial values, by choosing the first few functions to be
constant.)

Example: Ordered number partitions In how manny ways is it possible to
write the positive integen as a sum of positive integers, where the order of the
summands is significant?

Letx, be this number. One possible expression has a single sunmmamnany
other expression, ifi—i is the first summand, then it is followed by an expression
for i as an ordered sum, of which there ar@ossibilities. Thus

Xn=1+Xg+X2+ " +Xn_1,

forn> 1. (Whenn =1, this reduces tg; = 1.)
Since
Xn-1=1+X1+X2+ -+ Xn-2,

the recurrence reduces to the much simpler form
Xn = 2Xn_1 forn> 1,

with initial conditionx; = 1. This obviously has the solutiof = 2" for n > 1.

37
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3.1 Linear recurrences with constant coefficients

Bounded recurrences
One type of linear recurrence which can be solved completely is of the form
Xn = A1Xn—1 + 32Xn—2 + - - + AXn—k (3.1)

for n > k, where thek valuesxg, X1, ..., Xx_1 are prescribed.

If we consider the recurrence (3.1) without the initial values, we see that sums
and scalar multiples of solutions are solutions. So, taking sequences over a field
such as the rational numbers, we see that the set of solutions is a vector space over
the field. Its dimension ik, since thek initial values can be prescribed abitrarily.

Thus, if we can write dowk linearly independent solutions, the general solu-
tion is a linear combination of them.

Thecharacteristic equationf the recurrence (3.1) is the equation
XK—ax<1—...—a =0

This polynomial hask roots, some of which may be repeated. Suppose that its
distinct roots ar@ 1, ...,a" with multiplicities my, ..., my, wheremy +--- +my =
k. Then a short calculation shows that thiinctions

n mi—1.n n -1.n
Xp=07,...,n™M al . al L n™

are solutions of (3.1); they are clearly linearly independent. So the general solu-
tion is a linear combination of them.

Example: Fibonacci numbers Consider the Fibonacci recurrence
Fh=F-1+F2forn>2.
The characteristic equation is
X —x—1=0
with rootsa, B = (14 +/5)/2. So the general solution is
Fn= Aa" +Bp",

andA andB can be determined from the initial conditions.
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For the usual Fibonacci numbers, we h&ge= F; = 1, giving the two equa-
tions

A+B = 1,
Aod+Bp = 1.

Solving these equations gives the solution we found earlier.

Example: Sequences with forbidden subwords Let a be a binary sequence of
lengthk. How many binary sequences of lengttio not contaira as a consecutive
subword?

Suppose, for example, that= 11, so that we are counting binary strings
with no two consecutive ones. L&{n) denote the number of such sequences of
lengthn, and letg(n) the number of sequences commencing with 11 but having
no other occurrence of 11. Then

2f(n)=f(n+1)+g(n+1),

since if we take a string with no occurrence of 11 and precede it with a 1, then the
only possible position of 11 is at the beginning. Also, if we take a string with no
occurrence of 11 and precede it with 11, then the resulting sequence contains 11,
but possibly two occurrences (if the original string began with a 1); so we have

f(n)=9(n+1)+g(n+2).

Then f(n) = (2f(n) — f(n+ 1))+ (2f(n+1) — f(n+2)), so we have the Fi-
bonacci recurrence
f(n+2)=f(n)+ f(n+1).
Sincef(0) =1=F; and f(1) = 2 =F,, a simple induction proves thdi{n) =
Fhiq foralln> 0.
Guibas and Odlyzko extended this approach to arbitrary forbidden substrings.
They defined theorrelation polynomiabf a binary stringa of lengthk to be

k—1

Ca = a. j7
(X) J;C(J)X

wherecy(0) =1 and, for 1< j < k-1,

N 1 if qag---—j = aj+1aj42- -,
Ca(l)_{o otherwise.

Thus, fora= 11, we haveC,(x) = 1+ x.
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Theorem 3.1 Let f3(n) be the number of binary strings of length n excluding the
substring a of length k. Then the generating functigfXF= Y >0 fa(n)x" is
given by
Ca(¥)
F =
a(¥ XK+ (1—2X)Ca(x)’
where G(X) is the correlation polynomial of a.

Proof We definega(n) to be the number of binary sequences of lengthhich
commence witla but have no other occurrenceaés a consecutive subsequence,
andGa(X) = ¥ n>00a(n)X" the generating function of this sequence of numbers.

Let b be a sequence counted fiy(n). Then forx € {0,1}, the sequenceb
containsa at most once at the beginning. So

2fa(n) = fa(n+1) +ga(n+1).
Multiplying by x" and summing oven > 0 gives
2Fa(X) = X" H(Fa(X) — 1+ Ga(x)). (3:2)

Now letc be the concatenatiab. Thenc starts witha, and may contain other
occurrences o, but only at positions overlapping the initial that is, where
ag_j41---akby---bj =ag---ak. This can only occur wheos(k— j) = 1, and the
sequencey_j1---akb then has length+ j and has a unique occurrenceaoét

the beginning. So
fa(n) = 3 da(n+ ).

where the sum is over aJlwith 1 < j < k for which ca(k— j) = 1. This can be

rewritten )

fa(n) = Z Ca(K—j)da(n+j),
=1
or in terms of generating functions,
Fa(X) = X "Ca(X)Ga(x). (3.3)
Combining equations (3.2) and (3.3) gives the result.

In the case whera= 11, we obtain

_ 1+x _ 1+4x
X4 (1-2(1+%)  1—x—x2’

Fj_]_(X)

so thatf11(n) = Fy+ Fh—1 = Fh41, as previously noted.
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Unbounded recurrences

We will give here just one example. Recall from the last chapter that the generat-
ing function for the numbep(n) of partitions of the integen is given by

-1
n— 1—xK :
n; p(n)x <k|;|l( X >>

Thus, to get a recurrence relation fofn), we have to understand the coeffi-

cients of its inverse:
a(n)x" = [ (1—x5).
n; k|;|1

Now a term on the right arises from each expressiomfas a sum of distinct
positive integers; its value is-1)K, wherek is the number of terms in the sum.
Thus, a(n) is equal to the number of expressions foas the sum of an even
number of distinct parts, minus the number of expressionsa &g the sum of an
odd number of distinct parts.

This number is evaluated lyuler's Pentagonal Numbers Theorem

Proposition 3.2

a(n) = { (-1 ifn= k(3k—1)/2 for some ke Z,
0 otherwise.

Putting all this together, the recurrence relationggn) is
p(n) = ; (-1 *p(n—k(3k—1)/2)
KZ0

= p(n=1)+p(n—2)—p(n—5)—p(n—7)+p(n—12)+---

where the summation is over all valueslofor which n—k(3k —1)/2 is non-
negative.

The number of terms in the recurrence grows witlout only asO(,/n). So
evaluatingp(n) for n < N requires onlyO(n%2) additions and subtractions.

3.2 Other recurrence relations

There is no recipe for solving more general recurrence relations. We do a few
examples for illustration.
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Example: derangements Letd(n) be the number of derangementqaf...,n}
(permutations which have no fixed points). We obtain a recurrence relation as
follows. Each derangement mapto some with 1 <i < n—1, and by symmetry
eachi occurs equally often. So we need only count the derangements mapping
ton— 1, and multiply byn— 1.

We divide these derangements into two classes. The first typamdpback
to n. Such a permutation must be a derangeme#iiof..,n— 2} composed with
the transpositiorin — 1,n); so there arel(n— 2) such. The second type map
to n for somei # n— 1. Replacing the sequence- n+— n—1 by the sequence
I — n—1, we obtain a derangementof 1; every such derangement arises. So
there ared(n— 1) deraggements of this type.

Thus,

d(n)=(n—1)(d(n—1)+d(n—2)).

There is a simpler recurrence satisfieddiy), which can be deduced from
this one, namely
d(n) =nd(n—1)+ (—1)".

To prove this by induction, suppose that it is true for 1. Then(n—1)d(n—
2)=d(n—1) - (-=1)" % sod(n) = (n—1)d(n—1)+d(n—1)+ (—1)", and the
inductive step is proved. (Starting the induction is an exercise.)

Now this is a special case of a general recursion which can be solved, namely

X0 =C, Xn = Pn¥n—1+0dnforn> 1.

We can include the initial condition in the recursion by settipg= c and adoopt-
ing the convention that 1 = 0.
If g, =0 forn> 1, then the solution is simpb, = P, for all n, where

n
P, = cig pi.

So we comparey to py. Puttingy, = X,/Pn, the recurrence becomes

Yo=1, ynzyn_1+%forn21,
Pn

with solution
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(Remember thagp = Py = c.) Finally,

n
_ Y
Xn = Pni: P
For derangements, we hapg = n, ¢ =1 (so that?, = n!), andg, = (—1)".

Thus .
n (_1)I

d(n)=n! I;I—I

It follows thatd(n) is the nearest integer td /e, since

n'/e—d(n) = nt z 1(_i'1)i’
i>n+ :

and the modulus of the alternating sum of decreasing terms on the right is smaller
than that of the first term, which ig/(n+1)! =1/(n+1).

Example: Catalan numbers It is sometimes possible to use a recurrence rela-
tion to derive an algebraic or differential equation for a generating function for the
sequence. If we are lucky, this equation can be solved, and the resulting function
used to find the terms in the sequence.

Thenth Catalan number gis the number of ways of bracketing a product of
n terms, where we are not allowed to assume that the operation is associatuve or
commutative. For example, for= 4, there are five bracketings

(a(b(cd))), (a((bc)d)), ((ab)(cd)), ((a(bc))d), (((ab)e)d),

soC4 = 5.
Any bracketed product ofi terms is of the form(AB), whereA andB are
bracketed products efandn — i terms respectively. So

n-1
Ch= ZlCiCn,i forn> 2.
i=

PuttingF (x) = 3 r>1CnX", the recurrence relation shows tiatand F2 agree in
all coefficients except = 1. SinceC; = 1 we have- = F24+x orF2—F+x=0.
Solving this equation gives

F(x) = 3(14+v1-4x).
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SinceCy = 0 by definition, we must take the negative sign here.

This expression gives us a rough estimatedgrthe nearest singularity to the
origin is a branchpoint at/4, soC, grows “like” 4". However, we can get the
solution explicitly.

From the binomial theorem, we have

F(x)=3 (1—%0 (1{]2) (—4)") :

Hence
1(1/2
= —= —4\"
Cn 2<n)( )
1113 2n-3 2™
2222 2 nl

Sometimes we cannot get an explicit solution, but can obtain some information

about the growth rate of the sequence.

Example: Wedderburn—Etherington numbers Another interpretation of the
Catalan numbeC, is the number of rooted binary trees withleaves, where
“left” and “right” are distinguished. If we do not distinguish left and right, we
obtain theWedderburn—Etherington numberg W

Such a tree is determined by the choice of trees attdn — i leaves, but the
order of the choice is unimportant. Thusj i n/2, the number of trees is only
WH(W + 1)/2, rather thatW. Fori # n/2, we simply halve the number. This
gives the recurrence

n-1
l - .
5y WWL_ if nis odd,
22,
1

Wn - n—
3 (_ZWWni +Wn/2> if nis even.
i=
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Thus,F (x) = S WhX" satisfies
F(X) =x+3(F(x)2+F(x?)).

This cannot be solved explicitly. We will obtain a rough estimate for the rate of
growth. Later, we find more precise asymptotics.

We seek the nearest singularity to the origin. Since all coefficients are real and
positive, this will be on the positive real axis. (If a power series with positive real
coefficiets converges at=r, then it converges absolutely at anwith |zl =r.)

Let s be the required point. Thesi< 1, sos’ < s; SOF (Z) is analytic az=s.
Now write the equation as

F(2)?—2F(2)+ (F(Z) +22) =0,
with “solution”
F(2)=1-4/1-2z2—F(Z)
(taking the negative sign as before). Thsis the real positive solution of
F(s?)=1—2s.

Solving this equation numerically (using the fact tRdt?) is the sum of a con-
vergent Taylor series and can be estimated from knowledge of a finite number of
terms), we find thas~ 0.403.. ., so that\, grows “like” (2.483...)".

We will find more precise asymptotics fév, later in the course.

Example: Bellnumbers We already calculated the exponential generating func-
tion for the Bell numbers. Here is how to do it using the recurrence relation

B(n) = i (E:D B(n—k).

Multiply by x"/n! and sum oven: the e.g.fF(x) is given by

W= %0 (k)30

Differentiating with respect t@ we obtain
d Xn 1 n
e - (- 7)Emn-
dx >1 Zl
B(m)x™

- I
%I S m
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Here we use new variablés= k— 1 andm = n—k; the constraints of the original
sum mean thdtandmindependently take all natural number values. Hence

d
i F(x) = exp(X)F(X).

This first-order differential equation can be solved in the usual way with the initial
conditionF (0) = 1 to give

F(x) = exp(exp(x) — 1),

in agreement with our earlier result.

Exercises

3.1. Some questions on Fibonacci numbers.

(a) Show that the number of expressions fiaas an ordered sum of ones and
twos isk,.

(b) Verify the following formula for the sloping diagonals of Pascal’s triangle:

57

(c) Letn be a positive integer. Write down all expressionsricas an ordered
sum of positive integers. For each such expression, multiply the summands
together; then add the resulting products. Prove that the answgr is

(d) In (c), if instead of multiplying the summands, we multipl{ 2 for each
summandl > 2, then the answer i5_».

60 (0 )

11 Forr P2/

(f) Use (e) to show thdg, can be computed wit®(logn) arithmetic operations
on integers.

(e) Prove that, fon > 0,
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3.2. LetA be a finite set of positive integers. Suppose that the currency of a
certain country ha# as the set of denominations. Prove that the nunfljay
of ways of paying a bill oh units, where coins are paid in order, has generating
function /(1 — S aeaX®).

Suppose thaf = {1,2,5,10}. Prove thatf(n) ~ ca" for some constants
anda, and estimate:.

What is the generating function for the number in the case when the order of
the coins is not significant?

3.3. Leta be a binary string of lengtk with correlation polynomiaCy(x). A
random binary sequence is obtained by tossing a fair coin, recording 1 for heads
and O for tails. LetE; be the expected number of coin tosses until the first oc-
currence ofa as a consecutive substring. Prove tBais the sum, oven, of the
probability thata doesn’t occur in the firah terms of the sequence. Deduce that
Ea=2¢Cy(1/2).

3.4. This exercise is due to Wilf, and illustrates his “snake oil” method.
(n + k) Xn+k _ X2k

" /n+ k> k
an = < 2"
2\ 2
for n > 0. Prove that the ordinary generating function faf) is
1-2%
anX" = :
n; (1—x)(1—4x)

and deduce that, = (2214 1)/3 forn > 0.

(a) Prove that

(b) Let

(c) Write down a linear recurrence relation with constant coefficients satisfied by
the numbers,,.

3.5. Lets, be the number of partitions of amset into parts of size 1 or 2 (equiva-
lently, the number of permutations of arset whose square is the identity). Show
that

Si=%-1+(N—1)s2forn>2,
and hence find the exponential generating functior($erin closed form.
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3.6. Leta, be the number of strings that can be formed fromistinct letters
(using each letter at most once, and including the empty string). Prove that

a=1, apn=nap1+1forn>1,

and deduce tha, = [en!|. What is the exponential generating function for this
sequence?

3.7. Prove that

XL ym 2] rn_k ! .
= kzo( ) )(—xy) (x-4y)™ %,

By taking x andy to be the roots of the equatiad — z— 1 = 0, deduce the
equality of two well-known expressions for the Fibonacci numbers.
(I am grateful to Marcio Soares for this exercise.)
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g-analogues

Much of the enumerative combinatorics of sets and functions can be generalised
in a manner which, at first sight, seems a bit unmotivated. In this chapter, we
develop a small amount of this large body of theory.

4.1 Motivation

We can look ati-analogues in several ways:

e Theg-analogues are, typically, formulae which tend to the classical ones as
g — 1. Most basic is the fact that

for any real numbea (this is immediate from I'®pital’s rule).

e There is a formal similarity between statements about subsets of a set and
subspaces of a vector space, with cardinality replaced by dimension. For
example, the inclusion-exclusion rule

UUuV|+|UnV|=U|+ V|
for sets becomes
dim(U +V)+dimUNV) =dimU) +dim(V)

for vector spaces. Now, if the underlying field ha®lements, then the
number of 1-dimensional subspaces of rmdimensional vector space is
(9"—1)/(q—1), which is exactly the}-analogue of.

49
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e The analogy can be interpreted at a much higher level, in the language of
braided categoriesl will not pursue this here. You can read more in various
papers of Shahn Majid, for example Braided Group$ure Appl. Algebra
86 (1993), 187-221; Free braided differential calculus, braided binomial
theorem and the braided exponential mapylath. Phys34 (1993), 4843—
4856.

In connection with the second interpretation, note the theorem of Galois:

Theorem 4.1 The cardinality of any finite field is a prime power. Moreover, for
any prime power q, there is a unique field with g elements, up to isomorphism.

To commemorate Galois, finite fields are call@dlois fields and the field
with g elements is denoted by Gdj.

Definition The Gaussian coefficienor g-binomial coefficient M , Wheren

q
andk are natural numbers ampa real number different from 1, is defined by

H _ @ -D@ -1 (g -1)
q (g

k “~ D@ *-1)-(@-1)

It can be shown that this expression is a polynomiad)inf we regardq as an
indeterminate. If instead we regagdas a complex number, it has a well-defined
value as long ag is not adth root of unity for somel dividing k. (In the excluded
cases, the denominator is zero, but the limit still exists.)

» . [n n
Proposition 4.2 (a) (Iqanl M . = (k)

(b) If g is a prime power, then the number of k-dimensional subspaces of an

n-dimensional vector space ov@i(q) is equal to m .
q

Proof The first assertion is almost immediate fromdim (q"—1)/(q—1) =n.
For the second, note that the number of choicek bhearly independent
vectors in GFq)" is

@ -1("-a)--- (@ — g,
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since thdth vector must be chosen outside the span of its predecessors. Any such
choice is the basis of a unigleedimensional subspace. Putting= k, we see that
the number of bases ofkladimensional space is

(- 1)(d“~q)-- (o — D).

Dividing and cancelling powers a@f gives the result.

4.2 Theg-binomial theorem

The g-binomial coefficients satisfy an analogue of the recurrence relation for bi-
nomial coefficients.

Proposition 4.3 no_ " =1 N n-1 +q n-1 forO<k<n.
0y Lnlg klq Lk—=1]4 k 1q

Proof This comes straight from the definition. Suppose thatlo< n. Then
W, - Gl
klq k=1, gk—1 k—1],
(9 k=-1\ [n-1
- A -1 ) [k—=1],
| n
- <,
k—1],

The array of Gaussian coefficients has the same symmetry as that of binomial
coefficients. From this we can deduce another recurrence relation.

Proposition 4.4 (a) ForO0 <k <n,

[ﬂq: {nik}q'
= (o] )

(b) ForO< k< n,
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Proof (a) is immediate from the definition. For (b),
HARpN
klq In—Klgq
[ n—-1 } nk{n—l}
In—k—-1], n—kj,
n— 1] Nk {n — 1]
L kg k—1],

We come now to thel-analogue of the binomial theorem, which states the
following.

Theorem 4.5 For a positive integer n, a real number=4 1, and an indetermi-

nate z, we have
1+qg1 k= 1/221‘[ }
i = 3 d

Proof The proof is by induction om; starting the induction at = 1 is trivial.
Suppose that the result is true for 1. For the inductive step, we must compute

(:iqk(k‘“/ 2 {n; 1] q) (L+9" 7).

The coefficient of in this expression is

kk-1)/2|N—1
7,

w2 {n—l} n_k{n—l})
= ( +q

( k q k—lq
k(k—1)/2 |N

by Proposition 4.4(b).

(k-1)(k-2)/24n-1|N—1
+a i,

q
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4.3 Elementary symmetric functions

In this section we touch briefly on the theory of elementary symmetric functions.
Letxs,...,X, benindeterminates. For & k < n, thekth elementary symmet-

ric function &(xy,...,Xn) is the sum of all monomials which can be formed by

multiplying togethek distinctindeterminates. Thusy has( ) terms, and

For example, ih = 3, the elementary symmetric functions are
€1 =X1+Xo+X3, € =X1Xo0+XoX3+X3X1, €3 = X1X2X3.

We adopt the convention thej = 1.
Newton observed that the coefficients of a polynomial of degreee the
elementary symmetric functions of its roots, with appropriate signs:

n n
Proposition 4.6 r!(z—xi) =5 (—D*ex(xa, %) 2
= o

Consider the generating function for tae

n
E@) =Y adx,... xn)Z
k=0
A slight rewriting of Newton’s Theorem shows that

n

E(z) = D(l—i—xaz).

Hence the binomial theorem and gisanalogue give the following specialisations:

Proposition 4.7 (a) Ifx; = ... =xp =1, then

E(z=(1+2" kn (E)

()

SO
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(b) Ifx; =qLfori=1,...,n, then

E(z) = i|_£!(1+ qd1z) = éoqk("‘”/ 2 m ;

SO

a(L,q,...,q" %) =gk1/2 -
» Yy 5 k q

4.4 Partitions and permutations

The number of permutations of amset isn!. The linear analogue of this is the
number of linear isomorphisms from ardimensional vector space to itself; this
Is equal to the number of choices of basis for th@imensional space, which is

@ =1 —aq)-- (" —g" ).

These linear maps form a group, theneral linear grougsL(n, q).
Using theg-binomial theorem, we can transform this multiplicative formula
into an additive formula:

Proposition 4.8

n

- n
|GL(n,q)| = (_1)nqn(n 1)/2 (_1)qu(k+1)/2l } .
i= Kk q

Proof We have

n

|GL(n,q)| = (—1)"g""1/2 q(l—q‘),

and the right-hand side is obtained by substituirg—q in the g-binomial theo-
rem.

The total number ofi x n matrices isq”z, so the probability that a random

matrix is invertible is .

Pn(Q) = iu(l—tq‘)-

Asn — o, we have

Pa(@) — p(a) = [(2~ ).
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According to Euler's Pentagonal Numbers Theorem, we have

p(q) _ Z (_1)kq—k(3k—1)/2 —1_ q—l _ q—2 + q—5 + q—7 B q—12 .
keZ

So, for examplep(2) = 0.2887... is the limiting probability that a large random
matrix over GK2) is invertible.

What is theg-analogue of the Stirling numb&n, k), the number of partitions
of ann-set intok parts? This is a philosophical, not a mathematical question; |
argue that thg-analogue is the Gaussian coefficiéﬂtq.

The number of surjective maps from asset to ak-set isk!S(n, k), since the
preimages of the points in thkeset form a partition of the-set whose parts can
be mapped to thk-set in any order. Thg-analogue is the number of surjective
linear maps from am-spaceV to ak-spacéV. Such a map is determined by its
kernelU, an (n—k)-dimensional subspace ¥f and a linear isomorphism from
V /U toW. So the analogue &(n, k) is the number of choices &f, which is

oy

4.5 Irreducible polynomials

Though it is not really aj-analogue of a classical result, the following theorem
comes up in various places. Recall that a polynomial of degtisenonicif the
coefficient ofx" is equal to 1.

Theorem 4.9 The number {(n) of monic irreducible polynomials of degree n
overGKF(q) satisfies
Z kfq(k) =q".

kin

Proof We give two proofs, one depending on some algebra, and the other a rather
nice exercise in manipulating formal power series.

First proof: We use the fact that the roots of an irreducible polynomial of
degreek over GRQq) lie in the unique field GF*) of degreek over GRq). More-
over, GRg¥) C GF(q") if and only ifk | n; and every element of G") generates
some subfield over GH), which has the form Gg) for somek dividing n.
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Now each of the)" elements of GF" satisfies a unique minimal polynomial.
of degreek for somek; and every irreducible polynomial arises in this way, and
hask distinct roots. So the result holds.

Second proof: All the algebra we use in this proof is that each monic poly-
nomial of degreen can be factorised uniquely into monic irreducible factors. If
the number of monic irreducibles of degrkeas my, then we obtain all monic
polynomials of degrea by the following procedure:

e Expres: = Y akk, whereay are non-negative integers;

e Chooseay monic irreducibles of degrdefrom the set of alimg such, with
repetitions allowed and order not important;

e Multiply the chosen polynomials together.

Altogether there arg” monic polynomials< + c;x"1 + - .- + ¢, of degreen,
since there arg choices for each of the coefficients. Hence

e

where the sum is over all sequen@asay, ... of natural numbers which satisfy

Y ke =n.
Multiplying by x" and summing oven, we get
1 ny,n
= X
1—-0gx ngoq

_ <mk+ak— 1> a
ap,ay,... k>1 A

- kl_lla; (mk +aa_ 1) 0
(1-

XYM

Kk

\Y%

1

Here the manipulations are similar to those for the sum of cycle indices in Chap-
ter 2; we use the fact that the number of choicea tifings from a set ofm, with
repetition allowed and order unimportant,(@j‘*l), and in the fourth line we
invoke the Binomial Theorem with negative exponent.
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Taking logarithms of both sides, we obtain

nxn
qn = —log(1-qx)
n>1
= 3 —mclog(1-x¥)
K>1
Xkr
k; r;r

The coefficient ok" in the last expression is the sum, over all divisosf n,
of my/r = kmy/n. This must be equal to the coefficient on the left, which"ign.
We conclude that

qn — ;kn"k’ (4.2)
kin

as required.

Note how the very complicated recurrence relation (4.1) for the nunthers
changes into the much simpler recurrence relation (4.2) after taking logarithms!
We will see how to solve such a recurrence in the chapter bl inversion.

Exercises

4.1. Prove tha{n} is a polynomial of degrel(n— k) in the indeterminate.
q

k
4.2.

(a) Prove that, for & k < n,
n} {n—l} [n—l} N1 n—2
= + +(@ " —-1) :
[k q Lk=1]4 k 1q k—1],

Fq(n) = i mq>

K=0
so that, ifq is a prime power, theRg(n) is the total number of subspaces of
ann-dimensional vector space over &f. Prove that

(b) Let

Fq(0) =1, Fy(1) =2, Fy(n) =2FR;(n—1)+(q" 1 —1)Fy(n—2) forn>2.
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(c) Deduce that, ifj > 1, thenFy(n) > ¢ q"2/4 for some constant (depending
q
onq).

4.3. This exercise shows that the Gaussian coefficients have a counting interpre-
tation for all positive integer values gf(not just prime powers).

Suppose thaj is an integer greater than 1. L@tbe a finite set of cardinality
containing two distinguished elements 0 and 1. We say ttat a matrix with
entries fromQ is in reduced echelon forifithe following conditions hold:

¢ If a row has any non-zero entries, then the first such entry is 1 (such entries
are called “leading 17);

e if i < j and rowj is non-zero, then rowis also non-zero, and its leading 1
occurs to the left of the leading 1 in rojy

e if a column contains the leading 1 of some row, then all other entries in that
column are O.

n| . . . .
Prove thatm is the number ok x n matrices in reduced echelon form with no
q

rows of zeros.

4.4. A matrix is said to be iechelon fornif it satisfies the first two conditions in
the definition of reduced echelon form. Show thaty i§ an integer greater than 2,
the right-hand side of thg-binomial theorem withx = 1 counts the number of
nx n matrices in echelon form.

How manyn x n matrices in reduced echelon form are there?

4.5. Lethy(xy,...,Xn) be thecomplete symmetric functioof degreek in the
indeterminategy, . .., x, (the sum ofall monomials of degrekethat can be formed
using these indeterminates). For example,

ha(X1, X2, X3) = X2 4 X3 + X& + X1X2 + XoX3 + XaX1.

Prove that

00 n

X)) = —xz) .
kZOhk(xl, ,Xn) iE!(l Xi2)

Deduce that

@m@me:( )
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n+k—1

(b)hk(l,q,...,q”l):{ . }forq;«él.
q

Hint for (b): show that

sl

4.6. The second proof of Theorem 4.9 shows that the number of irreducible
polynomials over GF) is exactly what is required if every element of @)

is the root of a unique irreducible of degree dividingover GKq). Turn the
argument around to gove a counting proof of the existence and uniqueness of
GF(q"), given that of GFq).

4.7. Letw be a primitivedth root of unity. Express{k} in terms of binomial

.. w
coefficients (whenever you can).

Solution by Pablo Spiga Let d be a natural number, and letbe a primitive
dth root of unity inC, i.e. w® = 1. Then, if 0< a,b <d—1, we have

nd+a]  /n\[a
kd+b|,~ \k/|b],
Note that we are assuming thgt = 0 whenevea < b.

Solution By induction ona. We have
d

1-¢ = _r!(wi‘l—z)
_ .Iﬂl<wi_l'(1_w_i+la)>

d d

- Hw'—l-ﬂ(l—wi—la).

Thus, we get

nd nd

nd
Sy = Sl (-D/2(_q)) | |
o8- 3 ol il & (4.3

J
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but nd n
e+ =a-gr-5 (Jevee @

We have proved tha[t”jd]w =0 if d does not dividej. Assumej = dk By

(4.3) and (4.4), as
(4.5)

?

di(di-1)/2(_q)k(d+1) _ ¢

W
nd] /n
kd|, \k/
(For (4.5), note that ifl is odd then— 1d+1 = 12 while if d is even than we can
write —1 asw®2, and we findwdKdk+d)/2 — (dk(k+1)/2 ) Thijs proves the result

fora=0.
Assumea > 1. If b # 0 then, by induction hypothesis and by the usual recur-

rence relation, we get

nd+a|  [nd+a-1 L b nd+a-1
kd+b|,  |kd+b—1], kd+b |,

_ (n\ja-1 Lob n\ [a—1
— \k/ |b—1], k b |,
~_(n\]a
— \k/|b],

Finally, if b=0, then,aa—1<d—-1,

nd+a| nd+a—1 ofd nd+a-1
kd |,  |(k=1d+d-1 kd ©

w
[N\ gla-1
- (],
AN
— \k/ |b],
Remark Compare Lucas’ formula

(kp0) =) (5] oo

if pis prime and X a,b < p.

we get



Chapter 5

Group actions and cycle index

A cube has six faces, so if we paint each face red, white or blue, the total numbers
of ways that we can apply the colours &3 729. However, if we can pick up

the cube and move it around, it is natural to count in a different way, where two
coloured cubes differing only by a rotation are counted as “the same”. There are
24 rotations of the cube into itself, but the answer to our question is not obtained
just by dividing 729 by 24. The purpose of this section is to develop tools for
answering such questions.

5.1 Group actions

Let X be a set, an® a set of permutations of. We write the image ok € X
under the permutatiog asx9. We denote the identity permutation (leaving every
element ofX where it is) by 1, and the inverse of a permutatigithe permutation

h with X9 =y < x" = x) by g~1. The composition of two permutatiomsandh,
denoted bygh, is defined by the rule that

xah — (Xg>h

(in other words, apply firgg, thenh).
We say thaG is apermutation groupf the following conditions hold:

¢ G contains the identity permutation;
e G contains the inverse of each of its elements;

¢ G contains the composition of any two of its elements.

61
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For example, the 24 rotational symmetries of a cube form a permutation group
on the set of points of the cube.

Until the middle of the nineteenth century, what we have just defined would
have simply been calledgroup.Now the definition of a group is more abstract.
We don’t go into abstract group theory here, but note some terminology arising
from this. If G is an abstract group in the modern sensegetionof G on the set
X is a function associating a permutationofvith each group element, in such a
way that the identity, inverse, and composition of permutations correspond to the
same concepts in the abstract group.

In particular, if G is a permutation group on a skt then we can construct
actions ofG on various auxiliary sets built frond: for example, the set of ordered
pairs of elements oK, the set of subsets of, the set of functions fronxX to
another set (or from another setX).

For example acts on the seX x X of ordered pairs of elements ¥fby the

rule
(x.y)? = (x9,y9)
for x,y € X, g € G; that is, the permutatiog acts coordinate-wise on ordered
pairs, mappingx,y) to (x9,y9).
Thus, the phrasesG'is a permutation group oX” and “G acts onX” are
almost synonymous; the difference is of less interest to a combinatorialist than to
an algebraist.

Suppose thab acts onX. We define a relatior- on X by the rule thak ~ y
if y=x9 for someg € G.

Proposition 5.1 ~ is an equivalence relation.
Proof We check the three conditions.
o Xx=x!, S0Xx~ X ~ is reflexive.
e Letx~y. Theny=x9, sox= ygfl, SOy ~ X: ~ iS symmetric.

e Letx~yandy~ z Thenx=x9 andz=y", for someg,h € G. Thus,
z= (x9N =x9" sox ~ z ~ is transitive.

Note that the three conditions in the definition of a permutation group translate
precisely into the three conditions of an equivalence relation.

The equivalence classes of this relation aredtists of G on X.
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In our coloured cube example, the group of 24 rotations of the cube acts on the
set of 729 colourings of the faces of the cube. Two colourings count “the same” if
and only if they are in the same orbit. So our task is to count orbits.

5.2 The Orbit-Counting Lemma

For any permutatiog of X, we let fix(g) denote the number dixed pointsof g
(elementsc € X such that® = x).

Theorem 5.2 (Orbit-Counting Lemma)Let G be a permutation group on the
finite set X. Then the number of orbits of G on X is given by the formula

1 .
@ggcflx(g).

Proof We count in two different ways the numbkrof pairs(x,g), with x € X,
g€ G, andx® = x.
On the one hand, clearly

N = ggcfix(g).

On the other hand, we claim that if the poites in an orbit{x = x1,...,Xn},
then the number of permutatiogse G with x8 = xis |G| /n. More generally, for
anyi with 1 <i < n, the number of permutatiomgs= G with x9 = x; is independent
of i (the proof is an exercise), and sd@&/n.

Hence the number of paifg, g) with y9 =y for whichy lies in a fixed orbit of
sizenisn-|G|/n=|G|. So each orbit contributé&| to the sum, and sh = |Gk,
wherek is the number of orbits.

Equating the two values gives the result.

Using this, we can count our coloured cubes. We have to examine the 24
rotations and find the number of colourings fixed by each.

e The identity fixes all 8 = 729 colourings.
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e There are three axes of rotation through the mid-points of opposite faces.
A rotation through a half-turn about such an axis fixés=381 colourings:
we can choose arbitrarily the colour for the top face, the bottom face, the
east and west faces, and the north and south faces (assuming that the axis
is vertical). A rotation about a quarter turn fixe=3 27 colourings, since
all four faces except top and bottom must have the same colour. There are
three half-turns and six quarter-turns.

e A half-turn about the axis joining the midpoints of opposite edges fixes
33 = 27 colourings. There are six such rotations.

e A third-turn about the axis joining opposite vertices fixés=39 colourings.
There are eight such rotations.

By Theorem 5.2, the number of orbits is
1
24(1 729+3-81+6-27+6-27+8-9) =57,
so there are 57 different colourings up to rotation.

At this point, we can give a more combinatorial proof of the formula
X(X—1)---(x—n+1) = ank
from chapter 2. We prove the equivalent form
X(X+1)---(x+n—-1) = Z Is(n, k) |x

from which the required equation is obtained by substitutingfor x and mul-
tiplying by (—1)". Suppose first that is a positive integer. Consider the set of
functions from{1,...,n} to a setX of cardinalityx. There are" such functions.
Now the symmetric groufs, acts on these functions: the permutatgpmaps the
function f to f9, where

f9(i) = f(ig™1).
The orbits are simply the selections wfthings from X, where repetitions are
allowed and order is not important. So the number of orbits is

(x+n—1

0 ) =X(X+1)---(x+n—-1)/n!
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(see Chapter 2, Exercise 1).

We can also count the orbits using the Orbit-Counting Lemma. glie¢ a
permutation inS, havingk cycles. How many functions are fixed g¢ Clearly a
function f is fixed if and only if it is constant on each cyclegfits values on the
cycles can be chosen arbitrarily. So therex$réixed functions. Since the number
of permutations wittk cycles is|s(n, k)|, the Orbit-Counting Lemma shows that
the number of orbits is

12 K
— Y |s(n,K)|x".
n! k;

Equating the two expressions and multiplyingridygives the result.
Now the required equation holds for all positive integer values, ahd so it
is a polynomial identity.

5.3 Cycle index

It is possible to develop a method for solving the coloured cubes problem which
doesn’t require extensive recalculation when small changes are made (such as
changing the number of colours).

Suppose that we have a $ef objects called “figures”, each of which (say
f) has a non-negative integer “weighw{ f) associated with it. The number of
figures may be infinite, but we assume that there are only a finite number of any
given weight: sa, figures of weighh. Thefigure-counting seriess the (ordi-
nary) generating function for these numbers:

A(X) = nZoanx”.

We attach a figure to each point of a finite 3et (Equivalently, we take a
function@from X to the sef of figures.) Thawveightof the functiong@is just

w(p) = EXWCP(X))-

Finally, we have a grouf of permutations oX. ThenG acts on the set of
functions by the rule that
PX) = g(xg ).

Clearlyw(¢?) = w(g) for any functiong.
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We want to find the generating function for the number of functions of each
possible weight, but counting two functions as “the same” if they lie in the same
orbit of G with the above action. In other words, we want to calculatduhetion-

counting series
B(x) = zobnx”,
n>

whereb,, is the number of orbits consisting of functions of weight

In the coloured cubes example, if we take three figures Red, White and Blue,
each of weight 0, the figure-counting series is simply 3, and the function-counting
series is 57. We could, say, change the weight of Red to 1, so that the figure-
counting series is 2 x; then the function-counting series is the generating func-
tion for the numbers of colourings withD,2,...,6 red faces (up to rotations).

The gadget that does this job is tbycle indexof G. Each elemeng € G can
be decomposed into disjoint cycles; tetg) be the number of cycles of length
fori=1,....,n=|X|. Now put

Z(g) _ Sil(g)sg ) ‘S%n(g)’

wheres, ..., S, are indeterminates. Then thgcle indeof G is defined to be

2(G) = ,—é‘ggcag»

For example, our analysis of the rotations of the cube shows that the cycle
index of this group (acting on faces) is

1
ﬂ(s?+3§%+6§54+6§+8%).
We use the notation
Z(G;s « fifori=1,...,n)

for the result of substituting the expressidnfor the indeterminates for i =
1,....n

Theorem 5.3 If G acts on X, and we attach figures to the points of X with figure-
counting series /), then the function-counting series is given by

B(X) = Z(G;5 — A(X) fori=1,...,n).
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For example, in the coloured cubes, let Red have weight 1 and the other
colours weight 0. TheA(x) = 2+ x, and the function-counting series is

BO = —((24 )8+ 3(24X)2(24 )2+ 6(24X)2(2+ x4

24
+6(2+x2)3+8(2+x3)?)
= 10+ 12X+ 16x% +10x° + 6x* + 2x° + 5.

Note that putting« = 1 recovers the value 57.

Proof The first step is to note that, if we ignore the group action and simply count
all the functions, the function-counting serieB8ix) = A(x)", wheren = |X|. For
the term inx™ in A(x)" is obtained by taking all expressions=m +---+m,
for m as a sum oh non-negative integers, multiplying the corresponding terms
aq in A(x), and summing the result. The indicated product counts the number of
choices of functions of weightsy, ..., m, to attach at the points L .,n of X, so
the result is indeed the function-counting series.

Note that this proves the theorem in the case wigi®the trivial group.

Next, we have to count the functions of given weight fixed by a permuta-
tion g € G. As we have seen, a function is fixed yf and only if it is constant
on the cycles ofl. Now if we choose a function of weightto attach to the points
of a particulari-cycle ofg, the number of choices & but the contribution to the
weight isir. Arguing as above, the generating function for the number of fixed
functions is

A(X) L IA(P) 29 . AXMDO) = z(gi 5 — AX) fori =1,....n).

Finally, by the Orbit-Counting Lemma, if we sum ovgk G and divide by
|G|, we find that the function-counting series is

B(X) = Z(G;s — A(X) fori=1,....n).

5.4 Labelled and unlabelled

Group actions can be used to clarify the difference between two types of counting

of combinatorial objects, namely counting labelled and unlabelled objects.
Typically, we are counting structures “based on” a setpdints: these may be

partitions or permutations, or more elaborate relational structures such as graphs,
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trees, partially ordered sets, etc. Asomorphisnbetween two such objects is a
bijection between their base sets which preserves the structure.

A labelled objectis simply an object whose base set{is 2,...,n}. Two
objects count as different unless they are identical. On the other hand, for unla-
belled objects, we wish to count them as the same obtain one from the other by
re-labelling the points of the base set. In other wordsyalabelled objects an
iIsomorphism class of objects.

For example, for graphs on three vertices, there are eight labelled objects, but
four unlabelled ones.

Now the symmetric grouf, acts on the set of all labelled objects on the set
{1,...,n}; its orbits are the unlabelled objects. So counting unlabelled objects is
equivalent to counting orbits &, in an appropriate action.

A given objectA has an automorphism group A&, consisting of all permu-
tations of the set of points which map the object to itself. The number of different
labellings ofAis n! /| Aut(A)|, since of then! labellings, two are the same if and
only if they are related by an automorphismff(More formally, labellings cor-
respond bijectively to cosets of Aut) in the symmetric groufs,.) So the number

of labelled objects is
n!

3 TAGAY]
where the sum is over the unlabelled objectsiqoints.

The cycle index method can be applied to give more sophisticated counts. For
example, let us count graphs on 4 vertices. The number of pairs of vertices is 6,
and each pair is either an edge or a non-edge. So the number of labelled graphs is
2% = 64, and the number of labelled graphs witadges is(ﬁ) fork=0,...,6.

In order to count orbits, we must I&; act on the set of 64 graphs. But we
can think of a graph as the set@lj = 6 pairs of vertices with a figure (either an
edge or a non-edge) attached to each. So we must compute the cycle irlex of
acting on pairs of vertices. Table 5.1 gives details. The notafigh for example,
means “two fixed points and one 2-cycle”. Such an element, say the transposition
(1,2), fixes the two paird1,2} and{3,4}, and permutes the other four pairs in
two 2-cycles; so its cycle structure on pairs 14

So the cycle index of the permutation grogpnduced on pairs b is

2(6) = (S + 99% + 85+ 65,s).

Now if we take edges to have weight 1 and non-edges to have weight O (that
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Cycles on| Cycles on| Number
vertices pairs
14 16 1
1221 1222 6
22 1222 3
13 32 8
4 24 6

69

Table 5.1: Cycle index di

is, figure-counting serie&(x) = 1+ x), the function-counting series is
B(X) = 14+ X+ 2+ 3+ 2 +x° 48,
the generating function for unlabelled graphs on four vertices by number of edges.

We conclude by summarising some of our earlier results on counting labelled
and unlabelled structures. Table 5.2 gives the numbers of labelled and unlabelled
structures om points;B(n) andp(n) are the Bell and partition numbers.

| Structure | Labelled| Unlabelled|

Subsets 2" n+1

Partitions B(n) p(n)

Permutations  n! p(n)
Total orders n! 1

Table 5.2: Labelled and unlabelled

We see from the table that it is possible, even in very natural cases, to have the
same number of labelled objects but different numbers of unlabelled ongsgor
versa

Exercises

5.1. LetG be a permutation group on a finite sétwhere|X| =n> 1. Suppose
thatG has only one orbit. Prove that there is an elemer@ @fhich is a derange-
ment of X (that is, which has no fixed point). Show further that at least a fraction
1/n of the elements o6 are derangements.
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5.2. Use the Cycle Index Theorem to write down a polynomial in two variables
x andy in which the coefficient ok'y! is the number of cubes in which the faces
are coloured red, white and blue, havinged andj blue faces, up to rotations of
the cube.

5.3. Find a formula for the number of ways of colouring the faces of the cube
with r colours, up to rotations of the cube. Repeat this exercise for the other four
Platonic solids.

5.4. A necklace has ten beads, each of which is either black or white, arranged on
a loop of string. A cyclic permutation of the beads counts as the same necklace.
How many necklaces are there? How many are there if the necklace obtained by
turning over the given one is regarded as the same?
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M Obius inversion

Often we are in the situation where we have a number of conditions of varying
strength, and we have information about the number of objects which satisfy var-
ious combinations of conditions (inclusion); we want to count the objects satisfy-
ing none of the conditions (exclusion), or perhaps satisfying some but not others.
Of course, the conditions may not all be independent!

6.1 The Principle of Inclusion and Exclusion

LetAs,...,An be subsets of a finite s&t For any non-empty subsébf the index
set{1,...,n}, we put
A=A
jed
by convention, we takéy = X. ThePrinciple of Inclusion and Exclusio(PIE,
for short) asserts the following.

Theorem 6.1 The number of elements of X lying in none of the sgeits équal to
(—D)MlAl.

Proof The expression in the theorem is a linear combination of the cardinalities

of the setsA;, and so we can calculate it by working out, for each X, the

contribution ofx to the sum. IfK is the set of all indiceg for whichx € Aj, then
x contributes to the terms involving sels- K, and the contribution is

Jzk(_l)lJl.

71
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If |K| =k > 0, then there ar(a'j‘) sets of sizg in the sum, which is

ji (§) v —a-vr-o

whereas ifK = 0 then the sum is 1. So the points with= 0 (those lying in no
setA;) each contribute 1 to the sum, and the remaining points contribute nothing.
So the theorem is proved.

If there are numbensy, . .., m, such thatA;| = m; whenevetJ| = j, then PIE
can be written in the simpler form
n

j;(—l)jmj.

Here are a couple of applications.

Example: Surjections The number of functions from am-setontoann-set is

given by the formula
n . /n
C0i()o-im
j;) J

For letM andN be the sets, witiN = {1,...,n}. Let X be the set of all functions
f : M — N, andA the set of functions whose range does not include the point
ThenA; is the set of functions whose range includes none of the pointgtoat
is, functions fromM to N\ J); so|As| = (n— j)™ when|J| = j. A function is a
surjection if and only if it lies in none of the sef. The result follows.

In particular, ifm= n, then surjections are permutations, and we have

ji(—l)i (T)on-ir=n.

Example: Derangements This time, letX be the set of all permutations of
{1,...,n}, andA the set of permutations fixing ThenA; is the set of permuta-
tions fixing every point inJ; so |A;| = (n— j)! when |J| = j. The permutations
lying in none of the set8; are the derangements, and so we have

dn) — ji(—l)j (T) (n—j)!
(1)
! )

n
= n!jzD j
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in agreement with our earlier result.

The statement of PIE can be generalised to give a formula for the number of el-
ements oK which lie in a given collection of se# and not in the remaining ones
(see Exercise 6.5). Indeed, the same formula applies if the numbers concerned are
arbitrary real numbers rather than cardinalities of sets:

Theorem 6.2 Let real numbers aand ky be given for each subset J of N
{1,...,n}. Then the following are equivalent:

@ a= b, forall J C N;

JCICN

(b) by = Z (—1)"g forallJ C N,
JCICN

Proof The theorem asserts the form of the solution to a system of linear equa-
tions; in other words, the inverse of a certain matrix. However, the same matrix
occurs in the original form of PIE.

The theorem as stated involves sums over supersets of the given index set.
However, it is easily transformed to involve sums over subsets (see Exercise 6.5.
In this form, it is a generalisation of the inverse relationship between the triangular
matrix of binomial coefficients and the signed version (see Exercise 6.5).

6.2 Partially ordered sets

In this section, we formalise the kind of lower-triangular matrices which occurred
in the last.

A partial order on a setX is a binary relation< on X which satisfies the
following conditions:

o X < X (reflexivity);
e if x <yandy < xthenx =y (antisymmetr,
e if x <yandy < zthenx < z (transitivity).
It is atotal orderif it satisfies the further condition

e for anyx,y, exactly one ok <y, x=Yy, y < xholds grichotomy),
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wherex <y is short forx <y andx #y. (Note that antisymmetry implies that at
most one of these three conditions holds.)

The usual order relations on the natural numbers, integers, and real numbers
are total orders. An important example of a partial order is the relatiorchfsion
on the set of all subsets of a given set. Other important examples of partially
ordered sets include

e the positive integers ordered by divisibility (thatxss yif and only if x| y);

¢ the subspaces of a finite vector space, ordered by inclusion. (This is known
as aprojective spacg

Any finite totally ordered set can be written &8, X, ..., Xn}, Wherex < X;
if and only ifi < j.
A set carrying a partial order relation is callegartially ordered setor poset
for short.
We need to use the following result. A relationis anextensiorof a relation
p if x rho y=- x sigma y that is, regarding a relation in the usual way as a set of
ordered pairsp is a subset 06.

Theorem 6.3 Any partial order on a set X can be extended to a total order on X.

This theorem is easily proved for finite sets: take any pair of elemegts
which are incomparable in the given relation; get y, and include all conse-
guences of transitivity (show that no conflicts arise from this); and repeat until all
pairs are comparable. It is more problematic for infinite sets; it cannot be proved
from the Zermelo—Fraenkel axioms, but requires an additional principle such as
the Axiom of Choice.

The upshot of the theorem for finite sets is that any finite partially ordered set
can be written aX = {x1, ..., X} so that, ifx; <x;, theni < j (but not necessarily
conversely). This is often possible in many ways. For example, the subsets of
{a,b,c}, ordered by inclusion, can be written as

xl:0; XZZ{a}a )(3:{b}7 X4:{C}7
Xs={ab}, Xs={ac}, X;={b,c}, Xg={ab,c}.

Now any functionf from X x X to the real numbers can be written asenn
matrix As, whose(i, j) entry is f (x;, x;).
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Our results extend to some infinite partially ordered sets, namely, those which
arelocally finite (A partially ordered seX is locally finite if, for anyx,y € X, the
interval

Xy ={zeX:x<z<y}
is finite.)

Examples of infinite, locally finite posets include:

The natural numbers; the integers (with the usual order).

All finite subsets of an infinite set (ordered by inclusion).

All finite-dimensional subspaces of an infinite-dimemsional vector space
over a finite field (ordered by inclusion).

The positive integers (ordered by divisibility).

6.3 The incidence algebra of a poset

Theincidence algebraf the partially ordered sef is defined to be the set of all
functionsa : X x X — R which have the property that(x,y) = O unlessx <.

Note that, for such a functioa, the matrixAy is lower triangular. The algebra
operations of addition and multiplication are defined to be the usual matrix oper-
ations on the corresponding matrices; that is,

(@a+B)(xy) = axy) +BXxY),
@B)(xy) = > ax2zBzy).

x<zzy

(These equations shows that the way in which we extend the partial order to a total
order does not affect the definitions.)

The definitions of addition and multiplication work equally well for an infinite
locally finite poset (since the sum in the formula for multiplication is finite). So
the incidence algebra of a locally finite poset is defined.

The incidence algebra has an identity, the functigiven by

1 ifx=y,
Hxy) = {0 otherwise.
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(The matrixA, is the usual identity matrix.) Another important algebra element is
thezeta functior, defined by

(1 ifx<y,
xy) = {O otherwise.

Thus( is the characteristic function of the partial order, and an arbitrary function
o belongs to the incidence algebra if and only if

{(xy)=0=a(xy)=0.

A lower triangular matrix with ones on the diagonal has an inverse. The
Mobius function [of a poset is the inverse of the zeta function. In other words, it

satisfies i
_ if x=Yy,
H(xy) = _

X<Z<y { 0 otherwise.

In particular,u(x, x) = 1 for all x. Moreover, if we knowu(x,z) for x <z <y, then
we can calculate

M(X,y) = — (X, 2).

x<z<y

In particular, we see that the values of thélhlis function are all integers.

6.4 Some Mdbius functions
By definition, the Mbbius function of a poset satisfies the following:

Proposition 6.4 Let f and g be elements of the incidence algebra of a poset X
(that is, functions on X X satisfying fx,y) = g(x,y) = O unless x<'y. Then the
following conditions are equivalent:

@axy) = > f(x2);

x<zzy

() fxy)= > 9x2uzy).

X<ZLy

This result is referred to dglobius inversion In order to use it, we have to
compute the Mbius functions of various posets. Note that theliis function
is local, in the sense that the valuepgk, y) is determined by the structure of the
interval [x,y] ={z:x<z<y}.
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One important result is the following. Leéd,..., X be posets. Thédirect
product X x --- x X; is the poset whose elements arerailiples(xy, ..., %) with
xi € X; for 1 <i <r; the order is given by

(Xla"'7xr)S(y17'~‘7yr)<:>xi SiifOflSiSﬂ
where the ordex; <y; is that in the pose.

Proposition 6.5 The Mbbius function of the direct product X --- x X, is given
by

r

H((Xlw-~»Xr)a(Y1,--~,Yr)) = _uM'(Xi,Yi),

where iis the Mobius function of X
Proof Itis enough to show that

rlu Xi,z)=0.
X <Z <Y

1<i<r

Now the left-hand side of this expression factorises as
r

iDXi S;SYi M (Xi,2),

and the inner sum is zero by definition of théMus functiony;.

Example: the integers Inthe poset of integers, with the usual order, thedilis
function is given by

1 if y=x
u(x,y)z{—l if y=x+1;
0 otherwise.

Example: Finite subsets of a set In this case, the kbius function is
H(X,Y) = (=) X forx C,

and of coursg(X,Y) = 0 otherwise. For leK C Y, and letY \ X = {z,...,zy}.
We claim that the intervdlX, Y] is isomorphic to{0,1}", the direct product of
copies of{0,1} C Z. The isomorphism takes a séwith X < Z <Y to then-tuple
(e1,...,en), where

o= {1 ifz €Z,

0 otherwise.

Sou(X,Y) is equal top((0,...,0),(1,...,1)) calculated in{0,1}"; by Proposi-
tion 6.5 this isu(0,1)", andu(O 1) = —l by the preceding example.
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Example: Positive integers ordered by divisibility Suppose tham divides
n. Letn/m= p§p3...p, wherepy,...,pr are distinct primes andy,...,a
positive integers. Then the intervah, n] is isomorphic to the direct product

[Oval] XX [Ovar]
of intervals|0, &] in Z. The correspondence is given by

(by,...,br) —mpgt..por.

By the first example, we see thptm,n) = 0 if any g > 1, that is, ifn/mis
divisible by the square of a prime. tffmis the product ok distinct primes, then
pu(m,n) = (—1)%. To summarise:

—1)S if n/mis the product of distinct primes;
Mmm—{() / p p

10 if mdoesn’t dividen or if n/mis not squarefree.

Example: Subspaces of a finite vector spaceBy the Second Isomorphism The-
orem, ifU andW are subspaces & with U C W, then the intervalU,W] is
isomorphic to the poset of subspaced\fU, and in particular depends only on
dim(W) —dim(U). It suffices to calculatp({0},V), whereV is ann-dimensional
vector space over GE).

Now puttingx = —1 in theg-binomial theorem, we obtain

n—-1

Z (—1)kgfk-1/2 m
q

k=0

forn> 0. This is exactly the inductive step in the proof théf0},V) = (—1)"g""-1)/2
for n > 0. For there aréﬂ] q k-dimensional subspaces¥f and the induction hy-
pothesis asserts that{0},W) = (—1)kg*~1/2 for each such subspace; then the
identity shows thagi({0},V) must have the claimed value.

So, in generalpy(U,W) = (—1)"q""Y/2if U CW and dimW/U) = n; and
of coursep(U,W) =0ifU ZW.

6.5 Classical Mdbius inversion

All our examples in the preceding section have the special property that each
interval[x,y] is isomorphic tge, z|, whereeis a fixed element of the poset, and
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depends o andy. Thus, for the integerg= 0 andz=y— x; for subsets of a set,
e=0andz=y\ x; for positive integers ordered by divisibilitg= 1 andz=y/x;
and for subspaces of a vector spaze, {0} andz = y/x (the quotient space).

Thus, in these cases, theélius function satisfieg(x,y) = (e, z), so it can be
written as a function of one variabte Abusing notation, we use the same symbol
K. In the four cases, we have:

e H0)=1,u(1)=-1,u(z2) =0forz>2;

. W2)=(-1)7;
e U(z) = (-1)Sif zis the product ofs distinct primes,u(z) = 0 if z is not
squarefree;

o U(Z) = (—1)*gk-D/2 wherek = dim(Z).

The third of these is the “classical” dbius function, and plays an important
role in number theory. If you sq€z) without any further explanation, it probably
means the classical dbius function. In this case, &bius inversion can be stated
as follows:

Proposition 6.6 Let f and g be functions on the positive integers. Then the fol-
lowing are equivalent:

(@) gn) =Y f(m)
min

(b) f(n) = g(m)u(n/m).
min

Here are two applications of this result.

Example: Euler's function Euler’s @-function (sometimes called thetient
functionis the functiong defined on the positive integers by the rule tpat) is
the number of integerswith 1 < x < n coprime ton.

If gcd(x,n) =d, then gcdx/d,n/d) = 1. So the number ofin this range with
gcdx,n) =dis @(n/d), and we have

S @n/d) =n,

djn
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or, puttingm=n/d,

Z(p(m):n.

min
Now Maobius inversion gives

@(n) = Z mu(n/m).

min

From this it is easy to deduce thatnf= pi‘l --- p%, wherep; are distinct primes
anda; > 0, then

o) = pP H(p1—1)--- P& L(pr — ).

Example: Irreducible polynomials Let fq(n) be the number of monic irre-
ducible polynomials of degreeover GKq). By Theorem 4.9,

> mig(m) =d".

min
So, by Mobius inversion, we have a formula fé(n):
f _1 m
q(n) = n > au(n/m).
min
For example, the number of irreducible polynomials of degree 6 ovéRG&

1
6(26—23—22+21) =9

(Why is the word “monic” not needed here?)

Exercises

6.1. LetAq,...,A, be subsets oX. ForJ C N = {1,...,n}, letAj consist of the
points ofX lying in A for all i € J, andB; the points lying inA; if i € J and not if
i ¢ J. Show that

By = (1)<l |A].
Jg;g
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6.2. Prove that, with the hypotheses of Theorem 6.2, the following conditions are
equivalent:

@a;= b forallJCN;

(b) by = Z(—l)"]\'al forall J C N.
Ic

6.3. By taking the numbei& andb; of the preceding exercise to depend only on
the cardinalityj of J, show that the following statements are equivalent for two
sequencesx) and(y;):

j
(@) xj = _iji;

j o
Oy =3 -1y
6.4. Prove that

sk = _i(—l)i ()i
2

6.5. Letx andy be elements of a pos&t, with x <y. A chainfromxtoyis a
sequence& = Xg,X1,...,X =ywith xi_1 < x fori=1,...,1; its lengthis |. Show

that ©
ux,y) =S (1),
2

whereC is the set of all chains fromtoy, andl(c) is the length ot.
6.6. Letd(n) be the number of divisors of the positive integeProve that

;d(m)u(n/m) =1

forn> 1.

6.7. Let?P(X) denote the poset whose elements are the partitions of th¢, set
with P < Q if P refinesQ (that is, every part oP is contained in a part d). Let
E be the partition into sets of size 1.
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(a) Show that, if the parts ¢ have sizesy,...,a, then
HE,P)=(aa—1)!---(a — 1.

(b) Show that any intervdP, Q] is isomorphic to a product of posets of the form
P(Xj), and hence calculaigP, Q).

6.8. LetG be the cyclic group consisting of all powers of the permutation
g:1—-2—---—n—1

Show that the cycle index @ is
1
2@ =5 3 o/ My
mn

where@is Euler’s function.

6.9. A necklace is made ofbeads ofy different colours. Necklaces which differ
only by a rotation are regarded as the same. Show that the number of different
necklaces is

LS dmo(n/m),

min

while the number which have no rotational symmetry is
1
n ; q"u(n/m).
mn

(Notice that, ifq is a prime power, the second expression is equal to the number of
monic irreducible polynomials of degreeover GKq). Finding a bijective proof
of this fact is much harder!)

6.10. A functionF on the natural numbers is said to teltiplicativeif
gcdmn) = 1= F(mn) =F(m)F(n).
(a) Suppose thd andG are multiplicative. Show that the functidth defined

by
H(n) = kZF(k>G(Iﬂ/ k)

is multiplicative.
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(b) Show that the NMbius and Euler functions are multiplicative.

(c) Letd(n) be the number of divisors of anda(n) the sum of the divisors of.
Show thatd ando are multiplicative.

6.11. Prove the following “approximate version” of PIE:

LetAq,...,An A, ..., A, be subsets of a st Forl CN={1,...,n},
let

/
a|: , a|:

A

iel

NA

iel

If & = & for all propersubsets of N, then|ay —aj| < [X|/2"1.

Remark: For more general approximate versions of PIE, see N. Linial and
N. Nisan, Approximate inclusion-exclusioBpmbinatoricalO (1990), 349-365.
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Chapter 7
Species

Species, invented by AnérJoyal in 1980, provide an attempt to unify some of
the many structures and techniques which appear in combinatorial enumeration.
| don't attempt to be too precise about what a species is. Think of it as a set of
“points” carrying some structure (a graph, a poset, a permutation, etc.) We can ask
for the number of labelled or unlabelled structuresgints in a given species.

7.1 Cayley’'s Theorem

We begin with a particular species where there is a simple but unexpected formula
for the labelled counting problem. #heeis a connected graph with no cycles. It

is straightforward to show that a tree owvertices containa — 1 edges, and that

any connected graph has a spanning tree (that is, some set bfof its edges
forms a tree). Moreover, any tree has a vertex lying on only one edge (since the
average number of edges per vertex(s21)/n < 2). Such a vertex is called a
leaf. If we remove from a tree a leaf and its incident edge, the result is still a tree.

Cayley’s Theorem states:
Theorem 7.1 The number of labelled trees on n vertices'lsh

There are many different proofs of this theorem. Below, we will see two proofs
which are made clearer by means of the concept of species. But first, one of the
classics:

85
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Prifer’s proof of Cayley’s Theorem We construct a bijection between the set
of all trees on the vertex s¢t, ..., n} and the set of alln— 2)-tuples of elements
from this set. The tuple associated with a tree is calleBiiiger code

First we describe the map from trees taifer codes. Start with the empty
code. Repeat the following procedure until only two vertices remain: select the
leaf with smallest label; append the label of its unique neighbour to the code; and
then remove the leaf and its incident edge.

Next, the construction of a tree from alifer codeP. We use an auxiliary list
L of vertices added as leaves, which is initially empty. Now, whRiie not empty,
we join the first element dP to the smallest-numbered vertexvhich is not in
eitherP or L, and then add to L and remove the first element Bf WhenP is
empty, two vertices have not been put ibtahe final edge of the tree joins these
two vertices.

| leave to the reader the task of showing that these two constructions define
inverse bijections. The method actually gives much more information:

Proposition 7.2 In the tree with Piifer code P, the valency of the vertex i is one
more than the number of occurrences of i in P.

For, at the conclusion of the second algorithm, if we add in the last two vertices
to L, thenL contains each vertex precisely once; and edges join each of the first
n— 2 vertices ol to the corresponding vertex iy together with an edge joining
the last two vertices df.

Using this, one can count labelled trees with any prescribed degree sequence.

7.2 Species and counting

Almost the only thing we assume about a spedjes that, for eachn, there are
only a finite number ofG-objects om points (so that we can count them). The
only property we use of the objects in a species is that we “know” whether a
bijective map between the point sets of two objects is an isomorphism between
them (and hence we know the automorphism group of each object).

We make one further (inessential but convenient) assumption, namely that
there is a unique object on the empty set of points.

We say that two species agguivalent(written G ~ #) if there is a bijection
between the objects of the two species on a given point set such that the automor-
phism groups of corresponding objects are equal.
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The most important formal power series associated with a speciesigles
index which is defined by the rule

2(G)= Y z(Aut(A)),
ASG

where AutA) is the automorphism group & Clearly, equivalent objects have
the same cycle index.

The cycle index is well-defined since a mononsg#l-- - arises only from
cycle indices involvingn = ¥{_;ia; points, and by assumption there are only
finitely many of these.

There are two important specialisations of the cycle index of a spggitgese
are the exponential generating function

Gpx"
n!

G(x) = Z

n>0

for the numbeiG, of labelledn-elementg-objects (that is, objects on the point
set{1,...,n}); and the ordinary generating function

n

g(x) = gnX

for the numbeup;, of unlabellech-elementg-objects (that is, isomorphism classes).

Theorem 7.3 Let G be a species. Then
(@) G(x) = Z(G;s1 — X, 5 — Ofori > 1);
(b) 9X) =Z(Gis —X).

Proof The number of different labellings of an obje&ton n points is clearly
n!/|Aut(A)|. So it is enough to show that, for any permutation gr@jpve have

Z(G;sp x5« 0fori >1) = x"/|G|,
Z(Gs —x) = x\.
The first equation holds because puttsyg- O for all i > 1 kills all permuta-

tions except the identity. The second holds because, with this substitution, each
group element contribute$, and the resultis G|y g X" = X".
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7.3 Examples of species

There are a few simple species for which we can do all the sums explicitly.

Example: Sets The species has as its objects the finite sets, with one set of
each cardinality up to isomorphism. Its cycle index was calculated in Chapter 5:

2($)= 3 (s) =exp<i;(?—)).

n>0

Hence we find that

SX = exp(x),

s(x) = exp (ZXTI)

= exp(—log(1—x))
1

1-x

in agreement with the fact th& = s, =1 foralln > 0.

Example: Total orders Let L be the species of total (or linear) orders. Each
n-set can be totally ordered m ways, all of which are isomorhic, and each of
which is rigid (that is, has the trivial automorphism group).

We have
1

Z(L) Zn;%‘: -5’

so that
1
1-x

Example: Circular orders The specieg” consists oftircular orders An el-
ement of this species corresponds to placing the points of the object around a
circle, where only the relative positions are considered, and there is no distin-
guished starting point. Thus, there is just one unlabeitetement object irt for

all n, and the number of labelled objects is equal to the nurfiberl)! of cyclic
permutations fon > 1. The uniquer-element structure hagm) automorphisms
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each withn/mcycles of lengtmfor all mdividing n, wheregis Euler’s function.
Hence (see Exercise 7.2),

20) = 1- Y "Mioga—sy),
ms1
C(x) = 1+ZX—::1—I09(1—X),

n>1

cx) = Hx'= %{

Example: Permutations An object of the specie® consists of a set carrying
a permutation. We will see later ho#® can be expressed as a composition, from
which its cycle index can be deduced (Exercise 7.2). We have

Z(P) = []1-s)7"

n>1
PO = 1o
P = 1A

The functionp(x) is the generating function for number partitions. For, as
we saw earlier, an unlabelled permutation is the same as a conjugacy class of
permutations; and conjugacy classes are determined by their cycle structure.

7.4 Operations on species

There are several ways of building new species from old; only a few important
ones are discussed here.

Products Let G and# be species. We define tipgoduct X = G x # as fol-
lows: an object ofX on a setX consists of a distinguished subsétof X, a
G-object onY, and a#{-object onX \ Y.

Since these objects are chosen independently, it is easy to check that

2(G x H) = Z(G)Z(H).
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Since the generating functions for labelled and unlabelled structures are speciali-
sations of the cycle index, we have similar multiplicative formulae for them.

For example, ifS, G and G° are the species of sets, graphs, and graphs with
no isolated vertices respectively, then

G~SxG.

Substitution Let G andH be species. We define teabstitutionX = G[#] as
follows: an object ofK on a setX consists of a partition oK, an #-object on
each part of the partition, and@-object on the set of parts of the partition.
Alternatively, we may regard it as@-object in which every point is replaced
by anon-empty# -object.
The cycle index is obtained from that gfby the substitution

S <—Z(?‘[;Sj —sj)—1

for all i. (The—1 in the formula corresponds to removing the empfystructure
before substituting.)

From this, we see that the exponential generating functions for labelled struc-
tures obey the simple substitution law:

The situaation for unlabelled structures is more complicated kéxjdcannot be
obtained fromg(x) andh(x) alone. Instead, we have

k(x) =Z(G;s < h(xX) —1).

This equation also follows from the Cycle Index Theorem, since we are count-
ing functions ong-structures where the figures are non-emfstructures with
weight equal to cardinality.

For example, ifS, ? and C are the species of sets permutations, and circular
orders, then the standard decomposition of a permutation into disjoint cycles can
be written

P~ S[C].

The counting series for labelled structures are given by

n

SN = 3 o =expx),

|
) n:
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n>0

— 1"
C(x) = 1+ Xou =1—log(1—x);
s n!
so the equation above becomes

1 = exp(~log(1—x)).

So the decomposition of a permutation into cycles is the combinatorial equivalent
of the fact that exp and log are inverse functions!

Rooted (or pointed) structures Given a specieg;, let G* be the species of
rooted G-structures such a structure consists of G-structure with a distin-
guished point.

We have
s 0=
(G )—sla—sdz(§>,
and so g
G*(x) = xd—XG(x).

Sometimes it is convenient to remove the distinguished point. This just removes
the factorss; andt in the above formulae, so that this operation corresponds to
differentiation. As a result, we denote the result@y

For example, ifC is the class of cycles, thaff corresponds to the clagsof
total (linear) orders. We have

L= $C0 = g (1-Tog(L-x) = 1+

in agreement with the preceding example.

7.5 Cayley’s Theorem revisited

The notion of species can be used to give two further proofs of Cayley’s Theorem.
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First proof Let £ and? be the species of total (or linear) orders and permuta-
tions, respectively. These species are quite different, but have the property that the
numbers of labelled objects arpoints are the same (nameti).

Hence the numbers of labelled objects in the two specjgs| and?[7*] are
equal. (HereZ ™ is the species of rooted trees.)

Consider an object i.[7*]. This consists of a linear ordéxy, ..., ), with
a rooted tre€l; at x; for all i. | claim that this is equivalent to a tree with two
distinguished vertices. Take edgps,x+1} fori=1,...,r — 1, and identifyx
with the root ofT; for all i. The resulting graph is a tree. Conversely, given a tree
with two distinguished vertices andy, there is a unique path fromto y in the
tree, and the remainder of the tree consists of rooted trees attached to the vertices
of the path.

Now consider an object i®?[7*]. Identify the root of each tree with a point
of the set on which the permutation acts, and orient each edge of this tree towards
the root. The resulting structure defines a functiaom the point set, where

e if vis aroot, thenf (v) is the image of7 under the permutation;

e if vis not a root, thenf(v) is the unique vertex for whickwv, f(v)) is a
directed edge of one of the trees.

Conversely, given a functioh : X — X, the sety of periodic points off has the
property thatf induces a permutation on it; the paiss f (v)) for which v is not
a periodic point have the structure of a family of rooted trees, attachédtahe
point for which the iterated images wlunderf first enterY.

So the numbers of trees with two distinguished points is equal to the number
of functions from the vertex set to itself. Thus, if there Bi@) labelled trees, we
see that

n’F(n) = n",

from which Cayley’s Theorem follows.

Second proof As in the preceding proof, lef* denote the species of rooted
trees. If we remove the root from a rooted tree, the result consists of an unordered
collection of trees, each of which has a natural root (at the neighbour of the root of
the original tree). Conversely, given a collection of rooted trees, add a new root,
joined to the roots of all the trees in the collection, to obtain a single rooted tree.
So, if E denotes the species consisting of a single 1-vertex structure§ #mel
species of sets, we have

T ~EXS[TY].
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Hence, for the exponential generating functions for labelled structures, we have
T*(x) = xexp(T*(x)).

This is, formally, a recurrence relation for the coefficient§ 6fx), and we need
to show that thenth coefficient isn"1. This can be done most easily with the
technigue oLagrange inversionwhich is discussed in the next chapter.

7.6 What is a species?

We have proceeded this far without ever giving a precise definition of a species.
The informal idea is that an object of a species is constructed from a finite set, and
bijections between finite sets induce isomorphisms of the objects built on them.

It turns out that mathematics does provide a language to describe this, namely
category theoryIt would take us too far afield to give all the definitions here. In
essence, a category consists of a collectioolgéctswith a collection ofmor-
phismsbetween them. In the only case with which we deal, objects are sets and
morphisms are set mappings. In particular, the ofasghose objects are all finite
sets and whose morphisms are all bijections between them satisfies the axioms for
a category.

Now a species is simply tunctor F from & to itself. This means thak
associates to each finite s2a setF(S), and to each bijectiori : S— S a bijec-
tion F(f): F(S) — F(S), such thaF respects composition and identity (that is,
F(fif2) = F(f1)F(f2) andF(1s) = 1r(g), where kis the identity map or9).

The standard reference on species (apart from Joyal’s original paper) is the
book by Bergeron, Labelle and Leroux.

Exercises

7.1. Count the labelled trees in which the veridxas valencyg; for 1 <i <n,
whereay, ..., a, are positive integers with sunm2- 2.

7.2. Show that the cycle index for the specigef circular structures is

Z(0)=1-% @Iog(l—sm).

Use the fact that
P~ S[C]
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to show that
Z(P)= 11—t

n>1
Can you give a direct proof of this?

7.3. Use the result of the preceding exercise, and the factcthatl for all
n (wherec, is the number of unlabelled-element structures i@’) to prove the
identity

[ (21 —x™) "™/ = exp(x/(1-X)).

m>1

7.4. Suppose tha} is the number of unlabellagtelement objects in the specigs
Show that the generating function for unlabelled structuref & is

_ M —0n
nDl(l X" 79n,

Verify this combinatorially in the casg = 5. How would you describe the objects
of §[S5]?

7.5. LetG be a species. Th8tirling numbersof G are the numberS(G)(n,k),
defined to be the number of partitions of mset intok parts with aG-object on
each part.

(a) Prove that, folg = S, C and L respectively, the Stirling numbers are respec-
tively the Stirling number§(n, k) of the second kind, the unsigned Stirling
numbergs(n, k)| of the first kind, and the Lah numbeltén, k) respectively.

(b) LetS(G) be the lower triangular matrix of Stirling numbers@f Prove that
S(G)S(#) = S(7]G]).
(c) Let (an) and(b,) be sequences of positive integers with exponential gener-

ating functionsA(x) and B(x) respectively. Prove that the following two
conditions are equivalent:

n
e ag=bg andb, = Z S(G)(n,k)a forn>1;
K=1

o B(x) =A(G(X) - 1).
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7.6. Aforestis a graph whose connected components are trees. Show that there
is a bijection between labelled forests of rooted trees wartices, and labelled
rooted trees on+ 1 vertices with rooh+ 1.

Hence show that, if a forest of rooted treesrovertices is chosen at random,
then the probability that it is connected tends to the liniig Asn — co.

Remark Itis true but harder to prove that the analogous limit for unrooted trees
is1/4/e.
7.7. LetU be thesubsespecies: &l-object consists of a distinguished subset of

its ground set. Calculate the cycle index@f Hence or otherwise prove that the
enumeration functions ofl are

UX) = exp(2x),
ux) = (1-x72
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Chapter 8

Lagrange inversion

A formal power series over a field, with zero constant term and non-zero term in
X, has an inverse with respect to composition. Indeed, the set of all such formal
power series is a group, which has recently become known alldltexgham
group. However, the basic facts are much older. The associative, closure, and
identity laws are obvious, and the rule for finding the inverse in characteristic zero
is known ad_agrange inversion

8.1 The theorem

The basic fact can be stated as follows.

Proposition 8.1 Let f be a formal power series ovRr with f(0) =0and ' (0) #
0. Then there is a unique formal power series g such théfxg) = x; the coeffi-

cient of y' in g(y) is - n
s (%) |,/

This can be expressed in a more convenient way for our purpose. Let

Then the inverse functiogis given by the functional equation

a(y) = ye(a(y))-

97
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Then Lagrange inversion has the form

oy - 5 2

|
ns1 n:

where
dnfl 0
bn B {dxn_l(p()() :|X=O.
Example: Cayley's Theorem The exponential generating function for rooted
trees satisfies the equation
T*(x) = xexp(T*(x)).

With @(x) = exp(x), we find that the coefficient of'/n! in T*(y) is

dn—l 1
— exp(nx)} =n""",
[dxn ! x=0

proving Cayley’s Theorem once again.

8.2 Proof of the theorem

The proof of Lagrange’s inversion formula involves a considerable detour. The
treatment here follows the book by Goulden and Jackson. Throughout this section,
we assume that the coefficients form a field of characteristic zero; for convenience,
we assume that the coefficient ringRs

First, we extend the notion of formal power serieddomal Laurent series
defined to be a series of the form

fx)=Y anx",
n;m
wherem may be positive or negative. If the series is not identically zero, we may
assume without loss of generality ttegt # O, in which casenis thevaluationof
f, written
m=val(f).

We define addition, multiplication, composition, differentiation, etc., for formal
Laurent series as for formal power series. In particuiég(x)) is defined for any
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formal Laurent serie$,g with val(g) > 0. (This is less trivial than the analogous
result for formal power series. In particular, we need to know gfiat ™ exists
as a formal Laurent series fon > 0. It is enough to deal with the case= 1,
since certainlyg(x)™ exists. If valg) = r, theng(x) = x'g1(x), and sag(x) 1 =
x~"g1(x)~1, and we have seen thai(x)_; exists as a formal power series, since
g1(0) is invertible.

We denote the derivative of the formal Laurent sefieg by f/(x).

We also introduce the following notatiofix"] f (x) denotes the coefficient of
X" in the formal power series (or formal Laurent serié§}). The casen= —1 is
especially important, as we learn from complex analysis. The val(x &ff (x)
is called theesidueof f(x), and is also written as Ré$x).

Everything below hinges on the following simple observation, which is too
trivial to need a proof.

Proposition 8.2 For any formal Laurent series(k), we haveResf’(x) = 0.

Now the following result describes the residue of the composition of two for-
mal Laurent series.

Theorem 8.3 (Residue Composition Theorem) et f(x), g(x) be formal Lau-
rent series withval(g) =r > 0. Then

Regf(g(x)g'(x)) = rRegf(x)).

Proof It is enough to consider the case whdi&) = x", since Res is a linear
function.
Suppose that = —1, so that the right-hand side is zero. Then

ReSg" (09 09) = 5 Res( 5,0 ) =0

So consider the case wheme= —1. Letg(x) = axX'h(x), wherea # 0 and
h(0) = 1. Then

g(x) = raxh(x)+axh(x),
gx _ r i (%)
x hx)’
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SO

Resy' (x)g(x) 1 =r =rResx1

sinceh’(x) /h(x) = (d/dx) logh(x), and loch(x) = log(1+k(x)) is a formal power
series sinc&(x) is a f.p.s. with constant term zero.
It is tempting to say

g9t = S loga(

= d%(loga-l—rlogx-i-'Ogh(X))
r d
= )_(+ d—xlogh(x),

but this is not valid; log(x) may not exist as a formal Laurent series. Con-
sider this point carefully; an error here would lead to the incorrect conclusion that

Regd'(x)/9(x)) =

From the Residue Composition Theorem, we can prove a more general version
of Lagrange Inversion.

Theorem 8.4 (Lagrange Inversion) Let@be a formal power series witral(¢) =
0. Then the equation

g(x) = x@(g(x))

has a unique formal power solutiori>y. Moreover, for any Laurent series f, we
have

] L1 £/ (x)@(x)") if n > val(f) and n# 0,
Tt gx) = {f( 0) + Reg f/(x) log(@(0) '¢(x)) ifn=0.

Proof Let d(x) = x/@(x), so thatd(g(x)) = x and va(®(x)) = 1. Theng s the
inverse function ofb.
We have

X"f(g(x) = Res< " *f(g(x))
Resb(y) "o/ (y) f(y),

where we have made the substitutior- ®(y) (so thaty = g(x)) and used the
Residue Composition Theorem.
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Forn = 0, we have

1
n
1
n

Here, in the second line, we have used the fact that

Reg'(x)g(x)) = —Regf(x)g'(x)),
a consequence of the fact that REx)g(x))’ = 0); in the third line we use the

fact thatd(x) = x/@(x).
Forn= 0, we have

X)) = Iy -y HfyFy)ey) *
= f(0)+Regf'(y)log(e(y)p *(0)),

using the same principle as before and the fact that

(log(e(y)¢(0)))' = @ (Y)ay) ™"

Taking f(x) = x in this result gives the form of Lagrange Inversion quoted
earlier.

We proceed to an application, also taken from Goulden and Jackson, of the
Residue Composition Theorem.

Example: a binomial identity We use the Residue Composition Theorem to
prove that
% (2n+1) (j+k> B (2j>
W&o \2k+1/\ 2n 2n
We begin with the sum of the odd terms(ib+ x)2"1:

Co2n+1\ o 1 2n+1 2n+1
kZO<2k+1>X _Z—X((l+x) —(1—x)"").
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Call the right-hand side of this equatidiix). Now, if Sis the sum that we want
to evaluate, then

o 9 /2n+1 K
S = W95 (Geiy) ey
= Rey ™ Y(1+y)f((1+y)"?).

Now we do the following rather strange thing: make the substitugien
(2 —-2). Then valy(z)) = 2, and(1+y)¥2 =1—-Z. So the Residue Com-
position Theorem gives

- 1 1
S = Re§Z-1)? ((22 — )il Z4n+2) z
— Reizz o 1)2] Z—(4n+1)
= ZMZ-1?

- (=)

as required. (In the second line we have used the fact(fat 2)~(2"t1) s a
formal power series and so its residue is zero.)




Chapter 9

Bernoulli, Euler, Maclaurin

We saw in Chapter 1 an asymptotic estimateribwhich began by comparing
logn! = ST, logi to [{'logx dx. Obviously the comparison is not exact, but the
approximation can often be improved by the Euler—Maclaurin sum formula. This
formula involves the somewhat mysterious Bernoulli numbers, which crop up in
a wide variety of other situations too.

9.1 Bernoulli numbers

The Bernoulli number8,, can be defined by the recurrence relation

" /1
Bo=1 Y (n+ )BkzofornZL
k=0 k

Note that we can write the recurrence as

n+1

n+1
z < k )Bk:BI’H—lv
k=0

since the ternB,. 1 cancels from this equation (which expres8gan terms of
earlier terms).

Conway and Guy, iThe Book of Numbersave a typically elegant presenta-
tion of the Bernoulli numbers. They write this relation as

(B+ 1)n+1 — Bn+l

for n > 1, whereBX is to be interpreted aBy after the left-hand expression has
been evaluated using the Binomial Theorem.
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Thus,
1
B, +2B;+1=By, whence B; = —5
1
B3 +3By>+3B1+1=B3, whence By, = 6

and so on. Note that, unlike most of the sequences we have considered before, the
Bernoulli numbers are not integers.

Theorem 9.1 The exponential generating function for the Bernoulli numbers is

Bx" X

n; n! :exp(x)—l'

Proof LetF(x) be the e.g.f., and considerx)(exp(x) — 1). The coefficient of
X"/ (n4+1)is

o0 () () =3, e

for n> 1. (Note that the sum runs from O torather thann+ 1 because we
subtracted the constant term from the exponential.) The coefficieqthokvever,
is clearly 1. So the product is

Corollary 9.2 B, =0for all odd n> 1.

Proof

exp(x/2) 4 exp(—x/2) _ X coth ()_()
2

R0+ exp(x/2) —exp—x/2) 2

X
2 2
which is an even function of; so the coefficients of the odd powersxadire zero.
Corollary 9.3

d (—1)kk!S(n7 k)
& k+1 '
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Proof Let f(x) =log(1+x)/x= S ax"/n!, where

(—1)"n!
(n+1)

By Theorem 2.9f (exp(x) — 1) = x/(exp(x) — 1) = 3 Bpx"/n!, where

an:

n
Bn= z S(na k)ak
k=1

One application of the Bernoulli numbers is Faulhaber’s formulafor the
sum of thekth powers of the firsh natural numbers. Everyone knows that

=]

i = n(n+1)/2

=)

i2 = n(n+1)(2n+1)/6,

iﬁ — m(n+1)%/4,

i
but how does the sequence continue?

Theorem 9.4

i(kJFl) N 1)k,

JVI=

So, for example,

éi"’ _ % ((n+ 15— g(n+ 1)4+§(n+1)3_ é(n+1)>

= n(n+1)(6n*+9n*+n—1)/30.

Proof This argument is written out in the shorthand notation of Conway and Guy.
Check that you can turn it into a more conventional proof!
We calculate

k+1 k+1 ) ] ]
k+1 k+1 _ k=] I _ B!
(n+1+B) (n+B) jzl( j )n (B+1))—B).
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Now (B+1)! = B! for all j > 2, so the only surviving term in this expression is
(k+21)nK((B+1)1 —BY) = (k+1)n

Thus we have

m((n+ 1+ B)**1 — (n+B)k+1) = nk,

from which by induction we obtain

n
k+1l_ pk+ly _ ik
k+1((n+1+B) B) i;I :

The left-hand side of this expression is

k+1 k+1J
k+1%( ) n+1)

as required.

Warning Conway and Guy use a non-standard definition of the Bernoulli num-
bers, as a result of which they haBge = 1/2 rather than-1/2. As a result, their
formulae look a bit different.

How large are the Bernoulli numbers? The generating funati¢exp(x) — 1)
has a removable singularity at the origin; apart from this, the nearest singularities
are at+2r1, and soB,, is aboutn! (2r)~"; in fact, it can be shown that

for neven, wher€(n) = 5, k™". Of courseB, =0 if nis odd anch > 1.
Another curious formula foB,, is due to von Staudt and Clausen:

1
Bon =N— -
—12np

for some integeN, where the sum is over the primedor which p— 1 divides
2n.
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9.2 Bernoulli polynomials
TheBernoulli polynomials B(t) are defined by the formula

xexp(tx) < Bp(t)x"
exp(x)—l_n;) n

Proposition 9.5 The Bernoulli polynomials satisfy the following conditions:
(@) Bn(0) =Bn(1) =Bnforn#1,and B (0) = —1/2, B1(1) = 1/2..
(b) Bn(t +1) — Bp(t) = nt"~1,
(€) By (t) = nBn-a(t).

@B = (E) By ¢

k=0

Proof All parts are easy exercises. Lleft) = xexp(tx)/(exp(x) — 1).
(a)F(0) is the e.g.f. for the regular Bernoulli numbers, d&d) = x+ F(0).
(b) F(t+1) — F(t) = xexp(tx).
(c) F'(t) = xF(t).
(d) F(t) = F(O)exp(xt): use the rule for multiplying e.qg.f.s.

The first few Bernoulli polynomials are
Bo(t) =1,  Bi(t)=t—3,  Balt)=t>—t+3,

Ba(t) =t3—3t°+3t,  Bat) =t*—234t*— 4,

(@) ol

9.3 The Euler—Maclaurin sum formula

Faulhaber’s formula gives us an exact value for the sum of the values of a polyno-
mial over the firsin natural numbers. The Euler—Maclaurin formula generalises
this to arbitrary well-behaved functions; instead of an exact value, we must be
content with error estimates, which in some cases enable us to show that we have
an asymptotic series.
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The Euler—Maclaurin sum formula connects the sum
n
Z f(i)
i=
with the series

/f dt+ )+ Bz‘( 20 (n) - 1@D(1)),

wheref is a “sufficiently nice” function.
Here is a precise formulation due to de Bruijn.

Theorem 9.6 Let f be a real function with continuogk)th derivative. Let

S<:/1nf(t)dt+ +ZBZ'( 2~V (n) - f<2‘—1>(1)>.

Then .
; f(i)=

a1y

with By (t) the Bernoulli polynomial andt} =t — [t| the fractional part of t.

where the error term is

Proof First letg be any function with continuougk)th derivative on0, 1]. We
claim that

200+ o)~ | lg(t)dt
_leﬁ ( 2-1)(1) - /QZk BZk

The proof is by induction: both the start of the inductionkat 1) and the induc-
tive step are done by integrating the last term by parts twice, using the fact that
B, (t) = nBy_1(t) (see Proposition 9.5).

Now the result is obtained by applying this claim successively to the functions
g(x) = f(x+1),9(x) = f(x+2),...,9(X) = f(Xx+n), and adding.
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If fis a polynomial, therf (2 (x) = 0 for sufficiently largek, and the remain-
der term vanishes, giving Faulhaber’'s formula. For other applications, we must
estimate the size of the remainder term.

There are various analytic conditions which guarantee a bound on the size
of Ry, so that it can be shown that we have an asymptotic series for the sum. | will
not give precise conditions here.

Example: Stirling’s formula  Let f(x) = logx. Then f®(x) = %

We obtain the asymptotic series

Bok
2k — 1)n2k-1

c+nlo n—n+}Io n—+
g 299N+ 3 o

for N
logi = logn!.
2

The series begins/112n) — 1/(360n°) 4-1/(126°) + - - - . Exponentiating term-
by-term (using the fact that, if Iog = logY + o(n~%) thenX = Y(1+ o(n~¥))),

we obtain
nn+1/2

1 1
14+ — )
& ( T on T 2eae t )
Note in passing that, for fixed, this asymptotic series is divergent (see our
earlier estimate foBy).

n! ~ V21

Example: The harmonic series Applying Euler—Maclaurin tof (x) = 1/x, we

get
1 By
i;T ~ logn+y— ZW’

where the sum beging/2n) —1/(12n?)+1/(120n*) +- - - . Hereyis Euler’s con-
stant a somewhat mysterious constant with value approximat&ly@157.. .
Again the series is divergent for fixed
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Chapter 10

Hayman’s Theorem and other tools

A number of non-trivial analytic results have been proved for the purpose of ob-
taining asymptotic formulae for combinatorially defined numbers. These include
theorems of Hayman, Meir and Moon, and Bender. | will not give proofs of these
theorems, but treat them as black boxes and give examples to illustrate their use.

10.1 Hayman’s Theorem

Hayman’s Theorem is an important result on the asymptotic behaviour of the co-
efficients of certairentirefunctions (i.e., functions which are analytic in the entire
complex plane).

The theorem applies only to a special class of such functions, the so-ealled
admissibleor Hayman-admissiblainctions. Rather than attempt to give a general
definition of this class, | will state a theorem of Hayman showing that it is closed
under certain operations, which suffice to show that any function in which we are
interested is H-admissible. See Hayman'’s paper in the bibliography, or Odlyzko’s
survey.

Theorem 10.1 (a) If f is H-admissible and p is a polynomial with real coeffi-
cients, then # p is H-admissible.

(b) If p is a non-constant polynomial with real coefficients such éxatp(x)) =
Y gnX" with g, > 0 for n > ng, thenexp(p(x)) is H-admissible.

(c) If p is a non-constant real polynomial with leading term positive, and f is
H-admissible, then (f (x)) is H-admissible.

111
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(d) If f and g are H-admissible, thesxp( f (x) and f(x)g(x) are H-admissible.
Corollary 10.2 The exponential function is H-admissible.
Now Hayman's Theorens the following.

Theorem 10.3 Let f(X) = Y >0 faX" be H-admissible. Let (&) = xf'(x)/f(x)
and h(x) = xd(x), and let i, be the smallest positive root of the equatigr)a= n.

Then 1
fo~ ——f(rp)r;".
n 21, (Fn)rn

Example: Stirling’s formula  Takef (x) = exp(x) (we have noted that this func-
tion is admissible), so thdt = 1/nl. Now a(x) = x = b(x), andr, = n. Thus

1 1
— = ——&'n™",
n /2m

which is just Stirling’s formula the other way up!

Example: Bell numbers Let f(x) = exp(exp(x) — 1), so thatf, = B(n)/nl,
whereB(n) is the number of partitions of amset. This function is H-admissible.
Now a(x) = xe“ andb(x) = (x+ x?)eX.
The number, is the smallest positive solution &* = n. In terms of this, we
have
B(I‘l) -~ 1 en/rn—lrrTn7

n! 2m(1+rp)

and so by Stirling’s formula,

B(n) ~ —— (1)”@%—1
V1+r, \ e '

Of course, this is not much use without a good estimate foHowever, for
n = 100, the right-hand side is within4% of B(100).
In fact, it can be shown that

rn = logn—loglogn+ O (Iog Iogn) ,

logn
from which it can be deduced that

logB(n) ~ nlogn—nloglogn—n.
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10.2 The theorem of Meir and Moon

The theorem of Meir and Moon (which has been generalised by Bender) gives the
asymptotics of the coefficients of a power series defined by Lagrange inversion
(compare Chapter 6). Typically we have to find the inverse functioh &etting

@(x) = x/f(x), the inverse functiomy is given by the functional equatiay(y) =
yo(g(y)). Replacingy by x andg by f, the theorem is as follows.

Theorem 10.4 Lety= f(x) = S fnX" satisfy the equation

y=x®(y),

where ® is analytic in some neighbourhood of the origin, witlix) = ¥ anx".
Suppose that the following conditions hold:

(@)ap=1and g >0forn> 0.
(b) gcd{n:a, >0} =1.

(c) There is a positive real number, inside the circle of convergence o,
satisfying
ad’ (a) = d(a).
Then
fr ~ Cnf3/2[3n,
where C= /®(a)/2n®” (a) andB = ®(a)/a = @' (a).

Example: Rooted trees The generating functiop= T*(x) for labelled rooted
trees satisfies
y = xexp(y).

The exponential function converges everywhere, and the solutiorexf(a) =
exp(a) is clearlya = 1, so thaf3 = e andC = /1/2m. Hence the number,; of
labelled rooted trees amvertices satisfies

To — infS/Zen_

n! 21
SinceT: = n"~1 by Cayley’s Theorem, we obtain

nnt+1/2
n! ~ 21
e’] )

in other words, Stirling’s formula.
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10.3 Bender’'s Theorem

Bender’s Theorem generalises the theorem of Meir and Moon by treating a very
much more general class of implicitly defined functions. Thusjll be defined

as a function ok by the equatior (x,y) = 0. In the case of Meir and Moon, we
haveF (x,y) =y —xd(y).

Theorem 10.5 Suppose thaty f(x) is defined implicitly by the equationky) =
0, and let f(x) = S >0 fnX". Suppose that there exist real numb&rasndn such
that

(a) F is analytic in a neighbourhood @&,n);

(b) F(&,n) =0and K(&,n) =0, but K(&,n) # 0 and Ky(&,n) # O (subscripts
denote partial derivatives);

(c) the only solution of kx,y) = Fy(x,y) = 0with [x| <& and|y| <nis(xy) =
(&n).

Then
fn ~ Cn—S/ZE—n’

| &R(&,n)
©= 2rHyy(&,n)

Example: Wedderburn—Etherington numbers Recall from Chapter 3 that the
generating function for these numbers satisfies

where

1
F(x) =x+5(F(0?+ ().
Here we havé= (x,y) =y — x— (y?+g(x))/2, whereg(x) = f(x?), which we re-
gard as a “known” function (using a truncation of its Taylor series to approximate
it).

The equatiorry(&,n) = 0 gives us tha) = 1; the the equatioR (§,n) =0then
givesg(§) = 1— 2€. This equation can be solved numerically (it is the same one
we solved in Chapter 3 to find the radius of convergenci(rf). The remaining
conditions of the theorem can then be verified.
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We obtaing 1 = 2.483.. ., and hence
fo~Cn3/2",

whereC can also be found numerically if desired.

Exercises

10.1. Lets, be the number of permutations {f, ..., n} which are equal to their

inverses. Prove that
sx" NG
2, P\t )

n>0

and use Hayman’s Theorem to show that

o g (5) e
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