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Preface

Combinatorics is a subject which stands in an uneasy relation with the rest of
mathematics, and has often been treated with scorn by traditional mathematicians.
(Many people know Henry Whitehead’s reported remark, “Combinatorics is the
slums of topology”.)

In defence of the subject, several eminent practitioners (notably Gian-Carlo
Rota and Andŕe Joyal) have attempted to take at least part of combinatorics and
re-formulate it as mathematics in the axiomatic, twentieth-century style. This
has led to many important developments (matroid theory, the Möbius function,
species) some of which are touched on here. In my view, though, this approach
has not been completely successful, since combinatorics by its nature escapes any
attempt to define it.

I find more congenial the view eloquently put by someone with impeccable
credentials, Tim Gowers, in his paper “The two cultures of mathematics”. He
argues that, in combinatorics, it istechniqueswhich play the role that big theorems
do in more traditional mathematics.

Accordingly, these notes are not laden with theorems, big or small. If you need
a particular binomial identity or the enumeration of a particular class of graphs,
chances are you won’t find it here. Instead, you may possibly find the technique
which will help you to prove the identity or count the graphs yourself. (I have
been asked by colleages such questions as “How many partially ordered sets can
be obtained from the trivial poset by nesting and crossing?” or “How many orbits
does a finite linear group have onn-tuples of vectors?” You won’t find the answers
here, but you will find the techniques needed to answer these questions.)

If you require a much more complete compendium, you are referred to the
books by Goulden and Jackson and by Stanley listed in the bibliography. Stanley’s
book is particularly rich in exercises, which are the lifeblood of the subject.

These notes began as the course notes for the course MTHM C50, “Enumera-
tive and asymptotic combinatorics”, which I taught at Queen Mary, University of
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London, in the spring of 2003. This is a second course in combinatorics for those
who have already taken the equivalent of the undergraduate course MAS 219. The
syllabus for the course reads:

1. Techniques: Inclusion-exclusion, recurrence relations and gen-
erating functions.

2. Subsets, partitions, permutations: binomial coefficients; parti-
tion, Bell, and Stirling numbers; derangements.q-analogues:
Gaussian coefficients,q-binomial theorem.

3. Linear recurrence relations with constant coefficients.

4. Counting up to group action: Orbit-counting lemma, cycle index
theorem.

5. Posets and M̈obius inversion, M̈obius function of projective space.

6. Asymptotic techniques: Order notation:O, o, ∼. Stirling’s for-
mula. Techniques from complex analysis including Hayman’s
Theorem.

I am grateful to the students on the course for their critical comments and for
debugging the notes. (In particular, a solution by Pablo Spiga to one of the prize
questions is included.) Any remaining errors are, of course, mine. Also, there are
some topics included here which were not in the lecture course.

Peter J. Cameron
April 10, 2003
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Chapter 1

Introduction

This course is about counting. Of course this doesn’t mean just counting a single
finite set. Usually, we have a family of finite sets indexed by a natural numbern,
and we want to findF(n), the cardinality of thenth set in the family.

1.1 What is counting?

There are several kinds of answer to this question:

• An explicit formula (which may be more or less complicated, and in partic-
ular may involve a number of summations).

• A recurrence relation expressingF(n) in terms of values ofF(m) for m< n.

• A closed form for agenerating functionfor F . (The two types of generating
function most often used are theordinary generating function∑F(n)xn,
and theexponential generating function∑F(n)xn/n! .) These are elements
of the ringQ[[x]] of formal power series. They may or may not converge if
a given non-zero complex number is substituted forx. (Formal power series
are discussed further in the next section.)

If a generating function converges, it is possible to find the coefficients by
analytic methods (differentiation or contour integration).

• An asymptotic estimate forF(n) is a functionG(n), typically expressed
in terms of the standard functions of analysis, such thatF(n)−G(n) is of
smaller order of magnitude thanG(n). (If G(n) does not vanish, we can

1



2 CHAPTER 1. INTRODUCTION

write this asF(n)/G(n)→ 1 asn→∞.) We writeF(n)∼G(n) if this holds.
This might be accompanied by an asymptotic estimate forF(n)−G(n), and
so on; we obtain anasymptotic seriesfor F . (The basics of asymptotic
analysis are described further in the third section of this chapter.)

• Related to counting combinatorial objects is the question of generating them.
The first thing we might ask for is a system of sequential generation, where
we can produce an ordered list of the objects. Again there are two possibil-
ities.

If the number of objects isF(n), we might ask for a construction which,
given i with 0≤ i ≤ F(n)−1, produces theith object on the list directly.

Alternatively, we may simply require a method of moving from each object
to the next.

• We could also ask for a method for random generation of an object. If we
have a technique for generating theith object directly, we simply choose a
random number in the range{0, . . . ,F(n)−1} and generate the correspond-
ing object. If not, we have to rely on other methods such as Markov chains.

Here are a few examples. These will be considered in more detail later in the
course.

Example: subsets The number of subsets of{1, . . . ,n} is 2n. Not only is this
a simple formula to write down; it is easy to compute as well. At most 2 log2n
integer multiplications are required.

To see this, writen in base 2:n = 2a1 + 2a2 + · · ·+ 2ar , wherea1 > · · · > ar .
Now we can compute 22

i
for 1≤ i ≤ a1 by a1 successive squarings (noting that

22i+1
=
(

22i
)2

); then 2n = (22a1) · · ·(22ar ) requiresr−1 further multiplications.

There is a simple recurrence relation forF(n) = 2n, namely

F(0) = 1, F(n) = 2F(n−1) for n≥ 1.

Using this,F(n) can be found with justn−1 integer doublings.
The ordinary generating function of the sequence(2n) is 1/(1− 2x), while

the exponential generating function is exp(2x). (I will use exp(x) instead of ex in
these notes, except in some places involving calculus.)

No asymptotic estimate is needed, since we have a simple exact formula.
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Choosing a random subset, or generating all subsets in order, are easily achieved
by the following method. For eachi ∈ {0, . . . ,2n−1}, write i in base 2, producing
a string of lengthn of zeros and ones. Nowj belongs to theith subset if and only
if the jth symbol in the string is 1.

Example: permutations The number of permutations of{1, . . . ,n} is n! , de-
fined as usual as the product of the natural numbers from 1 ton. This formula is
not so satisfactory, involving ann-fold product. It can be expressed in other ways,
as a sum:

n! =
n

∑
k=0

(−1)n−k
(

n
k

)
(n−k)n,

or as an integral:

n! =
∫ ∞

0
xne−x dx.

Neither of these is easier to evaluate than the original definition.
The recurrence relation forF(n) = n! is

F(0) = 1, F(n) = nF(n−1) for n≥ 1.

This leads to the same method of evaluation as we saw earlier.
The ordinary generating function forF(n) = n! fails to converge anywhere.

The exponential generating function is 1/(1−x), convergent for|x|< 1.
As an example to show that convergence is not necessary for a power series to

be useful, let (
1+ ∑

n≥1
n!xn

)−1

= 1−∑
n≥1

c(n)xn.

Thenc(n) is the number of connected permutations on{1, . . . ,n}. (A permutation
π is connectedif there does not existk with 1 ≤ k ≤ n− 1 such thatπ maps
{1, . . . ,k} to itself.)

An asymptotic estimate forn! is given byStirling’s formula:

n! ∼
√

2πn
(n

e

)n
.

It is possible to generate permutations sequentially, or choose a random per-
mutation, by a method similar to that for subsets.



4 CHAPTER 1. INTRODUCTION

Example: derangements A derangement is a permutation with no fixed points.
Let d(n) be the number ofderangementsof n.

There is a simple formula ford(n): it is the nearest integer ton!/e. This is
also satisfactory as an asymptotic expression ford(n); we can supplement it with
the fact that|d(n)−n!/e|< 1/(n+1) for n> 0.

This formula is not very good for calculation, since it requires accurate knowl-
edge of e and operations of real (rather than integer) arithmetic. There are, how-
ever, two recurrence relations ford(n); the second, especially, leads to efficient
calculation:

d(0) = 1, d(1) = 0, d(n) = (n−1)(d(n−1)+d(n−2)) for n≥ 2;

d(0) = 1, d(n) = nd(n−1)+(−1)n for n≥ 1.

The ordinary generating function ford(n) fails to converge, but the exponen-
tial generating function is equal to exp(−x)/(1−x).

Since the probability that a random permutation is a derangement is about 1/e,
we can choose a random derangement as follows: repeatedly choose a random
permutation until a derangement is obtained. The expected number of choices
necessary is about e.

Example: partitions Thepartition number p(n) is the number of non-increasing
sequences of positive integers with sumn. There is no simple formula forp(n).
However, quite a bit is known about it:

• The ordinary generating function is

∑
n≥0

p(n)xn = ∏
k≥1

(1−xk)−1.

• There is a recurrence relation:

p(n) = ∑(−1)k−1p(n−k(3k−1)/2),

where the sum is over all non-zero values ofk, positive and negative, for
whichn−k(3k−1)/2≥ 0. Thus,

p(n) = p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · · ,

where there are about
√

8n/3 terms in the sum.
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• The asymptotics ofp(n) are rather complicated, and were worked out by
Hardy, Littlewood, and Rademacher:

p(n)∼ 1

4n
√

3
eπ
√

2n/3

(more precise estimates, including a convergent series representation, exist).

Example: set partitions The Bell number B(n) is the number of partitions of
the set{1, . . . ,n}. Again, no simple formula is known, and the asymptotics are
very complicated. There is a recurrence relation,

B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k),

and the exponential generating function is

∑ B(n)xn

n!
= exp(exp(x)−1).

Based on the recurrence one can derive a sequential generation algorithm.

1.2 Formal power series

Let R be a commutative ring with identity. Aformal power seriesoverR is just a
function from the natural numbers toR; that is, an infinite sequence

r0, r1, r2, . . . , rn, . . . (1.1)

of elements ofR. We define addition and multiplication of such infinite series to
make the set of formal power series into a ring. The definitions look more natural
if we write the sequence (1.1) as

r0 + r1x+ r2x2 + · · ·+ rnxn + · · · (1.2)

The symbolx in this expression is just a dummy with no meaning; the “power”
of x allows us to keep track of our place in the series. No infinite summation is
actually involved! We denote the set of all formal power series byR[[x]]. If we



6 CHAPTER 1. INTRODUCTION

had used a different symbol, sayy, in the expression (1.2), we would writeR[[y]]
instead. We often abbreviate (1.2) to

∑
n≥0

rnxn. (1.3)

A polynomialis simply a formal power series in which all but finitely many
of the terms are zero. Thedegreeof a polynomial is the index of the last non-zero
term. The set of polynomials is denoted byR[x].

We define addition and multiplication of formal power series by(
∑
n≥0

rnxn

)
+

(
∑
n≥0

snxn

)
= ∑

n≥0
(rn +sn)xn,(

∑
n≥0

rnxn

)
·

(
∑
n≥0

snxn

)
= ∑

n≥0
tnxn,

where

tn =
n

∑
k=0

rksn−k.

Note that these operations involve only finite additions and multiplications of ring
elements.

With these operations,R[[x]] is a ring, andR[x] a subring. We don’t stop to
prove this, as the verifications are routine.

Various other apparently “infinitary” operations can be defined which only
involve finite sums and products. For example,

• Suppose thatf0, f1, . . .∈R[[x]] have the property that the index of the small-
est non-zero term infn tends to infinity withn. Then

∑
n≥0

fn

is defined. In particular, iffn = rnxn, the condition is satisfied, and this
definition of the infinite sum agrees with our notation for the formal power
series∑ rnxn.

• With the same conditions,

∏
n≥0

(1+ fn)
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is defined: it is the sum of terms, each of which is the product of finitely
many fn (taking 1 from the remaining factors in the infinite product); and
by assumption only finitely many such products contribute to the coefficient
of xn for anyn.

• Let f andg be formal power series in which the constant term ofg is zero.
Then the result of substitutingg into f is defined: if f (x) = ∑ rnxn, then
f (g(x)) = ∑ rngn.

• We can differentiate formal power series. The rule is, as you would expect,

d
dx ∑

n≥0
anxn = ∑

n≥1
nanxn−1.

(No calculus needed, and no need to wonder if a function has a derivative!)
The usual calculus rules for differentiating sums, products, and composite
functions (the chain rule) are valid. Note that, if we differentiaten times
and putx = 0 (that is, take the constant term), we obtainn!an.

A result which is important for enumeration is the following, though we are
more concerned with the method of proof than the statement.

Proposition 1.1 A formal power series is invertible if and only if its constant term
is invertible.

Proof Suppose thatf = ∑ rnxn andg = ∑snxn satisfy f g = 1. Considering the
term of degree zero, we see thatr0s0 = 1, so thatr0 is invertible.

Conversely, suppose thatr0s0 = 1, wheref = ∑ rnxn. The inverseg = ∑snxn

must satisfy
n

∑
k=0

rksn−k = 0

for n> 0; so

sn =−s0

n

∑
k=1

rksn−k.

Thus the coefficients ofg satisfy a linear recurrence relation, and can be deter-
mined recursively.

In general, knowledge of the inverse of a formal power series is equivalent to
knowledge of a linear recurrence relation for its coefficients.
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Example: Fibonacci numbers Let f (x) = 1−x−x2. Then the coefficients of
the inverse(1−x−x2)−1 = ∑snxn satisfy the recurrence

s0 = s1 = 1, sn = sn−1 +sn−2 for n≥ 2;

in other words, they are the Fibonacci numbers.

For the purposes of enumeration, the coefficients of formal power series are
usually integers or rational numbers. Often it is convenient to consider them as
real numbers, and apply to them the processes of analysis.

For example, considering the Fibonacci numbers above, letα and β be the
roots of the quadratic equationz2− z− 1 = 0: thus,α = (

√
5+ 1)/2 andβ =

(−
√

5+1)/2. Then

1
1−x−x2 =

1
α−β

(
α

1−αx
− β

1−βx

)
=

1√
5

(
∑
n≥0

αn+1xn−∑
n≥0

βn+1xn

)
;

so thenth Fibonacci number is

Fn =
1√
5

(αn+1−βn+1).

Since|β|< 1, we see thatFn is the nearest integer toαn+1/
√

5.

Particular formal power series of great importance include

exp(x) = ∑
n≥0

xn

n!
,

log(1+x) = ∑
n≥1

(−1)n−1xn

n
.

1.3 Asymptotics

We introduce the notation for describing the asymptotic behaviour of functions
here, though we will not do any serious asymptotic estimation for a while.

Let F andG be functions of the natural numbern. For convenience we assume
thatG does not vanish. We write
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• F = O(G) if F(n)/G(n) is bounded above asn→ ∞;

• F = Θ(G) if F(n)/G(n) is bounded below asn→ ∞;

• F = o(G) if F(n)/G(n)→ 0 asn→ ∞;

• F ∼G if F/G→ 1 asn→ ∞.

Typically, F is a combinatorial enumeration function, andG a combination of
standard functions of analysis. For example, Stirling’s formula gives the asymp-
totics of the number of permutations of{1, . . . ,n}. We give the proof as an illus-
tration.

Theorem 1.2

n! ∼
√

2πn
(n

e

)n

Proof Consider the graph of the functiony = logx betweenx = 1 andx = n,
together with the piecewise linear functions shown in Figure 1.1.
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Figure 1.1: Stirling’s formula

Let f (x) = logx, let g(x) be the function whose value is logm for m≤ x<
m+1, and leth(x) be the function defined by the polygon with vertices(m, logm),
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for 1≤m≤ n. Clearly∫ n

1
g(x) dx = log2+ · · ·+ logn = logn! .

The difference between the integrals ofg and h is the sum of the areas of
triangles with base 1 and total height logn; that is,1

2 logn.
Some calculus1 shows that the difference between the integrals off and g

tends to a finite limitc asn→ ∞.
Finally, a simple integration shows that∫ n

1
f (x) dx = nlogn−n+1.

We conclude that

logn! = nlogn−n+ 1
2 logn+(1−c)+o(1),

so that

n! ∼ Cnn+1/2

en .

To identify the constantC, we can proceed as follows. Consider the integral

In =
∫ π/2

0
sinnxdx.

Integration by parts shows that

In =
n−1

n
In−2,

1Let F(x) = f (x)−g(x). The convexity of logx shows thatF(x)≥ 0 for all x∈ [m,m+1]. For
an upper bound we use the fact, a consequence of Taylor’s Theorem, that

logx≤ logm+
x−m

m
≤ logm+

1
m

for x∈ [m,m+1]. Then

F(x) = logx− logm− log

(
1+

1
m

)
(x−m)≤ 1

m
− log

(
1+

1
m

)
≤ 1

2m2 ,

where the last inequality comes from another application of Taylor’s Theorem which yields
log(1+x)≥ x−x2/2 for x∈ [0,1]. Now ∑(1/m2) converges, so the integral is bounded.
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and hence

I2n =
(2n)! π

22n+1(n!)2 ,

I2n+1 =
22n(n!)2

(2n+1)!
.

On the other hand,
I2n+2≤ I2n+1≤ I2n,

from which we get

(2n+1)π
4(n+1)

≤ 24n(n!)4

(2n)!(2n+1)!
≤ π

2
,

and so

lim
n→∞

24n(n!)4

(2n)!(2n+1)!
=

π
2
.

Puttiingn! ∼Cnn+1/2/en in this result, we find that

C2e
4

lim
n→∞

(
1+

1
2n

)−(2n+3/2)

=
π
2
,

so thatC =
√

2π.

The last part of this proof is taken from Alan Slomson,An Introduction to
Combinatorics, Chapman and Hall 1991. It is more-or-less the proof of Wallis’
product formula forπ.

The seriesG0(n)+G1(n)+G2(n)+ · · · is anasymptotic seriesfor F(n) if

F(n)−
i−1

∑
j=0

G j(n)∼Gi(n)

for i ≥ 0. (So in particularF(n)∼G0(n), F(n)−G0(n)∼G1(n), and so on. Note
thatGi(n) = o(Gi−1(n)) for all i.)

Warnings:

• an asymptotic series is not necessarily convergent;
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• it is not necessarily the case that taking more terms in the series gives a
better approximation toF(n) for a fixedn.

For example, Stirling’s formula can be extended to an asymptotic series forn!,
namely

√
2πn

(n
e

)n
(

1+
1

12n
+

1
288n2 + · · ·

)
.

Regarding a generating function for a sequence as a function of a real or com-
plex variable is a powerful method for studying the asymptotic behaviour of the
sequence. We will see examples of this later; here is a simple observation.

Suppose thatA(z) = ∑anzn defines a function which is analytic in some neigh-
bourhood of the origin in the complex plane. Suppose that the smallest modulus

of a singularity ofA(z) is R. Then limsupa1/n
n = 1/R, soan is bounded by(c+ε)n

but not by(c− ε)n for largen, wherec = 1/R.
For example, we saw that the generating function of the Fibonacci numbers is

1/(1−z−z2). So these numbers grow roughly likeαn, whereα is the reciprocal
of the smaller root of 1−z−z2 = 0, namelyα = (1+

√
5)/2.

On the other hand, ifA(z) is analytic everywhere, thenan≤ εn for n> n0(ε),
for any positiveε. Indeed,an = o(εn) for any positiveε.

For example, ifB(n) is thenth Bell number, then

∑
n≥0

B(n)zn

n!
= eez−1,

which is analytic everywhere. SoB(n) = o(εnn!), for any positiveε.

1.4 Complexity

A formula like 2n (the number of subsets of ann-set) can be evaluated quickly for
a given value ofn. A more complicated formula with multiple sums and products
will take longer to calculate. We could regard a formula which takes more time
to evaluate than it would take to generate all the objects and count them as being
useless in practice, even if it has theoretical value.

Traditional computational complexity theory refers to decision problems, where
the answer is just “yes” or “no” (for example, “Does this graph have a Hamilto-
nian circuit?”). The size of an instance of a problem is measured by the number of
bits of data required to specify the problem (for example,n(n−1)/2 bits to spec-
ify a graph onn vertices). Then the time complexity of a problem is the function
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f , where f (n) is the maximum number of steps required by a Turing machine to
compute the answer for an instance of sizen. To allow for variations in the format
of the input data and in the exact specification of a Turing machine, complexity
classes are defined with a broad brush: for example,P (or “polynomial-time”)
consists of all problems whose time complexity is at mostnc for some constantc.
(For more details, see Garey and Johnson,Computers and Intractability.)

For counting problems, the answer is a number rather than a single Boolean
value (for example, “How many Hamiltonian circuits does this graph have?”).
Complexity theorists have defined the complexity class#P (“number-P”) for this
purpose.

Even this class is not really appropriate for counting problems of the type
we mostly consider. Consider, for example, the question “How many partitions
does ann-set have?” The input data is the integern, which (if written in base 2)
requires onlym = d1+ log2ne bits to specify. The question asks us to calculate
the Bell numberB(n), which is greater than 2n−1 for n> 2, and so it takes time
exponential inm simply to write down the answer! To get round this difficulty,
it is usual to pretend that the size of the input data is actuallyn rather than logn.
(We can imagine thatn is given by writingn consecutive 1s on the input tape of
the Turing machine, that is, by writingn as a tally rather than in base 2.)

We have seen that computing 2n (the number of subsets of ann-set) requires
only O(logn) integer multiplications. But the integers may have as many asn
digits, so each multiplication takesO(n) Turing machine steps. Similarly, the so-
lution to a recurrence relation can be computed in time polynomial inn, provided
that each individual computation can be.

On the other hand, a method which involves generating and testing every sub-
set or permutation will take exponentially long, even if the generation and testing
can be done efficiently.

A notion of complexity relevant to this situation is the polynomial delay model,
which asks that the time required to generate each object should be at mostnc for
some fixedc, even if the number of objects to be generated is greater than poly-
nomial.

Of course, it is easy to produce combinatorial problems whose solution grows
faster than, say, the exponential of a polynomial. For example, how many inter-
secting families of subsets of ann-set are there? The total number, forn odd, lies
between 22

n−1
and 22

n
, so that even writing down the answer takes time exponen-

tial in n.
We will not consider complexity questions further in this course.
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Exercises

1.1. Prove directly that(1−x)−1 = ∑n≥0xn (in the ring of formal power series).

1.2. Suppose that a collection of complex power series all define functions ana-
lytic in some neighbourhood of the origin, and satisfy some identity there. Are we
allowed to conclude that this identity holds between the series regarded as formal
power series?

1.3. Suppose thatA(x), B(x) andC(x) are the exponential generating functions
of sequences(an), (bn) and(cn) respectively. Show thatA(x)B(x) = C(x) if and
only if

cn =
n

∑
k=0

(
n
k

)
akbn−k,

where (
n
k

)
=

n!
k! (n−k)!

.

1.4. Show that the identity exp(log(1+ x)) = 1+ x between formal power series
is equivalent to the equation

n

∑
k=1

(−1)k

k!
T(n,k) = 0,

for n> 1, whereT(n,k) is computed as follows: writen as an ordered sum ofk
positive integersa1, . . . ,ak in all possible ways; for each such expression compute
the producta1 · · ·ak; and sum the reciprocals of the resulting numbers.

What is the analogous interpretation of the identity log(1+(exp(x)−1)) = x?

1.5. Show that the identity exp(x+ y) = exp(x)exp(y) is equivalent to the Bino-
mial Theorem for all positive integer exponents.

1.6. Prove thatnk = o(cn) for any constantsk> 0 andc> 1, and that logn= o(nε)
for anyε> 0.

1.7. Let f (n) be the number of partitions of ann-set into parts of size 2.

(a) Prove that

f (n) =
{

0 if n is odd;
1·3·5· · ·(n−1) if n is even.
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(b) Prove that the exponential generating function for the sequence( f (n)) is
exp(x2).

(c) Prove that

f (n)∼
√

2

(
2m
e

)m

for n = 2m.

1.8. Show that it is possible to generate all subsets of{1, . . . ,n} successively in
such a way that each subset differs from its predecessor by the addition or removal
of precisely one element. (Such a sequence is known as aGray code.)
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Chapter 2

Subsets, partitions and permutations

The basic objects of combinatorics are subsets, partitions and permutations. In
this chapter, we consider the problem of counting these. The counting functions
have two parameters:n, the size of the underlying set; andk, a measure of the
object in question (the number of elements of a subset, parts of a partition, or
cycles of a permutation respectively).

2.1 Subsets

The number ofk-element subsets of the set{1, . . . ,n} is thebinomial coefficient(
n
k

)
=

{0 if k< 0 ork> n;
n(n−1) · · ·(n−k+1)

k(k−1) · · ·1
if 0 ≤ k≤ n.

For, if 0≤ k≤ n, there aren(n−1) · · ·(n−k) ways to choose in orderk distinct
elements from{1, . . . ,n}; eachk-element subset is obtained fromk! such ordered
selections. The result fork< 0 ork> n is clear.

Proposition 2.1 The recurrence relation for the binomial coefficients is(
n
0

)
=
(

n
n

)
= 1,

(
n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
for 0< k< n.

Proof Partition thek-element subsets into two classes: those containingn (which
have the form{n}∪L, whereL is a(k−1)-element subset of{1, . . . ,n−1}, and

17
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so are
(n−1

k−1

)
in number); and those not containingn (which arek-element subsets

of {1, . . . ,n−1}, and so are
(n−1

k

)
in number).

TheBinomial Theoremfor natural number exponentsn asserts:

Proposition 2.2 (x+y)n =
n

∑
k=0

(
n
k

)
xn−kyk.

Proof The proof is straightforward. On the left we have the product

(x+y)(x+y) · · ·(x+y) (n factors);

multiplying this out we get the sum of 2n terms, each of which is obtained by
choosingy from a subset of the factors andx from the remainder. There are

(n
k

)
subsets of sizek, and each contributes a termxn−kyk to the sum, fork = 0, . . . ,n.

The Binomial Theorem can be looked at in various ways. From one point of
view, it gives the generating function for the binomial coefficients

(n
k

)
for fixedn:

∑
k≥0

(
n
k

)
yk = (1+y)n.

Since the binomial coefficients have two indices, we could ask for a two-variable
generating function:

∑
n≥0

∑
k≥0

(
n
k

)
xnyk = ∑

n≥0
xn(1+y)n

=
1

1−x(1+y)
.

If we expand this in powers ofy, we obtain

1
(1−x)−xy

=
1

1−x
· 1
1− (x/(1−x))y

= ∑
k≥0

(
xk

(1−x)k+1

)
yk,

so that we have the following:
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Proposition 2.3 ∑
n≥k

(
n
k

)
xn =

xk

(1−x)k+1 .

Our next observation on the Binomial Theorem concernsPascal’s Triangle,
the triangle whosenth row contains the numbers

(n
k

)
for 0 ≤ k ≤ n. (Despite

the name, this triangle was not invented by Pascal but occurs in earlier Chinese
sources. Figure 2.1 shows the triangle as given in Chu Shi-Chieh’sSsu Yuan Ÿu
Chien, dated 1303.) The recurrence relation shows that each entry of the triangle
is the sum of the two above it.

Figure 2.1: Chu Shi-Chieh’s Triangle

At risk of making the triangle asymmetric, we turn it into a matrixB = (bnk),
wherebnk =

(n
k

)
for n,k≥ 0. This infinite matrix is lower triangular, with ones on

the diagonal. Now when two lower triangular matrices are multiplied, each term
of the product is only a finite sum: the(n,k) entry ofBC is ∑mbnmcmk, and this is
non-zero only fork≤m≤ n. In particular, we can ask “What is the inverse ofB?”

The signed matrix of binomial coefficientsis the matrixB∗ with (n,k) entry
(−1)n−k

(n
k

)
. That is, it is the same asB except that signs of alternate terms are

changed in a chessboard pattern. Now:
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Proposition 2.4 The inverse of the matrix B of binomial coefficients is the matrix
B∗ of signed binomial coefficients.

Proof We consider the vector space of polynomials (overR). There is a natural
basis consisting of the polynomials 1,x,x2, . . .. Now, since

(1+x)n = ∑
k

(
n
k

)
xk,

we see thatB represents the change of basis to 1,y,y2, . . ., wherey = 1+x. Hence
the inverse ofB represents the basis change in the other direction, given byx =
y−1. Since

(y−1)n = ∑
k

(−1)n−k
(

n
k

)
yk,

the matrix of this basis change isB∗.

The other aspect of the Binomial Theorem is its generalisation to arbitrary
real exponents (due to Isaac Newton). This depends on a revised definition of the
binomial coefficients.

Let a be an arbitrary real (or complex) number, andk a non-negative integer.
Define (

a
k

)
=

a(a−1) · · ·(a−k+1)
k!

.

Note that this agrees with the previous definition in the case whenn is a non-
negative integer, since ifk> n then one of the factors in the numerator is zero. We
do not define this version of the binomial coefficients ifk is not a natural number.

Now theBinomial Theoremasserts that, for any real numbera, we have

(1+x)a = ∑
k≥0

(
a
k

)
xk. (2.1)

Is this a theorem or a definition? If we regard it as an equation connecting real
functions (where the left-hand side is defined by

(1+x)a = exp(alog(1+x)), (2.2)

and the series on the right-hand side is convergent for|x|< 1), it is a theorem, and
was understood by Newton in this form. As an equation connecting formal power
series, we may follow the same approach, or we may instead choose to regard
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(2.1) as the definition and (2.2) as the theorem, according to taste. Whichever
approach we take, we need to know that the laws of exponents hold:

(1+x)a · (1+y)a = (1+(x+y+xy))a,

(1+x)a+b = (1+x)a · (1+x)b,

(1+x)ab = ((1+x)a)b .

If (2.1) is our definition, these verifications will reduce to identities between bino-
mial coefficients; if (2.2) is the definition, they depend on properties of the power
series for exp and log, defined as in the last chapter.

Binomial coefficients can be estimated by using Stirling’s formula. (See Ex-
ercise 2.4, for example.)

The Central Limit Theoremfrom probability theory can also be used to get
estimates for binomial coeffients. Suppose that a fair coin is tossedn times. Then
the probability of obtainingk heads is equal to

(n
k

)
/2n. Now the number of heads

is a binomial random variableX; so we have

P(X = k) =
(

n
k

)/
2n. (2.3)

According to the Central Limit Theorem, ifn is large thenX is approximated
by a normal random variableY with the same expected valuen/2 and variance
n/4. The probability density function ofY is given by

fY(y) =
1√

πn/2
e2(k−n/2)2/n. (2.4)

If k = n/2+ O(
√

n) andn→ ∞, then a precise statement of the Central Limit
Theorem shows that (2.4) gives an asymptotic formula for (2.3). In particular,
whenk = n/2, we obtain the result of Exercise 2.4.

2.2 Partitions

The Bell number B(n) is the number of partitions of the set{1, . . . ,n}. There
is a related “unlabelled” counting numberp(n), the partition number, which is
the number of partitions of the numbern (that is, lists in non-increasing order of
positive integers with sumn). Thus, given any set partition, the list of sizes of its
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parts is a number partition; and two set partitions are equivalent under relabelling
the elements of the underlying set (that is, under permutations of{1, . . . ,n}) if and
only if the corresponding number partitions are equal.

What would be the analogous “unlabelled” counting function for subsets? Two
subsets of{1, . . . ,n} are equivalent under permutations if and only if they have
the same cardinality; so the unlabelled counting functionf for subsets would be
simply f (n) = n+1.

Set partitions

The Stirling numbers of the second kind, denoted byS(n,k), are defined by the
rule thatS(n,k) is the number of partitions of{1, . . . ,n} into k parts if 1≤ n≤ k,
and zero otherwise. Clearly we have

n

∑
k=1

S(n,k) = B(n),

where the Bell numberB(n) is the total number of partitions of{1, . . . ,n}.

Proposition 2.5 The recurrence relation for the Stirling numbers is

S(n,1) = S(n,n) = 1, S(n,k) = S(n−1,k−1)+kS(n−1,k) for 1< k< n.

Proof We split the partitions into two classes: those for which{n} is a single part
(obtained by adjoining this part to a partition of{1, . . . ,n−1} into k−1 parts),
and the remainder (obtained by taking a partition of{1, . . . ,n− 1} into k parts,
selecting one part, and addingn to it).

Proposition 2.6 (a) The Stirling numbers satisfy the recurrence

S(n,k) =
n−1

∑
i=1

(
n−1
i−1

)
S(n− i,k−1).

(b) The Bell numbers saisfy the recurrence

B(n) =
n

∑
i=1

(
n−1
i−1

)
B(n− i).
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Proof Consider the part containingn of an arbitrary partition withk parts; sup-
pose that it has cardinalityi. Then there are

(n−1
k−1

)
choices for the remainingi−1

elements in this part, andS(n− i,k−1) partitions of the remainingn− i elements
into k−1 parts. This proves (a); the proof of (b) is almost identical.

The Stirling numbers also have the following property. Let(x)k denote the
polynomialx(x−1) · · ·(x−k+1).

Proposition 2.7 xn =
n

∑
k=1

S(n,k)(x)k.

Proof We prove this first whenx is a positive integer. We take a setX with x
elements, and count the number ofn-tuples of elements ofx. The total number
is of coursexn. We now count them another way. Given ann-tuple (x1, . . . ,xn),
we define an equivalence relation on{1, . . . ,n} by i ≡ j if and only if xi = x j .
If this relation hask different classes, then there arek distinct elements among
x1, . . . ,xn, sayy1, . . . ,yk (listed in order). The choice of the partition and thek-
tuple (y1, . . . ,yk) uniquely determines(x1, . . . ,xn). So the number ofn-tuples is
given by the right-hand expression also.

Now this equation between two polynomials of degreen holds for any positive
integerx, so it must be a polynomial identity.

Stirling numbers are involved in the substitution of exp(x)−1 for x in formal
power series. The result depends on the following lemma:

Lemma 2.8

∑
n≥k

S(n,k)xn

n!
=

(exp(x)−1)k

k!
.

Proof The proof is by induction onk, the result being true whenk = 1 since
S(n,1) = 1. Suppose that it holds whenk = l − 1. Then (settingS(n,k) = 0 if
n< k) we have

(exp(x)−1)l

l !
=

1
l
· (exp(x)−1) · (exp(x)−1)l−1

(l −1)!

=
1
l

(
∑
n≥1

xn

n!

)
·

(
∑
n≥1

S(n, l −1)xn

n!

)
.
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The coefficient ofxn/n! here is

n!
l

n−1

∑
i=1

1
i!
· S(n− i, l −1)

(n− i)!
=

1
l

n−1

∑
i=1

(
n
i

)
S(n− i, l −1)

=
1
l
(S(n+1, l)−S(n, l −1)),

using the recurrence relation of Proposition 2.6(a). Finally, the recurrence relation
of Proposition 2.5 shows that this isS(n, l), as required.

Proposition 2.9 Let (a0,a1, . . .) and (b0,b1, . . .) be two sequences of numbers,
with exponential generating functions A(x) and B(x) respectively. Then the fol-
lowing two conditions are equivalent:

(a) b0 = a0 and bn = ∑n
k=1S(n,k)ak for n≥ 1;

(b) B(x) = A(exp(x)−1).

Proof Suppose that (a) holds. Without loss of generality we may assume that
a0 = b0 = 0. Then

B(x) = ∑
n≥1

bnxn

n!

= ∑
n≥1

xn

n!

n

∑
k=1

S(n,k)ak

= ∑
k≥1

ak ∑
n≥k

S(n,k)xn

n!

= ∑
k≥1

ak(exp(x)−1)k

k!

= A(exp(x)−1),

by Lemma 2.8.
The converse is proved by reversing the argument.

Corollary 2.10 The exponential generating function for the Bell numbers is

∑
n≥0

B(n)xn

n!
= exp(exp(x)−1).

Proof Apply Proposition 2.9 to the sequence withan = 1 for all n; or sum the
equation of Lemma 2.8 overk.
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Number partitions

The partition numberp(n) is the number of partitions of ann-set, up to permuta-
tions of the set.

The key to evaluatingp(n) is its generating function:

∑
n≥0

p(n)xn =

(
∏
k≥1

(1−xk)

)−1

.

For (1− xk)−1 = 1+ xk + x2k + · · ·. Thus a term inxn in the product, with coef-
ficient 1, arises from every expressionn = ∑ckk, where theck are non-negative
integers, all but finitely many equal to zero. This number isp(n), since we can
regardn = ∑ckk as an alternative expression for a partition ofn.

We will use this in the next chapter to give a recurrence relation forp(n).

2.3 Permutations

A permutation of{1, . . . ,n} is a bijective function from this set to itself.
In the nineteenth century, a more logical terminology was used. Such a func-

tion was called a substitution, while a permutation was a sequence(a1,a2, . . . ,an)
containing each element of the set precisely once. Since there is a natural or-
dering of{1,2, . . . ,n}, there is a one-to-one correspondence between “permuta-
tions” and “substitutions”: the sequence(a1,a2, . . . ,an) corresponds to the func-
tion π : i 7→ ai , for i = 1, . . . ,n.

The correspondence between permutations and total orderings of ann-set has
profound consequences for a number of enumeration problems. For now we re-
turn to the usage “permutation = bijective function”. We refer to the sequence
(a1, . . . ,an) as thepassive formof the permutationπ in the last paragraph; the
function is theactive formof the permutation.

Following the conventions of algebra, we write a permutation on the right of
its argument, so thatiπ is the image ofi under the permutationπ (that is, theith
term of the passive form ofπ).

The set of permutations of{1, . . . ,n}, with the operation of composition, is a
group, called thesymmetric group Sn. Products, identity, and inverses of permu-
tations always refer to the operations in this group.
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Unlabelled permutations

As for partitions, we can consider unlabelled or labelled permutations, that is,
permutations of ann-set or equivalence classes of permutations. We dispose of
unlabelled permutations first.

Two permutationsπ1 andπ2 of {1, . . . ,n} are equivalent if there is a bijection
σ of {1, . . . ,n} (that is, a permutation!) such that, for alli ∈ {1, . . . ,n}, we have

(iσ)π2 = jσ if and only if iπ1 = j,

in other words,iσπ2 = iπ1σ for all i, so thatπ2 = σ−1π1σ. Thus, this equiva-
lence relation is the algebraic relation ofconjugacyin the symmetric group; the
unlabelled permutations are conjugacy classes ofSn.

Now recall thecycle decompositionof permutations:

Any permutation of a finite set can be written as the disjoint union
of cycles, uniquely up to the order of the factors and the choices of
starting points of the cycles.

Moreover,

Two permutations are equivalent if and only if the lists of cycle lengths
of the two permutations (written in non-increasing order) are equal.

Thus equivalence classes of permutations correspond to partitions of the inte-
ger n. This means that the enumeration theory for “unlabelled permutations” is
the same as that for “unlabelled partitions”, discussed in the last section.

Labelled permutations

Theparity of a permutationπ of {1, . . . ,n} is defined as the parity ofn−k, where
k is the number of cycles ofπ (in its decomposition as a product of distinct cycles).
Thesignof π is (−1)p, wherep is the parity ofπ.

Parity and sign have various important algebraic properties. For example,

• the parity ofπ is equal to the parity of the number of factors in any expres-
sion forπ as a product of disjoint cycles;

• parity is a homomorphism from the symmetric groupSn to the groupZ/(2)
of integers mod 2, and hence sign is a homomorphism to the multiplicative
group{±1}.



2.3. PERMUTATIONS 27

• Forn> 1, these homomorphisms are onto; their kernel (the set of permuta-
tions of even parity, or of sign+1) is a normal subgroup of index 2 inSn,
called thealternating group An.

The Stirling numbers of the first kindare defined by the rule thats(n,k) is
(−1)n−k times the number of permutations of{1, . . . ,n} havingk cycles. Some-
times the number of such permutations is referred to as theunsigned Stirling num-
ber.

Clearly we have
n

∑
k=1

|s(n,k)|= n! .

Slightly less obviously,
n

∑
k=1

s(n,k) = 0

for n> 1. The algebraic proof of this depends on the fact that sign is a homo-
morphism to{±1}, so that the two values are taken equally often. We will see a
combinatorial proof later.

Proposition 2.11 The recurrence relation for the Stirling numbers is

s(n,1) = (−1)n−1(n−1)!, s(n,n) = 1,

s(n,k) = s(n−1,k−1)− (n−1)s(n−1,k) for 1< k< n.

Proof We split the permutations into two classes: those for which(n) is a single
part (obtained by adjoining this cycle to a permutation of{1, . . . ,n−1} with k−1
cycles), and the remainder (obtained by taking a permutation of{1, . . . ,n− 1}
with k cycles and interpolatingn at some position in one of the cycles). The
second construction, but not the first, changes the sign of the permutations.

To see that there are(n−1)! permutations with a single cycle, note that if we
choose to start the cycle with 1 then the remainingn−1 elements can be written
into the cycle in any order.

Note that, if we instead defines(n,0) ands(n,n+1) to be equal to 0 forn≥ 1,
then the recurrence holds also fork = 1 andk = n. We use this below.

The generating function is given by the following result:
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Proposition 2.12
n

∑
k=1

s(n,k)xk = (x)n.

Proof The result is clear forn = 1, Suppose that it holds forn = m−1.

m

∑
k=1

s(m,k)xk =
m

∑
k=1

s(m−1,k−1)xk−
m

∑
k=1

(m−1)s(m−1,k)xk

= (x−m+1)(x)m−1

= (x)m.

Note that substitutingx = 1 into this equation shows that∑k s(n,k) = 0 for
n≥ 2.

Corollary 2.13 The triangular matrices S1 and S2 whose entries are the Stirling
numbers of the first and second kinds are inverses of each other.

Proof Propositions 2.7 and 2.12 show thatS1 andS2 are the transition matrices
between the bases(xn : n≥ 1) and((x)n n≥ 1) of the space of real polynomials
with constant term zero.

Proposition 2.14 Let (a0,a1, . . .) and (b0,b1, . . .) be two sequences of numbers,
with exponential generating functions A(x) and B(x) respectively. Then the fol-
lowing two conditions are equivalent:

(a) b0 = a0 and bn = ∑n
k=1s(n,k)ak for n≥ 1;

(b) B(x) = A(log(1+x)).

Proof This is the “inverse” of Proposition 2.9.

We have counted permutations by number of cycles. A more refined count is
by the list of cycle lengths.

Let ck(π) be the number ofk-cycles in the cycle decomposition ofπ.

Proposition 2.15 The size of the conjugacy class ofπ in Sn is

n!

∏k kck(π)ck(π)!
.



2.3. PERMUTATIONS 29

Proof Write out the pattern for the cycle structure of a permutation withck(π)
cycles of lengthk for all k, leaving blank the entries in the cycles. There are
n! ways of entering the numbers 1, . . . ,n in the pattern. However, each cycle of
lengthk can be written ink different ways, since the cycle can start at any point;
and the cycles of lengthk can be written in any of theck(π)! possible orders. So the
number of ways of entering the numbers 1, . . . ,n giving rise to each permutation
in the conjugacy class is∏kck(π)ck(π)! .

Thecycle indexof the symmetric groupSn is the generating function for the
numbersck(π), for k = 1, . . . ,n. By convention it is normalised by dividing byn!.
Thus,

Z(Sn) = ∑
π∈Sn

n

∏
k=1

sck(π)
k .

Because of the normalisation, this can be thought of as the probability gener-
ating function for the cycle structure of a random permutation: that is, the coef-
ficient of the monomial∏sak

k (where∑kck = n) is the probability that a random
permutationπ hasck(π) = ak for k = 1, . . . ,n — this is

1

∏k kakak!
.

One result which we will meet later is the following. We adopt the convention
thatZ(S0) = 1.

Proposition 2.16 ∑
n≥0

Z(Sn) = exp

(
∑
k≥1

sk

k

)
.

Proof The left-hand side is equal to

∑
n≥0

∑
∑ak=n

∏
k≥1

sak
k

kakak!
= ∑

a1,a2,...
∏
k≥1

sak
k

kakak!

= ∏
k≥1

∑
a≥0

sa
k

kaa!

= ∏
k≥1

exp
(sk

k

)
= exp

(
∑
k≥1

sk

k

)
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as required. (The sum on the right-hand side of the first line is over all infinite
sequences of natural numbers(a1,a2, . . .) with only finitely many entries non-
zero.)

We will see much more about cycle index in the chapter on orbit counting.

2.4 More on formal power series

The enumeration of subsets and partitions makes an unexpected appearance in the
rules for differentiating products and composites of formal power series. In fact,
the formulae below work as well forn-times differentiable functions in the usual
sense of calculus, since the depend only on the standard rules for differentiating
sums and products and the Chain Rule.

For brevity, we usef (n)(x) for the result of differentiatingf (x) n times, and
write f ′(x) for f (1)(x).

Products The standard product rule

d
dx

( f (x)g(x)) = f ′(x)g(x)+ f (x)g′(x)

extends toLeibniz’s rule:

Proposition 2.17

dn

dxn( f (x)g(x)) =
n

∑
k=0

(
n
k

)
f (k)(x)g(n−k)(x).

Proof The proof is by induction. By the product rule, terms inf (k)(x)g(n−k)(x)
arise by differentiating terms inf (k−1)(x)g(n−k)(x) or f (k)(x)g(n−k−1)(x), so the
coefficient of f (k)(x)g(n−k)(x) is(

n−1
k−1

)
+
(

n−1
k

)
=
(

n
k

)
.

Taking f (x) = eax andg(x) = ebx, we obtain

(a+b)n =
n

∑
k=0

(
n
k

)
akbn−k,
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the Binomial Theorem for positive integer exponents. Similarly, takingf (x) = xa

andg(x) = xb, we obtain

(a+b)(n) =
n

∑
k=0

(
n
k

)
a(k)b(n−k).

Substitution The Chain Rule tells us that
d
dx

f (g(x)) = f ′(g(x))g′(x).

As we have seen, the substitution ofg in f is valid provided thatg(0) = 0.
The generalisation of this to repeated derivatives isFaà di Bruno’s rule. If

a1, . . . ,ak are positive integers with sumn, let P(n;a1, . . . ,ak) be the number of
partitions of{1, . . . ,n} into parts of sizea1, . . . ,ak.
Proposition 2.18

dn

dxn f (g(x)) = ∑
a1+···+ak=n

P(n;a1, . . . ,ak) f (k)(g(x))g(a1)(x) · · ·g(ak)(x).

Proof Again by induction. Suppose that we have a bijection between partitions
of {1, . . . ,n} and terms in thenth derivative off (g(x)). When we differentiate the
term f (k)(g(x))ga1(x) · · ·g(ak)(x), corresponding to a partition of{1, . . . ,n} into
parts of sizesa1, . . . ,ak, we obtaink+1 terms:

• f (k+1)(g(x))ga1(x) · · ·g(ak)(x)g′(x), corresponding to the partition of{1, . . . ,n+
1} in whichn+1 is a singleton part;

• f (k)(g(x))ga1(x) · · ·g(ai+1)(x) · · ·g(ak)(x), in which n+ 1 is adjoined to the
ith part of the partition.

So each partition of{1, . . . ,n+ 1} corresponds to a unique term in the sum, and
we are done.

For example, we have

dn

dxn f (exp(x)−1) =
n

∑
k=1

S(n,k) f (k)(exp(x)−1)exp(kx),

since the sum ofP(n;a1, . . . ,ak) over all(a1, . . . ,ak) with fixed n andk is just the
numberS(n,k) of partitions withk parts. Puttingx = 0 we obtain the formula

bn =
n

∑
k=1

S(n,k)ak

relating the coefficients off (x) and f (exp(x)−1).
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Exercises

2.1. Show that the number of ways of selectingk objects from a set ofn distin-
guished objects, if we allow the same object to be chosen more than once and pay

no attention to the order in which the choices are made, is

(
n+k−1

k

)
.

2.2. Prove that, ifn is even, then

2n

n+1
≤
(

n
n/2

)
≤ 2n.

Use Stirling’s formula to prove that(
n

n/2

)
∼ 2n√

πn/2
.

How accurate is this estimate for smalln?

2.3. Use the method of the preceding exercise, together with the Central Limit
Theorem, to deduce the constant in Stirling’s formula.

2.4. Prove directly that, if 0≤ k< n, then

∑
m

(−1)m−k
(

n
m

)(
m
k

)
= ∑

m
(−1)n−m

(
n
m

)(
m
k

)
= 0.

2.5. Formulate and prove an analogue of Proposition 2.9 for binomial coeffi-
cients.

2.6. LetB(n) be the number of partitions of{1, . . . ,n}. Prove that
√

n! ≤ B(n)≤ n! .

2.7. Prove that logn! is greater thannlogn− n+ 1 and differs from it by at
most 1

2 logn. Deduce that

nn

en−1 ≤ n! ≤ nn+1/2

en−1 .
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2.8. Letc(n) be the number of connected permutations on{1, . . . ,n}. (A permu-
tationπ is connectedif there does not existk with 1≤ k≤ n−1 such thatπ maps
{1, . . . ,k} to itself.) Prove that

n! =
n

∑
k=1

c(k)(n−k)! ,

and deduce that (
1+ ∑

n≥1
n! xn

)−1

= 1−∑
n≥1

c(n)xn,

2.9. Prove that

(−1)n−k
(

n
k

)
=
(
−n+k−1

k

)
for 0≤ k≤ n. Use this and Proposition 2.3 to prove the Binomial Theorem for
negative integer exponents.

2.10. Prove that

∑
n≥k

s(n,k)xn

n!
=

(log(1+x))k

k!

for k≥ 1. What happens when this equation is summed overk?

2.11. What is the relation between the numbersT(n,k) defined in Exercise 1.4
and Stirling numbers?

2.12. A total preorderon a setX is a binary relationρ on x which is symmetric
and transitive and satisfies the condition that, for allx,y∈ X, eitherx ρ y or y ρ x
holds.

(a) Letρ be a total preorder onX. Define a relationσ onX by the rule thatx σ y if
and only if bothx ρ y andy ρ x hold. Prove thatσ is an equivalence relation
whose equivalence classes are totally ordered byρ. Show thatρ is deter-
mined byσ and the ordering of its equivalence classes. Show further that
any equivalence relation and any total ordering of its equivalence classes
aise in this way from a total preorder.

(b) Show that the number of total preorders of ann-set is

n

∑
k=1

S(n,k)k! .
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(c) Show that the exponential generating function for the sequence in (b) is
1/(2−exp(x)).

(d) What can you deduce about the asymptotic behaviour of the sequence?

2.13. For 1≤ k≤ n, theLah number L(n,k) is defined by the formula

L(n,k) =
n

∑
m=k

|s(n,m)|S(m,k).

(That is, the Lah numbers form a lower triangular matrix which is the product of
the matrices of unsigned Stirling numbers of the first and second kinds. They are
sometimes called Stirling numbers of the third kind.) Prove that

L(n,k) =
n!
k!

(
n−1
k−1

)
.

2.14. Prove that

n

∑
k=0

(
n
k

)2

=
(

2n
n

)
;

n

∑
k=0

(−1)k
(

n
k

)2

=

{0 if n is odd;

(−1)n/2
(

n
n/2

)
if n is even.

2.15. Prove that the generating function for the central binomial coefficients is

∑
n≥0

(
2n
n

)
xn = (1−4x)−1/2,

and deduce that
n

∑
k=1

(
2k
k

)(
2(n−k)

n−k

)
= 4n.

[Note: Finding a counting proof of this identity is quite challenging!]

2.16. Find a formula for the numberP(n;a1, . . . ,ak) appearing in Fàa di Bruno’s
formula.
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A prize question

In the course, a prize was offered for the first solution to this question.

The following problem arises in the theory of clinical trials. A new
drug is to be tested out. Of 2n subjects in the trial,n will receive the
new drug andn will get a placebo. To avoid bias, it is important that
the doctor administering the treatments does not know, and cannot
reliably guess, which treatment each patient receives. The patients
enter the trial one at a time, and are numbered from 1 to 2n.

If the treatments were allocated randomly with probability 1/2, the
doctor’s guesses could be no better than random (so that the expected
values for the numbers of correct and incorrect guesses are bothn);
but then the numbers of patients receiving drug and placebo would
be unlikely to be equal. Given that they must balance, the doctor can
certainly guess at least the last patient’s treatment correctly.

If we allocated the drug and the placebo randomly to patients 2i−1
and 2i for i = 1, . . . ,n, then the doctor can correctly guess the treat-
ment for each even-numbered patient.

Suppose that instead we choose a random set ofn patients to allocate
the drug to, and the remainingn get the placebo; each of the

(2n
n

)
sets

is equally likely. Suppose also that the doctor guesses according to the
following rule. If the number of patients so far having the drug and
the placebo are equal, he guesses at random about the next treatment.
If the drug has occurred more often than the placebo, he guesses that
the next treatment is the placebo, andvice versaif the placebo has
occurred more often than the drug.

Find a formula, and an asymptotic estimate, for the expected value of
the difference between the number of correct guesses and the number
of incorrect guesses that the doctor makes.

Solution We use the result of Problem 2.15 above, the identity

n

∑
k=0

(
2k
k

)(
2(n−k)

n−k

)
= 22n.

Following the hint, we first calculate the expected number of times during the
trial when the numbers of patients receiving drug and placebo are equal. This
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is obtained by summing, over alln-element subsetsA of {1, . . . ,2n}, the number
of values ofk for which |A∩{1, . . . ,2k}| = k, and dividing by the number

(2n
n

)
of subsets. Now the sum can be calculated by counting, for each value ofk, the
number ofn-subsetsA for which |A∩{1, . . . ,2k}| = k, and summing the result
overk.

For a givenk, the number of subsets is
(2k

k

)(2(n−k)
n−k

)
, since we must choosek

of the numbers 1, . . . ,2k, andn− k of the numbers 2k+ 1, . . . ,2n. Hence, by the
stated result, the sum is 22n, and the average is 22n/

(2n
n

)
.

Now consider the doctor’s guesses in any particular trial. At any stage where
equally many patients have received drug and placebo, he guesses at random,
and is equally likely to be right as wrong. Such points contribute zero to the
expected number of correct minus incorrect guesses. In each interval between
two consecutive such stages, say 2k, and 2l , the doctor will guess right one more
time than he guesses wrong. (For example, if the 2kth patient gets the drug, then
between stages 2k+ 1 and 2l the number of patients getting the drug isl − k−1
and the number getting the placebo isl − k, but the doctor will always guess
the placebo.) So the expected number of correct minus incorrect guesses is the
number of such intervals, which is one less than the number of times that the
numbers are equal.

So the expected number is 22n/
(2n

n

)
−1, which is asymptotically

√
πn, by the

result of Problem 2.2.



Chapter 3

Recurrence relations

A recurrence relation expresses thenth term of a sequence as a function of the
preceding terms. The most general form of a recurrence relation takes the form

xn = Fn(x0, . . . ,xn−1) for n≥ 0.

Clearly such a recurrence has a unique solution. (Note that this allows the possi-
bility of prescribing some initial values, by choosing the first few functions to be
constant.)

Example: Ordered number partitions In how manny ways is it possible to
write the positive integern as a sum of positive integers, where the order of the
summands is significant?

Letxn be this number. One possible expression has a single summandn. In any
other expression, ifn− i is the first summand, then it is followed by an expression
for i as an ordered sum, of which there arexi possibilities. Thus

xn = 1+x1 +x2 + · · ·+xn−1,

for n≥ 1. (Whenn = 1, this reduces tox1 = 1.)
Since

xn−1 = 1+x1 +x2 + · · ·+xn−2,

the recurrence reduces to the much simpler form

xn = 2xn−1 for n> 1,

with initial conditionx1 = 1. This obviously has the solutionxn = 2n−1 for n≥ 1.

37
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3.1 Linear recurrences with constant coefficients

Bounded recurrences

One type of linear recurrence which can be solved completely is of the form

xn = a1xn−1 +a2xn−2 + · · ·+akxn−k (3.1)

for n≥ k, where thek valuesx0,x1, . . . ,xk−1 are prescribed.
If we consider the recurrence (3.1) without the initial values, we see that sums

and scalar multiples of solutions are solutions. So, taking sequences over a field
such as the rational numbers, we see that the set of solutions is a vector space over
the field. Its dimension isk, since thek initial values can be prescribed abitrarily.

Thus, if we can write downk linearly independent solutions, the general solu-
tion is a linear combination of them.

Thecharacteristic equationof the recurrence (3.1) is the equation

xk−a1xk−1−·· ·−ak = 0.

This polynomial hask roots, some of which may be repeated. Suppose that its
distinct roots areα1, . . . ,αr with multiplicities m1, . . . ,mr , wherem1 + · · ·+ mr =
k. Then a short calculation shows that thek functions

xn = αn
1, . . . ,n

m1−1αn
1, . . . ,α

n
r , . . . ,n

mr−1αn
r

are solutions of (3.1); they are clearly linearly independent. So the general solu-
tion is a linear combination of them.

Example: Fibonacci numbers Consider the Fibonacci recurrence

Fn = Fn−1 +Fn−2 for n≥ 2.

The characteristic equation is

x2−x−1 = 0

with rootsα,β = (1±
√

5)/2. So the general solution is

Fn = Aαn +Bβn,

andA andB can be determined from the initial conditions.
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For the usual Fibonacci numbers, we haveF0 = F1 = 1, giving the two equa-
tions

A+B = 1,

Aα +Bβ = 1.

Solving these equations gives the solution we found earlier.

Example: Sequences with forbidden subwords Let a be a binary sequence of
lengthk. How many binary sequences of lengthn do not containa as a consecutive
subword?

Suppose, for example, thata = 11, so that we are counting binary strings
with no two consecutive ones. Letf (n) denote the number of such sequences of
lengthn, and letg(n) the number of sequences commencing with 11 but having
no other occurrence of 11. Then

2 f (n) = f (n+1)+g(n+1),

since if we take a string with no occurrence of 11 and precede it with a 1, then the
only possible position of 11 is at the beginning. Also, if we take a string with no
occurrence of 11 and precede it with 11, then the resulting sequence contains 11,
but possibly two occurrences (if the original string began with a 1); so we have

f (n) = g(n+1)+g(n+2).

Then f (n) = (2 f (n)− f (n+ 1)) + (2 f (n+ 1)− f (n+ 2)), so we have the Fi-
bonacci recurrence

f (n+2) = f (n)+ f (n+1).

Since f (0) = 1 = F1 and f (1) = 2 = F2, a simple induction proves thatf (n) =
Fn+1 for all n≥ 0.

Guibas and Odlyzko extended this approach to arbitrary forbidden substrings.
They defined thecorrelation polynomialof a binary stringa of lengthk to be

Ca(x) =
k−1

∑
j=0

ca( j)x j ,

whereca(0) = 1 and, for 1≤ j ≤ k−1,

ca( j) =
{

1 if a1a2 · · ·ak− j = a j+1a j+2 · · ·ak,
0 otherwise.

Thus, fora = 11, we haveCa(x) = 1+x.
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Theorem 3.1 Let fa(n) be the number of binary strings of length n excluding the
substring a of length k. Then the generating function Fa(x) = ∑n≥0 fa(n)xn is
given by

Fa(x) =
Ca(x)

xk +(1−2x)Ca(x)
,

where Ca(x) is the correlation polynomial of a.

Proof We definega(n) to be the number of binary sequences of lengthn which
commence witha but have no other occurrence ofa as a consecutive subsequence,
andGa(x) = ∑n≥0ga(n)xn the generating function of this sequence of numbers.

Let b be a sequence counted byfa(n). Then forx ∈ {0,1}, the sequencexb
containsa at most once at the beginning. So

2 fa(n) = fa(n+1)+ga(n+1).

Multiplying by xn and summing overn≥ 0 gives

2Fa(x) = x−1(Fa(x)−1+Ga(x)). (3.2)

Now letc be the concatenationab. Thenc starts witha, and may contain other
occurrences ofa, but only at positions overlapping the initiala, that is, where
ak− j+1 · · ·akb1 · · ·b j = a1 · · ·ak. This can only occur whenca(k− j) = 1, and the
sequenceak− j+1 · · ·akb then has lengthn+ j and has a unique occurrence ofa at
the beginning. So

fa(n) = ∑ga(n+ j),

where the sum is over allj with 1≤ j ≤ k for which ca(k− j) = 1. This can be
rewritten

fa(n) =
k

∑
j=1

ca(k− j)ga(n+ j),

or in terms of generating functions,

Fa(x) = x−kCa(x)Ga(x). (3.3)

Combining equations (3.2) and (3.3) gives the result.

In the case wherea = 11, we obtain

F11(x) =
1+x

x2 +(1−2x)(1+x)
=

1+x
1−x−x2 ,

so thatf11(n) = Fn +Fn−1 = Fn+1, as previously noted.
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Unbounded recurrences

We will give here just one example. Recall from the last chapter that the generat-
ing function for the numberp(n) of partitions of the integern is given by

∑
n≥0

p(n)xn =

(
∏
k≥1

(1−xk)

)−1

.

Thus, to get a recurrence relation forp(n), we have to understand the coeffi-
cients of its inverse:

∑
n≥0

a(n)xn = ∏
k≥1

(1−xk).

Now a term on the right arises from each expression forn as a sum of distinct
positive integers; its value is(−1)k, wherek is the number of terms in the sum.
Thus, a(n) is equal to the number of expressions forn as the sum of an even
number of distinct parts, minus the number of expressions forn as the sum of an
odd number of distinct parts.

This number is evaluated byEuler’s Pentagonal Numbers Theorem:

Proposition 3.2

a(n) =
{

(−1)k if n = k(3k−1)/2 for some k∈ Z,
0 otherwise.

Putting all this together, the recurrence relation forp(n) is

p(n) = ∑
k6=0

(−1)k−1p(n−k(3k−1)/2)

= p(n−1)+ p(n−2)− p(n−5)− p(n−7)+ p(n−12)+ · · ·

where the summation is over all values ofk for which n− k(3k− 1)/2 is non-
negative.

The number of terms in the recurrence grows withn, but only asO(
√

n). So
evaluatingp(n) for n≤ N requires onlyO(n3/2) additions and subtractions.

3.2 Other recurrence relations

There is no recipe for solving more general recurrence relations. We do a few
examples for illustration.
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Example: derangements Letd(n) be the number of derangements of{1, . . . ,n}
(permutations which have no fixed points). We obtain a recurrence relation as
follows. Each derangement mapsn to somei with 1≤ i ≤ n−1, and by symmetry
eachi occurs equally often. So we need only count the derangements mappingn
to n−1, and multiply byn−1.

We divide these derangements into two classes. The first type mapn−1 back
to n. Such a permutation must be a derangement of{1, . . . ,n−2} composed with
the transposition(n− 1,n); so there ared(n− 2) such. The second type mapi
to n for somei 6= n−1. Replacing the sequencei 7→ n 7→ n−1 by the sequence
i 7→ n−1, we obtain a derangement ofn−1; every such derangement arises. So
there ared(n−1) deraggements of this type.

Thus,
d(n) = (n−1)(d(n−1)+d(n−2)).

There is a simpler recurrence satisfied byd(n), which can be deduced from
this one, namely

d(n) = nd(n−1)+(−1)n.

To prove this by induction, suppose that it is true forn−1. Then(n−1)d(n−
2) = d(n−1)− (−1)n−1; sod(n) = (n−1)d(n−1) + d(n−1) + (−1)n, and the
inductive step is proved. (Starting the induction is an exercise.)

Now this is a special case of a general recursion which can be solved, namely

x0 = c, xn = pnxn−1 +qn for n≥ 1.

We can include the initial condition in the recursion by settingq0 = c and adoopt-
ing the convention thatx−1 = 0.

If qn = 0 for n≥ 1, then the solution is simplyxn = Pn for all n, where

Pn = c
n

∏
i=1

pi .

So we comparexn to pn. Puttingyn = xn/Pn, the recurrence becomes

y0 = 1, yn = yn−1 +
qn

Pn
for n≥ 1,

with solution

yn =
n

∑
i=0

qi

Pi
.
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(Remember thatq0 = P0 = c.) Finally,

xn = Pn

n

∑
i=0

qi

Pi
.

For derangements, we havepn = n, c = 1 (so thatPn = n!), andqn = (−1)n.
Thus

d(n) = n!
n

∑
i=0

(−1)i

i!
.

It follows thatd(n) is the nearest integer ton!/e, since

n!/e−d(n) = n! ∑
i≥n+1

(−1)i

i!
,

and the modulus of the alternating sum of decreasing terms on the right is smaller
than that of the first term, which isn!/(n+1)! = 1/(n+1).

Example: Catalan numbers It is sometimes possible to use a recurrence rela-
tion to derive an algebraic or differential equation for a generating function for the
sequence. If we are lucky, this equation can be solved, and the resulting function
used to find the terms in the sequence.

Thenth Catalan number Cn is the number of ways of bracketing a product of
n terms, where we are not allowed to assume that the operation is associatuve or
commutative. For example, forn = 4, there are five bracketings

(a(b(cd))),(a((bc)d)),((ab)(cd)),((a(bc))d),(((ab)c)d),

soC4 = 5.
Any bracketed product ofn terms is of the form(AB), whereA and B are

bracketed products ofi andn− i terms respectively. So

Cn =
n−1

∑
i=1

CiCn−i for n≥ 2.

PuttingF(x) = ∑n≥1Cnxn, the recurrence relation shows thatF andF2 agree in
all coefficients exceptn = 1. SinceC1 = 1 we haveF = F2+x, orF2−F +x = 0.
Solving this equation gives

F(x) = 1
2(1±

√
1−4x).
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SinceC0 = 0 by definition, we must take the negative sign here.
This expression gives us a rough estimate forCn: the nearest singularity to the

origin is a branchpoint at 1/4, soCn grows “like” 4n. However, we can get the
solution explicitly.

From the binomial theorem, we have

F(x) = 1
2

(
1−∑

n≥0

(
1/2
n

)
(−4)n

)
.

Hence

Cn = −1
2

(
1/2
n

)
(−4)n

=
1
2
· 1
2
· 1
2
· 3
2
· · · 2n−3

2
· 2

2n

n!

=
1

2n+1 ·
(2n−2)!

2n−1(n−1)!
· 22n

n· (n−1)!

=
1
n

(
2n−2
n−1

)
.

Sometimes we cannot get an explicit solution, but can obtain some information
about the growth rate of the sequence.

Example: Wedderburn–Etherington numbers Another interpretation of the
Catalan numberCn is the number of rooted binary trees withn leaves, where
“left” and “right” are distinguished. If we do not distinguish left and right, we
obtain theWedderburn–Etherington numbers Wn.

Such a tree is determined by the choice of trees withi andn− i leaves, but the
order of the choice is unimportant. Thus, ifi = n/2, the number of trees is only
Wi(Wi + 1)/2, rather thanW2

i . For i 6= n/2, we simply halve the number. This
gives the recurrence

Wn =


1
2

n−1

∑
i=1

WiWn−i if n is odd,

1
2

(
n−1

∑
i=1

WiWn−i +Wn/2

)
if n is even.
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Thus,F(x) = ∑Wnxn satisfies

F(x) = x+ 1
2(F(x)2 +F(x2)).

This cannot be solved explicitly. We will obtain a rough estimate for the rate of
growth. Later, we find more precise asymptotics.

We seek the nearest singularity to the origin. Since all coefficients are real and
positive, this will be on the positive real axis. (If a power series with positive real
coefficiets converges atz= r, then it converges absolutely at anyz with |z| = r.)
Let s be the required point. Thens< 1, sos2 < s; so F(z2) is analytic atz = s.
Now write the equation as

F(z)2−2F(z)+(F(z2)+2z) = 0,

with “solution”

F(z) = 1−
√

1−2z−F(z2)

(taking the negative sign as before). Thus,s is the real positive solution of

F(s2) = 1−2s.

Solving this equation numerically (using the fact thatF(s2) is the sum of a con-
vergent Taylor series and can be estimated from knowledge of a finite number of
terms), we find thats≈ 0.403. . ., so thatWn grows “like” (2.483. . .)n.

We will find more precise asymptotics forWn later in the course.

Example: Bell numbers We already calculated the exponential generating func-
tion for the Bell numbers. Here is how to do it using the recurrence relation

B(n) =
n

∑
k=1

(
n−1
k−1

)
B(n−k).

Multiply by xn/n! and sum overn: the e.g.fF(x) is given by

F(x) = ∑
n≥0

xn

n!

n

∑
k=1

(
n−1
k−1

)
B(n−k).

Differentiating with respect tox we obtain

d
dx

F(x) = ∑
n≥1

xn−1

(n−1)!

n

∑
k=1

(
n−1
k−1

)
B(n−k)

= ∑
l≥0

xl

l ! ∑
m≥0

B(m)xm

m!
.
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Here we use new variablesl = k−1 andm= n−k; the constraints of the original
sum mean thatl andm independently take all natural number values. Hence

d
dx

F(x) = exp(x)F(x).

This first-order differential equation can be solved in the usual way with the initial
conditionF(0) = 1 to give

F(x) = exp(exp(x)−1),

in agreement with our earlier result.

Exercises

3.1. Some questions on Fibonacci numbers.

(a) Show that the number of expressions forn as an ordered sum of ones and
twos isFn.

(b) Verify the following formula for the sloping diagonals of Pascal’s triangle:

bn/2c

∑
i=0

(
n− i

i

)
= Fn.

(c) Let n be a positive integer. Write down all expressions forn as an ordered
sum of positive integers. For each such expression, multiply the summands
together; then add the resulting products. Prove that the answer isF2n−1.

(d) In (c), if instead of multiplying the summands, we multiply 2d−2 for each
summandd> 2, then the answer isF2n−2.

(e) Prove that, forn≥ 0, (
0 1
1 1

)n+2

=
(

Fn Fn+1

Fn+1 Fn+2

)
.

(f) Use (e) to show thatFn can be computed withO(logn) arithmetic operations
on integers.
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3.2. LetA be a finite set of positive integers. Suppose that the currency of a
certain country hasA as the set of denominations. Prove that the numberf (n)
of ways of paying a bill ofn units, where coins are paid in order, has generating
function 1/(1−∑a∈Axa).

Suppose thatA = {1,2,5,10}. Prove thatf (n) ∼ c αn for some constantsc
andα, and estimateα.

What is the generating function for the number in the case when the order of
the coins is not significant?

3.3. Leta be a binary string of lengthk with correlation polynomialCa(x). A
random binary sequence is obtained by tossing a fair coin, recording 1 for heads
and 0 for tails. LetEa be the expected number of coin tosses until the first oc-
currence ofa as a consecutive substring. Prove thatEa is the sum, overn, of the
probability thata doesn’t occur in the firstn terms of the sequence. Deduce that
Ea = 2k Ca(1/2).

3.4. This exercise is due to Wilf, and illustrates his “snake oil” method.

(a) Prove that

∑
n≥0

(
n+k
2k

)
xn+k =

x2k

(1−x)2k+1 .

(b) Let

an =
n

∑
k=0

(
n+k
2k

)
2n−k

for n≥ 0. Prove that the ordinary generating function for(an) is

∑
n≥0

anxn =
1−2x

(1−x)(1−4x)
,

and deduce thatan = (22n+1 +1)/3 for n≥ 0.

(c) Write down a linear recurrence relation with constant coefficients satisfied by
the numbersan.

3.5. Letsn be the number of partitions of ann-set into parts of size 1 or 2 (equiva-
lently, the number of permutations of ann-set whose square is the identity). Show
that

sn = sn−1 +(n−1)sn−2 for n≥ 2,

and hence find the exponential generating function for(sn) in closed form.
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3.6. Letan be the number of strings that can be formed fromn distinct letters
(using each letter at most once, and including the empty string). Prove that

a0 = 1, an = nan−1 +1 for n≥ 1,

and deduce thatan = ben!c. What is the exponential generating function for this
sequence?

3.7. Prove that

xm+1−ym+1

x−y
=
bm/2c

∑
k=0

(
m−k

k

)
(−xy)k(x+y)m−2k.

By taking x andy to be the roots of the equationz2− z−1 = 0, deduce the
equality of two well-known expressions for the Fibonacci numbers.

(I am grateful to Marcio Soares for this exercise.)



Chapter 4

q-analogues

Much of the enumerative combinatorics of sets and functions can be generalised
in a manner which, at first sight, seems a bit unmotivated. In this chapter, we
develop a small amount of this large body of theory.

4.1 Motivation

We can look atq-analogues in several ways:

• Theq-analogues are, typically, formulae which tend to the classical ones as
q→ 1. Most basic is the fact that

lim
q→1

qa−1
q−1

= a

for any real numbera (this is immediate from l’Ĥopital’s rule).

• There is a formal similarity between statements about subsets of a set and
subspaces of a vector space, with cardinality replaced by dimension. For
example, the inclusion-exclusion rule

|U ∪V|+ |U ∩V|= |U |+ |V|

for sets becomes

dim(U +V)+dim(U ∩V) = dim(U)+dim(V)

for vector spaces. Now, if the underlying field hasq elements, then the
number of 1-dimensional subspaces of ann-dimensional vector space is
(qn−1)/(q−1), which is exactly theq-analogue ofn.

49
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• The analogy can be interpreted at a much higher level, in the language of
braided categories. I will not pursue this here. You can read more in various
papers of Shahn Majid, for example Braided Groups,J. Pure Appl. Algebra
86 (1993), 187–221; Free braided differential calculus, braided binomial
theorem and the braided exponential map,J. Math. Phys.34 (1993), 4843–
4856.

In connection with the second interpretation, note the theorem of Galois:

Theorem 4.1 The cardinality of any finite field is a prime power. Moreover, for
any prime power q, there is a unique field with q elements, up to isomorphism.

To commemorate Galois, finite fields are calledGalois fields, and the field
with q elements is denoted by GF(q).

Definition The Gaussian coefficient, or q-binomial coefficient,

[
n
k

]
q
, wheren

andk are natural numbers andq a real number different from 1, is defined by[
n
k

]
q

=
(qn−1)(qn−1−1) · · ·(qn−k+1−1)

(qk−1)(qk−1−1) · · ·(q−1)
.

It can be shown that this expression is a polynomial inq, if we regardq as an
indeterminate. If instead we regardq as a complex number, it has a well-defined
value as long asq is not adth root of unity for somed dividing k. (In the excluded
cases, the denominator is zero, but the limit still exists.)

Proposition 4.2 (a) lim
q→1

[
n
k

]
q

=
(

n
k

)
.

(b) If q is a prime power, then the number of k-dimensional subspaces of an

n-dimensional vector space overGF(q) is equal to

[
n
k

]
q
.

Proof The first assertion is almost immediate from limq→1(qn−1)/(q−1) = n.
For the second, note that the number of choices ofk linearly independent

vectors in GF(q)n is

(qn−1)(qn−q) · · ·(qn−qk−1),
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since theith vector must be chosen outside the span of its predecessors. Any such
choice is the basis of a uniquek-dimensional subspace. Puttingn = k, we see that
the number of bases of ak-dimensional space is

(qk−1)(qk−q) · · ·(qk−qk−1).

Dividing and cancelling powers ofq gives the result.

4.2 Theq-binomial theorem

Theq-binomial coefficients satisfy an analogue of the recurrence relation for bi-
nomial coefficients.

Proposition 4.3
[
n
0

]
q

=
[
n
n

]
q

= 1,

[
n
k

]
q

=
[
n−1
k−1

]
q
+qk

[
n−1

k

]
q

for 0< k< n.

Proof This comes straight from the definition. Suppose that 0< k< n. Then[
n
k

]
q
−
[
n−1
k−1

]
q

=
(

qn−1
qk−1

−1

)[
n−1
k−1

]
q

= qk
(

qn−k−1
qk−1

)[
n−1
k−1

]
q

= qk
[

n
k−1

]
q
.

The array of Gaussian coefficients has the same symmetry as that of binomial
coefficients. From this we can deduce another recurrence relation.

Proposition 4.4 (a) For 0≤ k≤ n,[
n
k

]
q

=
[

n
n−k

]
q
.

(b) For 0< k< n, [
n
k

]
q

= qn−k
[
n−1
k−1

]
q
+
[
n−1

k

]
q
.
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Proof (a) is immediate from the definition. For (b),[
n
k

]
q

=
[

n
n−k

]
q

=
[

n−1
n−k−1

]
q
+qn−k

[
n−1
n−k

]
q

=
[
n−1

k

]
q
+qn−k

[
n−1
k−1

]
q
.

We come now to theq-analogue of the binomial theorem, which states the
following.

Theorem 4.5 For a positive integer n, a real number q6= 1, and an indetermi-
nate z, we have

n

∏
i=1

(1+qi−1z) =
n

∑
k=0

qk(k−1)/2zk
[
n
k

]
q
.

Proof The proof is by induction onn; starting the induction atn = 1 is trivial.
Suppose that the result is true forn−1. For the inductive step, we must compute(

n−1

∑
k=0

qk(k−1)/2zk
[
n−1

k

]
q

)(
1+qn−1z

)
.

The coefficient ofzk in this expression is

qk(k−1)/2
[
n−1

k

]
q
+q(k−1)(k−2)/2+n−1

[
n−1
k−1

]
q

= qk(k−1)/2

([
n−1

k

]
q
+qn−k

[
n−1
k−1

]
q

)

= qk(k−1)/2
[
n
k

]
q

by Proposition 4.4(b).
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4.3 Elementary symmetric functions

In this section we touch briefly on the theory of elementary symmetric functions.
Let x1, . . . ,xn ben indeterminates. For 1≤ k≤ n, thekth elementary symmet-

ric function ek(x1, . . . ,xn) is the sum of all monomials which can be formed by
multiplying togetherk distinctindeterminates. Thus,ek has

(n
k

)
terms, and

ek(1,1, . . . ,1) =
(

n
k

)
.

For example, ifn = 3, the elementary symmetric functions are

e1 = x1 +x2 +x3, e2 = x1x2 +x2x3 +x3x1, e3 = x1x2x3.

We adopt the convention thate0 = 1.
Newton observed that the coefficients of a polynomial of degreen are the

elementary symmetric functions of its roots, with appropriate signs:

Proposition 4.6
n

∏
i=1

(z−xi) =
n

∑
k=0

(−1)kek(x1, . . . ,xn)zn−k.

Consider the generating function for theek:

E(z) =
n

∑
k=0

ek(x1, . . . ,xn)zk.

A slight rewriting of Newton’s Theorem shows that

E(z) =
n

∏
i=1

(1+xiz).

Hence the binomial theorem and itsq-analogue give the following specialisations:

Proposition 4.7 (a) If x1 = . . .= xn = 1, then

E(z) = (1+z)n =
n

∑
k=0

(
n
k

)
zk,

so

ek(1,1, . . . ,1) =
(

n
k

)
.



54 CHAPTER 4. q-ANALOGUES

(b) If xi = qi−1 for i = 1, . . . ,n, then

E(z) =
n

∏
i=1

(1+qi−1z) =
n

∑
k=0

qk(k−1)/2zk
[
n
k

]
q
,

so

ek(1,q, . . . ,qn−1) = qk(k−1)/2
[
n
k

]
q
.

4.4 Partitions and permutations

The number of permutations of ann-set isn!. The linear analogue of this is the
number of linear isomorphisms from ann-dimensional vector space to itself; this
is equal to the number of choices of basis for then-dimensional space, which is

(qn−1)(qn−q) · · ·(qn−qn−1).

These linear maps form a group, thegeneral linear groupGL(n,q).
Using theq-binomial theorem, we can transform this multiplicative formula

into an additive formula:

Proposition 4.8

|GL(n,q)|= (−1)nqn(n−1)/2
n

∑
i=0

(−1)kqk(k+1)/2
[
n
k

]
q
.

Proof We have

|GL(n,q)|= (−1)nqn(n−1)/2
n

∏
i=1

(1−qi),

and the right-hand side is obtained by substitutingz=−q in theq-binomial theo-
rem.

The total number ofn× n matrices isqn2
, so the probability that a random

matrix is invertible is

pn(q) =
n

∏
i=1

(1−q−i).

As n→ ∞, we have
pn(q)→ p(q) = ∏

i≥1
(1−q−i).
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According to Euler’s Pentagonal Numbers Theorem, we have

p(q) = ∑
k∈Z

(−1)kq−k(3k−1)/2 = 1−q−1−q−2 +q−5 +q−7−q−12−·· ·

So, for example,p(2) = 0.2887. . . is the limiting probability that a large random
matrix over GF(2) is invertible.

What is theq-analogue of the Stirling numberS(n,k), the number of partitions
of an n-set intok parts? This is a philosophical, not a mathematical question; I
argue that theq-analogue is the Gaussian coefficient

[n
k

]
q.

The number of surjective maps from ann-set to ak-set isk!S(n,k), since the
preimages of the points in thek-set form a partition of then-set whosek parts can
be mapped to thek-set in any order. Theq-analogue is the number of surjective
linear maps from ann-spaceV to ak-spaceW. Such a map is determined by its
kernelU , an(n− k)-dimensional subspace ofV, and a linear isomorphism from
V/U to W. So the analogue ofS(n,k) is the number of choices ofU , which is[

n
n−k

]
q

=
[
n
k

]
q
.

4.5 Irreducible polynomials

Though it is not really aq-analogue of a classical result, the following theorem
comes up in various places. Recall that a polynomial of degreen is monic if the
coefficient ofxn is equal to 1.

Theorem 4.9 The number fq(n) of monic irreducible polynomials of degree n
overGF(q) satisfies

∑
k|n

k fq(k) = qn.

Proof We give two proofs, one depending on some algebra, and the other a rather
nice exercise in manipulating formal power series.

First proof: We use the fact that the roots of an irreducible polynomial of
degreek over GF(q) lie in the unique field GF(qk) of degreek over GF(q). More-
over, GF(qk)⊆GF(qn) if and only if k | n; and every element of GF(qn) generates
some subfield over GF(q), which has the form GF(qk) for somek dividing n.
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Now each of theqn elements of GF(qn satisfies a unique minimal polynomial.
of degreek for somek; and every irreducible polynomial arises in this way, and
hask distinct roots. So the result holds.

Second proof: All the algebra we use in this proof is that each monic poly-
nomial of degreen can be factorised uniquely into monic irreducible factors. If
the number of monic irreducibles of degreek is mk, then we obtain all monic
polynomials of degreen by the following procedure:

• Expressn = ∑akk, whereak are non-negative integers;

• Chooseak monic irreducibles of degreek from the set of allmk such, with
repetitions allowed and order not important;

• Multiply the chosen polynomials together.

Altogether there areqn monic polynomialsxn + c1xn−1 + · · ·+ cn of degreen,
since there areq choices for each of then coefficients. Hence

qn = ∑∏
k

(
mk +ak−1

ak

)
, (4.1)

where the sum is over all sequencesa1,a2, . . . of natural numbers which satisfy
∑kak = n.

Multiplying by xn and summing overn, we get

1
1−qx

= ∑
n≥0

qnxn

= ∑
a1,a2,...

∏
k≥1

(
mk +ak−1

ak

)
xkak

= ∏
k≥1

∑
a≥0

(
mk +a−1

a

)
(xk)a

= ∏
k≥1

(1−xk)−mk.

Here the manipulations are similar to those for the sum of cycle indices in Chap-
ter 2; we use the fact that the number of choices ofa things from a set ofm, with
repetition allowed and order unimportant, is

(m+a−1
a

)
, and in the fourth line we

invoke the Binomial Theorem with negative exponent.
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Taking logarithms of both sides, we obtain

∑
n≥1

qnxn

n
= − log(1−qx)

= ∑
k≥1

−mk log(1−xk)

= ∑
k≥1

mk ∑
r≥1

xkr

r
.

The coefficient ofxn in the last expression is the sum, over all divisorsk of n,
of mk/r = kmk/n. This must be equal to the coefficient on the left, which isqn/n.
We conclude that

qn = ∑
k|n

kmk, (4.2)

as required.

Note how the very complicated recurrence relation (4.1) for the numbersmk

changes into the much simpler recurrence relation (4.2) after taking logarithms!
We will see how to solve such a recurrence in the chapter on Möbius inversion.

Exercises

4.1. Prove that

[
n
k

]
q

is a polynomial of degreek(n−k) in the indeterminateq.

4.2.

(a) Prove that, for 0< k< n,[
n
k

]
q

=
[
n−1
k−1

]
q
+
[
n−1

k

]
q
+(qn−1−1)

[
n−2
k−1

]
q
.

(b) Let

Fq(n) =
n

∑
k=0

[
n
k

]
q
,

so that, ifq is a prime power, thenFq(n) is the total number of subspaces of
ann-dimensional vector space over GF(q). Prove that

Fq(0) = 1, Fq(1) = 2, Fq(n) = 2Fq(n−1)+(qn−1−1)Fq(n−2) for n≥ 2.
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(c) Deduce that, ifq> 1, thenFq(n) ≥ c qn2/4 for some constantc (depending
onq).

4.3. This exercise shows that the Gaussian coefficients have a counting interpre-
tation for all positive integer values ofq (not just prime powers).

Suppose thatq is an integer greater than 1. LetQ be a finite set of cardinalityq
containing two distinguished elements 0 and 1. We say that ak×n matrix with
entries fromQ is in reduced echelon formif the following conditions hold:

• If a row has any non-zero entries, then the first such entry is 1 (such entries
are called “leading 1”);

• if i < j and row j is non-zero, then rowi is also non-zero, and its leading 1
occurs to the left of the leading 1 in rowj;

• if a column contains the leading 1 of some row, then all other entries in that
column are 0.

Prove that

[
n
k

]
q

is the number ofk×n matrices in reduced echelon form with no

rows of zeros.

4.4. A matrix is said to be inechelon formif it satisfies the first two conditions in
the definition of reduced echelon form. Show that, ifq is an integer greater than 2,
the right-hand side of theq-binomial theorem withx = 1 counts the number of
n×n matrices in echelon form.

How manyn×n matrices in reduced echelon form are there?

4.5. Let hk(x1, . . . ,xn) be thecomplete symmetric functionof degreek in the
indeterminatesx1, . . . ,xn (the sum ofall monomials of degreek that can be formed
using these indeterminates). For example,

h2(x1,x2,x3) = x2
1 +x2

2 +x2
3 +x1x2 +x2x3 +x3x1.

Prove that
∞

∑
k=0

hk(x1, . . . ,xn)zk =
n

∏
i=1

(1−xiz)−1.

Deduce that

(a)hk(1,1, . . . ,1) =
(

n+k−1
k

)
;
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(b) hk(1,q, . . . ,qn−1) =
[
n+k−1

k

]
q

for q 6= 1.

Hint for (b): show that

k

∑
i=0

qi
[
n+ i−2

i

]
q

=
[
n+k−1

k

]
q
.

4.6. The second proof of Theorem 4.9 shows that the number of irreducible
polynomials over GF(q) is exactly what is required if every element of GF(qn)
is the root of a unique irreducible of degree dividingn over GF(q). Turn the
argument around to gove a counting proof of the existence and uniqueness of
GF(qn), given that of GF(q).

4.7. Letω be a primitivedth root of unity. Express

[
n
k

]
ω

in terms of binomial

coefficients (whenever you can).

Solution by Pablo Spiga Let d be a natural number, and letω be a primitive
dth root of unity inC, i.e. ωd = 1. Then, if 0≤ a,b≤ d−1, we have[

nd+a
kd+b

]
ω

=
(

n
k

)[
a
b

]
ω
.

Note that we are assuming that
[a
b

]
ω = 0 whenevera< b.

Solution By induction ona. We have

1−ξd =
d

∏
i=1

(ωi−1−ξ)

=
d

∏
i=1

(ωi−1 · (1−ω−i+1ξ))

=
d

∏
i=1

ωi−1 ·
d

∏
i=1

(1−ωi−1ξ).

Thus, we get

nd

∏
i=1

(1+ ωi−1(−ξ)) =
nd

∑
j=0

ω j( j−1)/2(−1) j
[
nd
j

]
ω

ξ j , (4.3)
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but
nd

∏
i=1

(1+ ωi−1(−ξ)) = (1−ξd)n =
n

∑
k=0

(
n
k

)
(−1)kξkd. (4.4)

We have proved that
[nd

j

]
ω

= 0 if d does not dividej. Assumej = dk. By
(4.3) and (4.4), as

ωdk(dk−1)/2(−1)k(d+1) = 1, (4.5)

we get [
nd
kd

]
ω

=
(

n
k

)
.

(For (4.5), note that ifd is odd then−1d+1 = 1, while if d is even than we can
write−1 asωd/2, and we findωdk(dk+d)/2 = ωd2k(k+1)/2.) This proves the result
for a = 0.

Assumea≥ 1. If b 6= 0 then, by induction hypothesis and by the usual recur-
rence relation, we get[

nd+a
kd+b

]
ω

=
[
nd+a−1
kd+b−1

]
ω

+ ωkd+b
[
nd+a−1

kd+b

]
ω

=
(

n
k

)[
a−1
b−1

]
ω

+ ωb
(

n
k

)[
a−1

b

]
ω

=
(

n
k

)[
a
b

]
ω
.

Finally, if b = 0, then, asa−1< d−1,[
nd+a

kd

]
ω

=
[

nd+a−1
(k−1)d+d−1

]
ω

+ ωkd
[
nd+a−1

kd

]
ω

=
(

n
k

)
ω0
[
a−1

0

]
ω

=
(

n
k

)[
a
b

]
ω
.

Remark Compare Lucas’ formula(
np+a
kp+b

)
≡
(

n
k

)(
a
b

)
(modp)

if p is prime and 0≤ a,b< p.



Chapter 5

Group actions and cycle index

A cube has six faces, so if we paint each face red, white or blue, the total numbers
of ways that we can apply the colours is 36 = 729. However, if we can pick up
the cube and move it around, it is natural to count in a different way, where two
coloured cubes differing only by a rotation are counted as “the same”. There are
24 rotations of the cube into itself, but the answer to our question is not obtained
just by dividing 729 by 24. The purpose of this section is to develop tools for
answering such questions.

5.1 Group actions

Let X be a set, andG a set of permutations ofX. We write the image ofx ∈ X
under the permutationg asxg. We denote the identity permutation (leaving every
element ofX where it is) by 1, and the inverse of a permutationg (the permutation
h with xg = y⇔ xh = x) by g−1. The composition of two permutationsg andh,
denoted bygh, is defined by the rule that

xgh = (xg)h

(in other words, apply firstg, thenh).
We say thatG is apermutation groupif the following conditions hold:

• G contains the identity permutation;

• G contains the inverse of each of its elements;

• G contains the composition of any two of its elements.
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For example, the 24 rotational symmetries of a cube form a permutation group
on the set of points of the cube.

Until the middle of the nineteenth century, what we have just defined would
have simply been called agroup.Now the definition of a group is more abstract.
We don’t go into abstract group theory here, but note some terminology arising
from this. If G is an abstract group in the modern sense, anactionof G on the set
X is a function associating a permutation ofX with each group element, in such a
way that the identity, inverse, and composition of permutations correspond to the
same concepts in the abstract group.

In particular, ifG is a permutation group on a setX, then we can construct
actions ofG on various auxiliary sets built fromX: for example, the set of ordered
pairs of elements ofX, the set of subsets ofX, the set of functions fromX to
another set (or from another set toX).

For example,G acts on the setX×X of ordered pairs of elements ofX by the
rule

(x,y)g = (xg,yg)

for x,y ∈ X, g ∈ G; that is, the permutationg acts coordinate-wise on ordered
pairs, mapping(x,y) to (xg,yg).

Thus, the phrases “G is a permutation group onX” and “G acts onX” are
almost synonymous; the difference is of less interest to a combinatorialist than to
an algebraist.

Suppose thatG acts onX. We define a relation∼ on X by the rule thatx∼ y
if y = xg for someg∈G.

Proposition 5.1 ∼ is an equivalence relation.

Proof We check the three conditions.

• x = x1, sox∼ x: ∼ is reflexive.

• Let x∼ y. Theny = xg, sox = yg−1
, soy∼ x: ∼ is symmetric.

• Let x∼ y andy∼ z. Thenx = xg andz = yh, for someg,h ∈ G. Thus,
z= (xg)h = xgh, sox∼ z: ∼ is transitive.

Note that the three conditions in the definition of a permutation group translate
precisely into the three conditions of an equivalence relation.

The equivalence classes of this relation are theorbitsof G onX.
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In our coloured cube example, the group of 24 rotations of the cube acts on the
set of 729 colourings of the faces of the cube. Two colourings count “the same” if
and only if they are in the same orbit. So our task is to count orbits.

5.2 The Orbit-Counting Lemma

For any permutationg of X, we let fix(g) denote the number offixed pointsof g
(elementsx∈ X such thatxg = x).

Theorem 5.2 (Orbit-Counting Lemma)Let G be a permutation group on the
finite set X. Then the number of orbits of G on X is given by the formula

1
|G| ∑g∈G

fix(g).

Proof We count in two different ways the numberN of pairs(x,g), with x∈ X,
g∈G, andxg = x.

On the one hand, clearly

N = ∑
g∈G

fix(g).

On the other hand, we claim that if the pointx lies in an orbit{x = x1, . . . ,xn},
then the number of permutationsg∈G with xg = x is |G|/n. More generally, for
anyi with 1≤ i ≤ n, the number of permutationsg∈G with xg = xi is independent
of i (the proof is an exercise), and so is|G|/n.

Hence the number of pairs(y,g) with yg = y for whichy lies in a fixed orbit of
sizen is n· |G|/n = |G|. So each orbit contributes|G| to the sum, and soN = |G|k,
wherek is the number of orbits.

Equating the two values gives the result.

Using this, we can count our coloured cubes. We have to examine the 24
rotations and find the number of colourings fixed by each.

• The identity fixes all 36 = 729 colourings.
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• There are three axes of rotation through the mid-points of opposite faces.
A rotation through a half-turn about such an axis fixes 34 = 81 colourings:
we can choose arbitrarily the colour for the top face, the bottom face, the
east and west faces, and the north and south faces (assuming that the axis
is vertical). A rotation about a quarter turn fixes 33 = 27 colourings, since
all four faces except top and bottom must have the same colour. There are
three half-turns and six quarter-turns.

• A half-turn about the axis joining the midpoints of opposite edges fixes
33 = 27 colourings. There are six such rotations.

• A third-turn about the axis joining opposite vertices fixes 32 = 9 colourings.
There are eight such rotations.

By Theorem 5.2, the number of orbits is

1
24

(1·729+3·81+6·27+6·27+8·9) = 57,

so there are 57 different colourings up to rotation.

At this point, we can give a more combinatorial proof of the formula

x(x−1) · · ·(x−n+1) =
n

∑
k=1

s(n,k)xk

from chapter 2. We prove the equivalent form

x(x+1) · · ·(x+n−1) =
n

∑
k=1

|s(n,k)|xk

from which the required equation is obtained by substituting−x for x and mul-
tiplying by (−1)n. Suppose first thatx is a positive integer. Consider the set of
functions from{1, . . . ,n} to a setX of cardinalityx. There arexn such functions.
Now the symmetric groupSn acts on these functions: the permutationg maps the
function f to f g, where

f g(i) = f (ig−1).

The orbits are simply the selections ofn things fromX, where repetitions are
allowed and order is not important. So the number of orbits is(

x+n−1
n

)
= x(x+1) · · ·(x+n−1)/n!
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(see Chapter 2, Exercise 1).
We can also count the orbits using the Orbit-Counting Lemma. Letg be a

permutation inSn havingk cycles. How many functions are fixed byg? Clearly a
function f is fixed if and only if it is constant on each cycle ofg; its values on the
cycles can be chosen arbitrarily. So there arexk fixed functions. Since the number
of permutations withk cycles is|s(n,k)|, the Orbit-Counting Lemma shows that
the number of orbits is

1
n!

n

∑
k=1

|s(n,k)|xk.

Equating the two expressions and multiplying byn! gives the result.
Now the required equation holds for all positive integer values ofx, and so it

is a polynomial identity.

5.3 Cycle index

It is possible to develop a method for solving the coloured cubes problem which
doesn’t require extensive recalculation when small changes are made (such as
changing the number of colours).

Suppose that we have a setF of objects called “figures”, each of which (say
f ) has a non-negative integer “weight”w( f ) associated with it. The number of
figures may be infinite, but we assume that there are only a finite number of any
given weight: sayan figures of weightn. Thefigure-counting seriesis the (ordi-
nary) generating function for these numbers:

A(x) = ∑
n≥0

anxn.

We attach a figure to each point of a finite setX. (Equivalently, we take a
functionφ from X to the setF of figures.) Theweightof the functionφ is just

w(φ) = ∑
x∈X

w(φ(x)).

Finally, we have a groupG of permutations ofX. ThenG acts on the set of
functions by the rule that

φg(x) = φ(xg−1).

Clearlyw(φg) = w(φ) for any functionφ.
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We want to find the generating function for the number of functions of each
possible weight, but counting two functions as “the same” if they lie in the same
orbit of G with the above action. In other words, we want to calculate thefunction-
counting series

B(x) = ∑
n≥0

bnxn,

wherebn is the number of orbits consisting of functions of weightn.
In the coloured cubes example, if we take three figures Red, White and Blue,

each of weight 0, the figure-counting series is simply 3, and the function-counting
series is 57. We could, say, change the weight of Red to 1, so that the figure-
counting series is 2+ x; then the function-counting series is the generating func-
tion for the numbers of colourings with 0,1,2, . . . ,6 red faces (up to rotations).

The gadget that does this job is thecycle indexof G. Each elementg∈G can
be decomposed into disjoint cycles; letci(g) be the number of cycles of lengthi,
for i = 1, . . . ,n = |X|. Now put

z(g) = sc1(g)
1 sc2(g)

2 · · ·scn(g)
n ,

wheres1, . . . ,sn are indeterminates. Then thecycle indexof G is defined to be

Z(G) =
1
|G| ∑g∈G

z(g).

For example, our analysis of the rotations of the cube shows that the cycle
index of this group (acting on faces) is

1
24

(s6
1 +3s2

1s2
2 +6s2

1s4 +6s3
2 +8s2

3).

We use the notation

Z(G;si ← fi for i = 1, . . . ,n)

for the result of substituting the expressionfi for the indeterminatesi for i =
1, . . . ,n.

Theorem 5.3 If G acts on X, and we attach figures to the points of X with figure-
counting series A(x), then the function-counting series is given by

B(x) = Z(G;si ← A(xi) for i = 1, . . . ,n).
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For example, in the coloured cubes, let Red have weight 1 and the other
colours weight 0. ThenA(x) = 2+x, and the function-counting series is

B(x) =
1
24

((2+x)6 +3(2+x)2(2+x2)2 +6(2+x)2(2+x4)

+6(2+x2)3 +8(2+x3)2)
= 10+12x+16x2 +10x3 +6x4 +2x5 +x6.

Note that puttingx = 1 recovers the value 57.

Proof The first step is to note that, if we ignore the group action and simply count
all the functions, the function-counting series isB(x) = A(x)n, wheren = |X|. For
the term inxm in A(x)n is obtained by taking all expressionsm = m1 + · · ·+ mn

for m as a sum ofn non-negative integers, multiplying the corresponding terms
ami

mi
in A(x), and summing the result. The indicated product counts the number of

choices of functions of weightsm1, . . . ,mn to attach at the points 1, . . . ,n of X, so
the result is indeed the function-counting series.

Note that this proves the theorem in the case whereG is the trivial group.
Next, we have to count the functions of given weight fixed by a permuta-

tion g∈ G. As we have seen, a function is fixed byg if and only if it is constant
on the cycles ofg. Now if we choose a function of weightr to attach to the points
of a particulari-cycle ofg, the number of choices isar but the contribution to the
weight is ir . Arguing as above, the generating function for the number of fixed
functions is

A(x)c1(g)A(x2)c2(g) · · ·A(xn)cn(g) = z(g;si ← A(xi) for i = 1, . . . ,n).

Finally, by the Orbit-Counting Lemma, if we sum overg ∈ G and divide by
|G|, we find that the function-counting series is

B(x) = Z(G;si ← A(xi) for i = 1, . . . ,n).

5.4 Labelled and unlabelled

Group actions can be used to clarify the difference between two types of counting
of combinatorial objects, namely counting labelled and unlabelled objects.

Typically, we are counting structures “based on” a set ofnpoints: these may be
partitions or permutations, or more elaborate relational structures such as graphs,
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trees, partially ordered sets, etc. Anisomorphismbetween two such objects is a
bijection between their base sets which preserves the structure.

A labelled objectis simply an object whose base set is{1,2, . . . ,n}. Two
objects count as different unless they are identical. On the other hand, for unla-
belled objects, we wish to count them as the same obtain one from the other by
re-labelling the points of the base set. In other words, anunlabelled objectis an
isomorphism class of objects.

For example, for graphs on three vertices, there are eight labelled objects, but
four unlabelled ones.

Now the symmetric groupSn acts on the set of all labelled objects on the set
{1, . . . ,n}; its orbits are the unlabelled objects. So counting unlabelled objects is
equivalent to counting orbits ofSn in an appropriate action.

A given objectA has an automorphism group Aut(A), consisting of all permu-
tations of the set of points which map the object to itself. The number of different
labellings ofA is n!/|Aut(A)|, since of then! labellings, two are the same if and
only if they are related by an automorphism ofA. (More formally, labellings cor-
respond bijectively to cosets of Aut(A) in the symmetric groupSn.) So the number
of labelled objects is

∑
A

n!
|Aut(A)|

,

where the sum is over the unlabelled objects onn points.
The cycle index method can be applied to give more sophisticated counts. For

example, let us count graphs on 4 vertices. The number of pairs of vertices is 6,
and each pair is either an edge or a non-edge. So the number of labelled graphs is
26 = 64, and the number of labelled graphs withk edges is

(6
k

)
for k = 0, . . . ,6.

In order to count orbits, we must letS4 act on the set of 64 graphs. But we
can think of a graph as the set of

(4
2

)
= 6 pairs of vertices with a figure (either an

edge or a non-edge) attached to each. So we must compute the cycle index ofS4

acting on pairs of vertices. Table 5.1 gives details. The notation 1221, for example,
means “two fixed points and one 2-cycle”. Such an element, say the transposition
(1,2), fixes the two pairs{1,2} and{3,4}, and permutes the other four pairs in
two 2-cycles; so its cycle structure on pairs is 1222.

So the cycle index of the permutation groupG induced on pairs byS4 is

Z(G) =
1
24

(s6
1 +9s2

1s2
2 +8s2

3 +6s2s4).

Now if we take edges to have weight 1 and non-edges to have weight 0 (that
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Cycles on Cycles on Number
vertices pairs

14 16 1
1221 1222 6
22 1222 3
13 32 8
4 24 6

Table 5.1: Cycle index ofS4

is, figure-counting seriesA(x) = 1+x), the function-counting series is

B(x) = 1+x+2x2 +3x3 +2x4 +x5 +x6,

the generating function for unlabelled graphs on four vertices by number of edges.

We conclude by summarising some of our earlier results on counting labelled
and unlabelled structures. Table 5.2 gives the numbers of labelled and unlabelled
structures onn points;B(n) andp(n) are the Bell and partition numbers.

Structure Labelled Unlabelled

Subsets 2n n+1
Partitions B(n) p(n)

Permutations n! p(n)
Total orders n! 1

Table 5.2: Labelled and unlabelled

We see from the table that it is possible, even in very natural cases, to have the
same number of labelled objects but different numbers of unlabelled ones, orvice
versa.

Exercises

5.1. LetG be a permutation group on a finite setX, where|X|= n> 1. Suppose
thatG has only one orbit. Prove that there is an element ofG which is a derange-
ment ofX (that is, which has no fixed point). Show further that at least a fraction
1/n of the elements ofG are derangements.
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5.2. Use the Cycle Index Theorem to write down a polynomial in two variables
x andy in which the coefficient ofxiy j is the number of cubes in which the faces
are coloured red, white and blue, havingi red andj blue faces, up to rotations of
the cube.

5.3. Find a formula for the number of ways of colouring the faces of the cube
with r colours, up to rotations of the cube. Repeat this exercise for the other four
Platonic solids.

5.4. A necklace has ten beads, each of which is either black or white, arranged on
a loop of string. A cyclic permutation of the beads counts as the same necklace.
How many necklaces are there? How many are there if the necklace obtained by
turning over the given one is regarded as the same?
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Möbius inversion

Often we are in the situation where we have a number of conditions of varying
strength, and we have information about the number of objects which satisfy var-
ious combinations of conditions (inclusion); we want to count the objects satisfy-
ing none of the conditions (exclusion), or perhaps satisfying some but not others.
Of course, the conditions may not all be independent!

6.1 The Principle of Inclusion and Exclusion

Let A1, . . . ,An be subsets of a finite setX. For any non-empty subsetJ of the index
set{1, . . . ,n}, we put

AJ =
⋂
j∈J

A j ;

by convention, we takeA/0 = X. ThePrinciple of Inclusion and Exclusion(PIE,
for short) asserts the following.

Theorem 6.1 The number of elements of X lying in none of the sets Ai is equal to

∑
J⊆{1,...,n}

(−1)|J||AJ|.

Proof The expression in the theorem is a linear combination of the cardinalities
of the setsAJ, and so we can calculate it by working out, for eachx ∈ X, the
contribution ofx to the sum. IfK is the set of all indicesj for which x∈ A j , then
x contributes to the terms involving setsJ⊆ K, and the contribution is

∑
J⊆K

(−1)|J|.

71
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If |K|= k> 0, then there are
(k

j

)
sets of sizej in the sum, which is

k

∑
j=0

(
k
j

)
((−1) j = (1−1)k = 0,

whereas ifK = /0 then the sum is 1. So the points withK = /0 (those lying in no
setAi) each contribute 1 to the sum, and the remaining points contribute nothing.
So the theorem is proved.

If there are numbersm0, . . . ,mn such that|AJ|= mj whenever|J|= j, then PIE
can be written in the simpler form

n

∑
j=0

(−1) jmj .

Here are a couple of applications.

Example: Surjections The number of functions from anm-setontoann-set is
given by the formula

n

∑
j=0

(−1) j
(

n
j

)
(n− j)m.

For letM andN be the sets, withN = {1, . . . ,n}. Let X be the set of all functions
f : M→ N, andAi the set of functions whose range does not include the pointi.
ThenAJ is the set of functions whose range includes none of the points ofJ (that
is, functions fromM to N \ J); so |AJ| = (n− j)m when|J| = j. A function is a
surjection if and only if it lies in none of the setsAi . The result follows.

In particular, ifm= n, then surjections are permutations, and we have
n

∑
j=0

(−1) j
(

n
j

)
(n− j)n = n!.

Example: Derangements This time, letX be the set of all permutations of
{1, . . . ,n}, andAi the set of permutations fixingi. ThenA j is the set of permuta-
tions fixing every point inJ; so |AJ| = (n− j)! when |J| = j. The permutations
lying in none of the setsAi are the derangements, and so we have

d(n) =
n

∑
j=0

(−1) j

(
n
j

)
(n− j)!

= n!
n

∑
j=0

(−1) j

j!
,
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in agreement with our earlier result.

The statement of PIE can be generalised to give a formula for the number of el-
ements ofX which lie in a given collection of setsAi and not in the remaining ones
(see Exercise 6.5). Indeed, the same formula applies if the numbers concerned are
arbitrary real numbers rather than cardinalities of sets:

Theorem 6.2 Let real numbers aJ and bJ be given for each subset J of N=
{1, . . . ,n}. Then the following are equivalent:

(a) aJ = ∑
J⊆I⊆N

bI for all J ⊆ N;

(b) bJ = ∑
J⊆I⊆N

(−1)|I |aI for all J ⊆ N.

Proof The theorem asserts the form of the solution to a system of linear equa-
tions; in other words, the inverse of a certain matrix. However, the same matrix
occurs in the original form of PIE.

The theorem as stated involves sums over supersets of the given index set.
However, it is easily transformed to involve sums over subsets (see Exercise 6.5.
In this form, it is a generalisation of the inverse relationship between the triangular
matrix of binomial coefficients and the signed version (see Exercise 6.5).

6.2 Partially ordered sets

In this section, we formalise the kind of lower-triangular matrices which occurred
in the last.

A partial order on a setX is a binary relation≤ on X which satisfies the
following conditions:

• x≤ x (reflexivity);

• if x≤ y andy≤ x thenx = y (antisymmetry);

• if x≤ y andy≤ z thenx≤ z (transitivity).

It is a total order if it satisfies the further condition

• for anyx,y, exactly one ofx< y, x = y, y< x holds (trichotomy),



74 CHAPTER 6. MÖBIUS INVERSION

wherex< y is short forx≤ y andx 6= y. (Note that antisymmetry implies that at
most one of these three conditions holds.)

The usual order relations on the natural numbers, integers, and real numbers
are total orders. An important example of a partial order is the relation ofinclusion
on the set of all subsets of a given set. Other important examples of partially
ordered sets include

• the positive integers ordered by divisibility (that is,x≤ y if and only if x | y);

• the subspaces of a finite vector space, ordered by inclusion. (This is known
as aprojective space.)

Any finite totally ordered set can be written as{x1,x2, . . . ,xn}, wherexi ≤ x j

if and only if i ≤ j.
A set carrying a partial order relation is called apartially ordered set, or poset

for short.
We need to use the following result. A relationσ is anextensionof a relation

ρ if x rho y⇒ x sigma y; that is, regarding a relation in the usual way as a set of
ordered pairs,ρ is a subset ofσ.

Theorem 6.3 Any partial order on a set X can be extended to a total order on X.

This theorem is easily proved for finite sets: take any pair of elementsx,y
which are incomparable in the given relation; setx≤ y, and include all conse-
quences of transitivity (show that no conflicts arise from this); and repeat until all
pairs are comparable. It is more problematic for infinite sets; it cannot be proved
from the Zermelo–Fraenkel axioms, but requires an additional principle such as
the Axiom of Choice.

The upshot of the theorem for finite sets is that any finite partially ordered set
can be written asX = {x1, . . . ,xn} so that, ifxi ≤ x j , theni ≤ j (but not necessarily
conversely). This is often possible in many ways. For example, the subsets of
{a,b,c}, ordered by inclusion, can be written as

X1 = /0, X2 = {a}, X3 = {b}, X4 = {c},
X5 = {a,b}, X6 = {a,c}, X7 = {b,c}, X8 = {a,b,c}.

Now any functionf from X×X to the real numbers can be written as ann×n
matrixAf , whose(i, j) entry is f (xi ,x j).
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Our results extend to some infinite partially ordered sets, namely, those which
arelocally finite. (A partially ordered setX is locally finite if, for anyx,y∈ X, the
interval

[x,y] = {z∈ X : x≤ z≤ y}

is finite.)
Examples of infinite, locally finite posets include:

• The natural numbers; the integers (with the usual order).

• All finite subsets of an infinite set (ordered by inclusion).

• All finite-dimensional subspaces of an infinite-dimemsional vector space
over a finite field (ordered by inclusion).

• The positive integers (ordered by divisibility).

6.3 The incidence algebra of a poset

The incidence algebraof the partially ordered setX is defined to be the set of all
functionsα : X×X→ R which have the property thatα(x,y) = 0 unlessx≤ y.
Note that, for such a functionα, the matrixAα is lower triangular. The algebra
operations of addition and multiplication are defined to be the usual matrix oper-
ations on the corresponding matrices; that is,

(α + β)(x,y) = α(x,y)+ β(x,y),
(αβ)(x,y) = ∑

x≤z≤y
α(x,z)β(z,y).

(These equations shows that the way in which we extend the partial order to a total
order does not affect the definitions.)

The definitions of addition and multiplication work equally well for an infinite
locally finite poset (since the sum in the formula for multiplication is finite). So
the incidence algebra of a locally finite poset is defined.

The incidence algebra has an identity, the functionι given by

ι(x,y) =
{

1 if x = y,
0 otherwise.
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(The matrixAι is the usual identity matrix.) Another important algebra element is
thezeta functionζ, defined by

ζ(x,y) =
{

1 if x≤ y,
0 otherwise.

Thusζ is the characteristic function of the partial order, and an arbitrary function
α belongs to the incidence algebra if and only if

ζ(x,y) = 0⇒ α(x,y) = 0.

A lower triangular matrix with ones on the diagonal has an inverse. The
Möbius function µof a poset is the inverse of the zeta function. In other words, it
satisfies

∑
x≤z≤y

µ(x,y) =
{

1 if x = y,
0 otherwise.

In particular,µ(x,x) = 1 for all x. Moreover, if we knowµ(x,z) for x≤ z< y, then
we can calculate

µ(x,y) =− ∑
x≤z<y

µ(x,z).

In particular, we see that the values of the Möbius function are all integers.

6.4 Some M̈obius functions

By definition, the M̈obius function of a poset satisfies the following:

Proposition 6.4 Let f and g be elements of the incidence algebra of a poset X
(that is, functions on X×X satisfying f(x,y) = g(x,y) = 0 unless x≤ y. Then the
following conditions are equivalent:

(a) g(x,y) = ∑
x≤z≤y

f (x,z);

(b) f(x,y) = ∑
x≤z≤y

g(x,z)µ(z,y).

This result is referred to asMöbius inversion. In order to use it, we have to
compute the M̈obius functions of various posets. Note that the Möbius function
is local, in the sense that the value ofµ(x,y) is determined by the structure of the
interval[x,y] = {z : x≤ z≤ y}.
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One important result is the following. LetX1, . . . ,Xr be posets. Thedirect
product X1×·· ·×Xr is the poset whose elements are allr-tuples(x1, . . . ,xr) with
xi ∈ Xi for 1≤ i ≤ r; the order is given by

(x1, . . . ,xr)≤ (y1, . . . ,yr)⇔ xi ≤ i i for 1≤ i ≤ r,

where the orderxi ≤ yi is that in the posetXi .

Proposition 6.5 The M̈obius function of the direct product X1×·· ·×Xr is given
by

µ((x1, . . . ,xr),(y1, . . . ,yr)) =
r

∏
i=1

µi(xi ,yi),

where µi is the M̈obius function of Xi .

Proof It is enough to show that

∑
xi≤zi≤yi

1≤i≤r

r

∏
i=1

µi(xi ,zi) = 0.

Now the left-hand side of this expression factorises as
r

∏
i=1

∑
xi≤zi≤yi

µi(xi ,zi),

and the inner sum is zero by definition of the Möbius functionµi .

Example: the integers In the poset of integers, with the usual order, the Möbius
function is given by

µ(x,y) =

{
1 if y = x;
−1 if y = x+1;
0 otherwise.

Example: Finite subsets of a set In this case, the M̈obius function is

µ(X,Y) = (−1)|Y−|X| for X ⊆Y,

and of courseµ(X,Y) = 0 otherwise. For letX ⊆Y, and letY \X = {z1, . . . ,zn}.
We claim that the interval[X,Y] is isomorphic to{0,1}n, the direct product ofn
copies of{0,1}⊆Z. The isomorphism takes a setZ with X≤ Z≤Y to then-tuple
(e1, . . . ,en), where

ei =
{

1 if zi ∈ Z,
0 otherwise.

So µ(X,Y) is equal toµ((0, . . . ,0),(1, . . . ,1)) calculated in{0,1}n; by Proposi-
tion 6.5 this isµ(0,1)n, andµ(0,1) =−1 by the preceding example.
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Example: Positive integers ordered by divisibility Suppose thatm divides
n. Let n/m = pa1

1 pa2
2 · · · par

r , wherep1, . . . , pr are distinct primes anda1, . . . ,ar

positive integers. Then the interval[m,n] is isomorphic to the direct product

[0,a1]×·· ·× [0,ar ]

of intervals[0,ai ] in Z. The correspondence is given by

(b1, . . . ,br)↔mpb1
1 · · · p

br
r .

By the first example, we see thatµ(m,n) = 0 if any ai > 1, that is, if n/m is
divisible by the square of a prime. Ifn/m is the product ofs distinct primes, then
µ(m,n) = (−1)s. To summarise:

µ(m,n) =
{

(−1)s if n/m is the product ofs distinct primes;
0 if m doesn’t dividen or if n/m is not squarefree.

Example: Subspaces of a finite vector spaceBy the Second Isomorphism The-
orem, if U andW are subspaces ofV with U ⊆W, then the interval[U,W] is
isomorphic to the poset of subspaces ofW/U , and in particular depends only on
dim(W)−dim(U). It suffices to calculateµ({0},V), whereV is ann-dimensional
vector space over GF(q).

Now puttingx =−1 in theq-binomial theorem, we obtain

n−1

∑
k=0

(−1)kqk(k−1)/2
[
n
k

]
q

for n>0. This is exactly the inductive step in the proof thatµ({0},V) = (−1)nqn(n−1)/2

for n> 0. For there are
[n

k

]
q k-dimensional subspaces ofV, and the induction hy-

pothesis asserts thatµ({0},W) = (−1)kqk(k−1)/2 for each such subspace; then the
identity shows thatµ({0},V) must have the claimed value.

So, in general,µ(U,W) = (−1)nqn(n−1)/2 if U ⊆W and dim(W/U) = n; and
of course,µ(U,W) = 0 if U 6⊆W.

6.5 Classical M̈obius inversion

All our examples in the preceding section have the special property that each
interval [x,y] is isomorphic to[e,z], wheree is a fixed element of the poset, andz
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depends onx andy. Thus, for the integers,e= 0 andz= y−x; for subsets of a set,
e= /0 andz= y\x; for positive integers ordered by divisibility,e= 1 andz= y/x;
and for subspaces of a vector space,e= {0} andz= y/x (the quotient space).

Thus, in these cases, the Möbius function satisfiesµ(x,y) = µ(e,z), so it can be
written as a function of one variablez. Abusing notation, we use the same symbol
µ. In the four cases, we have:

• µ(0) = 1, µ(1) =−1, µ(z) = 0 for z≥ 2;

• µ(Z) = (−1)|Z|;

• µ(z) = (−1)s if z is the product ofs distinct primes,µ(z) = 0 if z is not
squarefree;

• µ(Z) = (−1)kqk(k−1)/2, wherek = dim(Z).

The third of these is the “classical” M̈obius function, and plays an important
role in number theory. If you seeµ(z) without any further explanation, it probably
means the classical M̈obius function. In this case, M̈obius inversion can be stated
as follows:

Proposition 6.6 Let f and g be functions on the positive integers. Then the fol-
lowing are equivalent:

(a) g(n) = ∑
m|n

f (m);

(b) f(n) = ∑
m|n

g(m)µ(n/m).

Here are two applications of this result.

Example: Euler’s function Euler’s φ-function (sometimes called thetotient
functionis the functionφ defined on the positive integers by the rule thatφ(n) is
the number of integersx with 1≤ x< n coprime ton.

If gcd(x,n) = d, then gcd(x/d,n/d) = 1. So the number ofx in this range with
gcd(x,n) = d is φ(n/d), and we have

∑
d|n

φ(n/d) = n,
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or, puttingm= n/d,

∑
m|n

φ(m) = n.

Now Möbius inversion gives

φ(n) = ∑
m|n

mµ(n/m).

From this it is easy to deduce that, ifn = pa1
1 · · · par

r , wherepi are distinct primes
andai > 0, then

φ(n) = pa1−1
1 (p1−1) · · · par−1

r (pr −1).

Example: Irreducible polynomials Let fq(n) be the number of monic irre-
ducible polynomials of degreen over GF(q). By Theorem 4.9,

∑
m|n

m fq(m) = qn.

So, by Möbius inversion, we have a formula forfq(n):

fq(n) =
1
n ∑

m|n
qmµ(n/m).

For example, the number of irreducible polynomials of degree 6 over GF(2) is

1
6

(26−23−22 +21) = 9.

(Why is the word “monic” not needed here?)

Exercises

6.1. LetA1, . . . ,An be subsets ofX. ForJ⊆ N = {1, . . . ,n}, let A j consist of the
points ofX lying in Ai for all i ∈ J, andB j the points lying inAi if i ∈ J and not if
i /∈ J. Show that

|BJ|= ∑
J⊆K⊆N

(−1)|K\J||AK|.
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6.2. Prove that, with the hypotheses of Theorem 6.2, the following conditions are
equivalent:

(a)aJ = ∑
I⊆J

bI for all J⊆ N;

(b) bJ = ∑
I⊆J

(−1)|J\I |aI for all J⊆ N.

6.3. By taking the numbersaJ andbJ of the preceding exercise to depend only on
the cardinality j of J, show that the following statements are equivalent for two
sequences(xi) and(yi):

(a)x j =
j

∑
i=0

yi ;

(b) y j =
j

∑
i=0

(−1) j−iyi .

6.4. Prove that

S(n,k) =
1
k!

k

∑
j=0

(−1) j
(

k
j

)
(k− j)n.

6.5. Letx andy be elements of a posetX, with x≤ y. A chain from x to y is a
sequencex = x0,x1, . . . ,xl = y with xi−1 < xi for i = 1, . . . , l ; its lengthis l . Show
that

µ(x,y) = ∑
c∈C

(−1)l(c),

whereC is the set of all chains fromx to y, andl(c) is the length ofc.

6.6. Letd(n) be the number of divisors of the positive integern. Prove that

∑
m|n

d(m)µ(n/m) = 1

for n> 1.

6.7. LetP (X) denote the poset whose elements are the partitions of the setX,
with P≤Q if P refinesQ (that is, every part ofP is contained in a part ofQ). Let
E be the partition into sets of size 1.
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(a) Show that, if the parts ofP have sizesa1, . . . ,ar , then

µ(E,P) = (a1−1)! · · ·(ar −1)! .

(b) Show that any interval[P,Q] is isomorphic to a product of posets of the form
P (Xj), and hence calculateµ(P,Q).

6.8. LetG be the cyclic group consisting of all powers of the permutation

g : 1→ 2→ ··· → n→ 1.

Show that the cycle index ofG is

Z(G) =
1
n ∑

m|n
φ(n/m)sm

n/m,

whereφ is Euler’s function.

6.9. A necklace is made ofn beads ofq different colours. Necklaces which differ
only by a rotation are regarded as the same. Show that the number of different
necklaces is

1
n ∑

m|n
qmφ(n/m),

while the number which have no rotational symmetry is

1
n ∑

m|n
qmµ(n/m).

(Notice that, ifq is a prime power, the second expression is equal to the number of
monic irreducible polynomials of degreen over GF(q). Finding a bijective proof
of this fact is much harder!)

6.10. A functionF on the natural numbers is said to bemultiplicativeif

gcd(m,n) = 1⇒ F(mn) = F(m)F(n).

(a) Suppose thatF andG are multiplicative. Show that the functionH defined
by

H(n) = ∑
k|n

F(k)G(n/k)

is multiplicative.
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(b) Show that the M̈obius and Euler functions are multiplicative.

(c) Letd(n) be the number of divisors ofn, andσ(n) the sum of the divisors ofn.
Show thatd andσ are multiplicative.

6.11. Prove the following “approximate version” of PIE:

LetA1, . . . ,An,A′1, . . . ,A
′
n be subsets of a setX. ForI ⊆N = {1, . . . ,n},

let

aI =

∣∣∣∣∣⋂
i∈I

Ai

∣∣∣∣∣ , a′I =

∣∣∣∣∣⋂
i∈I

A′i

∣∣∣∣∣ .
If aI = a′I for all propersubsetsI of N, then|aN−a′N| ≤ |X|/2n−1.

Remark: For more general approximate versions of PIE, see N. Linial and
N. Nisan, Approximate inclusion-exclusion,Combinatorica10 (1990), 349–365.
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Chapter 7

Species

Species, invented by André Joyal in 1980, provide an attempt to unify some of
the many structures and techniques which appear in combinatorial enumeration.
I don’t attempt to be too precise about what a species is. Think of it as a set of
“points” carrying some structure (a graph, a poset, a permutation, etc.) We can ask
for the number of labelled or unlabelled structures onn points in a given species.

7.1 Cayley’s Theorem

We begin with a particular species where there is a simple but unexpected formula
for the labelled counting problem. Atree is a connected graph with no cycles. It
is straightforward to show that a tree onn vertices containsn−1 edges, and that
any connected graph has a spanning tree (that is, some set ofn−1 of its edges
forms a tree). Moreover, any tree has a vertex lying on only one edge (since the
average number of edges per vertex is 2(n−1)/n< 2). Such a vertex is called a
leaf. If we remove from a tree a leaf and its incident edge, the result is still a tree.

Cayley’s Theorem states:

Theorem 7.1 The number of labelled trees on n vertices is nn−2.

There are many different proofs of this theorem. Below, we will see two proofs
which are made clearer by means of the concept of species. But first, one of the
classics:

85
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Prüfer’s proof of Cayley’s Theorem We construct a bijection between the set
of all trees on the vertex set{1, . . . ,n} and the set of all(n−2)-tuples of elements
from this set. The tuple associated with a tree is called itsPrüfer code.

First we describe the map from trees to Prüfer codes. Start with the empty
code. Repeat the following procedure until only two vertices remain: select the
leaf with smallest label; append the label of its unique neighbour to the code; and
then remove the leaf and its incident edge.

Next, the construction of a tree from a Prüfer codeP. We use an auxiliary list
L of vertices added as leaves, which is initially empty. Now, whileP is not empty,
we join the first element ofP to the smallest-numbered vertexv which is not in
eitherP or L, and then addv to L and remove the first element ofP. WhenP is
empty, two vertices have not been put intoL; the final edge of the tree joins these
two vertices.

I leave to the reader the task of showing that these two constructions define
inverse bijections. The method actually gives much more information:

Proposition 7.2 In the tree with Pr̈ufer code P, the valency of the vertex i is one
more than the number of occurrences of i in P.

For, at the conclusion of the second algorithm, if we add in the last two vertices
to L, thenL contains each vertex precisely once; and edges join each of the first
n−2 vertices ofL to the corresponding vertex inP, together with an edge joining
the last two vertices ofL.

Using this, one can count labelled trees with any prescribed degree sequence.

7.2 Species and counting

Almost the only thing we assume about a speciesG is that, for eachn, there are
only a finite number ofG-objects onn points (so that we can count them). The
only property we use of the objects in a species is that we “know” whether a
bijective map between the point sets of two objects is an isomorphism between
them (and hence we know the automorphism group of each object).

We make one further (inessential but convenient) assumption, namely that
there is a unique object on the empty set of points.

We say that two species areequivalent(written G ∼H ) if there is a bijection
between the objects of the two species on a given point set such that the automor-
phism groups of corresponding objects are equal.
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The most important formal power series associated with a species is itscycle
index, which is defined by the rule

Z̃(G) = ∑
A∈G

Z(Aut(A)),

where Aut(A) is the automorphism group ofA. Clearly, equivalent objects have
the same cycle index.

The cycle index is well-defined since a monomialsa1
1 · · ·sar

r arises only from
cycle indices involvingn = ∑r

i=1 iai points, and by assumption there are only
finitely many of these.

There are two important specialisations of the cycle index of a speciesG ; these
are the exponential generating function

G(x) = ∑
n≥0

Gnxn

n!

for the numberGn of labelledn-elementG-objects (that is, objects on the point
set{1, . . . ,n}); and the ordinary generating function

g(x) = ∑
n≥0

gnxn

for the numbergn of unlabelledn-elementG-objects (that is, isomorphism classes).

Theorem 7.3 Let G be a species. Then

(a) G(x) = Z̃(G ;s1← x,si ← 0 for i > 1);

(b) g(x) = Z̃(G ;si ← xi).

Proof The number of different labellings of an objectA on n points is clearly
n!/|Aut(A)|. So it is enough to show that, for any permutation groupG, we have

Z(G;s1← x,si ← 0 for i > 1) = xn/|G|,
Z(G;si ← xi) = xn.

The first equation holds because puttingsi = 0 for all i > 1 kills all permuta-
tions except the identity. The second holds because, with this substitution, each
group element contributesxn, and the result is 1/|G|∑g∈Gxn = xn.
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7.3 Examples of species

There are a few simple species for which we can do all the sums explicitly.

Example: Sets The speciesS has as its objects the finite sets, with one set of
each cardinality up to isomorphism. Its cycle index was calculated in Chapter 5:

Z̃(S) = ∑
n≥0

(Sn) = exp

(
∑
i≥1

(si

i

))
.

Hence we find that

S(x) = exp(x),

s(x) = exp

(
∑
i≥1

xi

i

)
= exp(− log(1−x))

=
1

1−x
,

in agreement with the fact thatSn = sn = 1 for all n≥ 0.

Example: Total orders Let L be the species of total (or linear) orders. Each
n-set can be totally ordered inn! ways, all of which are isomorhic, and each of
which is rigid (that is, has the trivial automorphism group).

We have

Z̃(L) = ∑
n≥0

sn
1 =

1
1−s1

,

so that

L(x) = l(x) =
1

1−x
.

Example: Circular orders The speciesC consists ofcircular orders. An el-
ement of this species corresponds to placing the points of the object around a
circle, where only the relative positions are considered, and there is no distin-
guished starting point. Thus, there is just one unlabelledn-element object inC for
all n, and the number of labelled objects is equal to the number(n−1)! of cyclic
permutations forn≥ 1. The uniquen-element structure hasφ(m) automorphisms
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each withn/mcycles of lengthm for all mdividing n, whereφ is Euler’s function.
Hence (see Exercise 7.2),

Z̃(C ) = 1− ∑
m≥1

φ(m)
m

log(1−sm),

C(x) = 1+ ∑
n≥1

xn

n
= 1− log(1−x),

c(x) = ∑xn =
1

1−x
.

Example: Permutations An object of the speciesP consists of a set carrying
a permutation. We will see later howP can be expressed as a composition, from
which its cycle index can be deduced (Exercise 7.2). We have

Z̃(P ) = ∏
n≥1

(1−sn)−1,

P(x) =
1

1−x
,

p(x) = ∏
n≥1

(1−xn)−1.

The functionp(x) is the generating function for number partitions. For, as
we saw earlier, an unlabelled permutation is the same as a conjugacy class of
permutations; and conjugacy classes are determined by their cycle structure.

7.4 Operations on species

There are several ways of building new species from old; only a few important
ones are discussed here.

Products Let G andH be species. We define theproductK = G ×H as fol-
lows: an object ofK on a setX consists of a distinguished subsetY of X, a
G-object onY, and aH -object onX \Y.

Since these objects are chosen independently, it is easy to check that

Z̃(G ×H ) = Z̃(G)Z̃(H ).
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Since the generating functions for labelled and unlabelled structures are speciali-
sations of the cycle index, we have similar multiplicative formulae for them.

For example, ifS , G andG◦ are the species of sets, graphs, and graphs with
no isolated vertices respectively, then

G ∼ S ×G◦.

Substitution Let G andH be species. We define thesubstitutionK = G [H ] as
follows: an object ofK on a setX consists of a partition ofX, anH -object on
each part of the partition, and aG-object on the set of parts of the partition.

Alternatively, we may regard it as aG-object in which every point is replaced
by anon-emptyH -object.

The cycle index is obtained from that ofG by the substitution

si ← Z̃(H ;sj ← si j )−1

for all i. (The−1 in the formula corresponds to removing the emptyH -structure
before substituting.)

From this, we see that the exponential generating functions for labelled struc-
tures obey the simple substitution law:

K(x) = G(H(x)−1).

The situaation for unlabelled structures is more complicated, andk(x) cannot be
obtained fromg(x) andh(x) alone. Instead, we have

k(x) = Z̃(G ;si ← h(xi)−1).

This equation also follows from the Cycle Index Theorem, since we are count-
ing functions onG-structures where the figures are non-emptyH -structures with
weight equal to cardinality.

For example, ifS , P andC are the species of sets permutations, and circular
orders, then the standard decomposition of a permutation into disjoint cycles can
be written

P ∼ S [C ].

The counting series for labelled structures are given by

S(x) = ∑
n≥0

xn

n!
= exp(x),
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P(x) = ∑
n≥0

n!xn

n!
=

1
1−x

,

C(x) = 1+ ∑
n≥0

(n−1)!xn

n!
= 1− log(1−x);

so the equation above becomes

1
1−x

= exp(− log(1−x)),

So the decomposition of a permutation into cycles is the combinatorial equivalent
of the fact that exp and log are inverse functions!

Rooted (or pointed) structures Given a speciesG , let G∗ be the species of
rooted G-structures: such a structure consists of aG-structure with a distin-
guished point.

We have

Z̃(G∗) = s1
∂

∂s1
Z̃(G),

and so

G∗(x) = x
d
dx

G(x).

Sometimes it is convenient to remove the distinguished point. This just removes
the factorss1 andt in the above formulae, so that this operation corresponds to
differentiation. As a result, we denote the result byG ′.

For example, ifC is the class of cycles, thenC ′ corresponds to the classL of
total (linear) orders. We have

L(x) =
d
dx

C(x) =
d
dx

(1− log(1−x)) =
1

1−x
,

in agreement with the preceding example.

7.5 Cayley’s Theorem revisited

The notion of species can be used to give two further proofs of Cayley’s Theorem.
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First proof Let L andP be the species of total (or linear) orders and permuta-
tions, respectively. These species are quite different, but have the property that the
numbers of labelled objects onn points are the same (namelyn!).

Hence the numbers of labelled objects in the two speciesL [T ∗] andP [T ∗] are
equal. (HereT ∗ is the species of rooted trees.)

Consider an object inL [T ∗]. This consists of a linear order(x1, . . . ,xr), with
a rooted treeTi at xi for all i. I claim that this is equivalent to a tree with two
distinguished vertices. Take edges{xi ,xi+1} for i = 1, . . . , r −1, and identifyxi

with the root ofTi for all i. The resulting graph is a tree. Conversely, given a tree
with two distinguished verticesx andy, there is a unique path fromx to y in the
tree, and the remainder of the tree consists of rooted trees attached to the vertices
of the path.

Now consider an object inP [T ∗]. Identify the root of each tree with a point
of the set on which the permutation acts, and orient each edge of this tree towards
the root. The resulting structure defines a functionf on the point set, where

• if v is a root, thenf (v) is the image ofv under the permutation;

• if v is not a root, thenf (v) is the unique vertex for which(v, f (v)) is a
directed edge of one of the trees.

Conversely, given a functionf : X→ X, the setY of periodic points off has the
property thatf induces a permutation on it; the pairs(v, f (v)) for which v is not
a periodic point have the structure of a family of rooted trees, attached toY at the
point for which the iterated images ofv under f first enterY.

So the numbers of trees with two distinguished points is equal to the number
of functions from the vertex set to itself. Thus, if there areF(n) labelled trees, we
see that

n2F(n) = nn,

from which Cayley’s Theorem follows.

Second proof As in the preceding proof, letT ∗ denote the species of rooted
trees. If we remove the root from a rooted tree, the result consists of an unordered
collection of trees, each of which has a natural root (at the neighbour of the root of
the original tree). Conversely, given a collection of rooted trees, add a new root,
joined to the roots of all the trees in the collection, to obtain a single rooted tree.
So, if E denotes the species consisting of a single 1-vertex structure, andS the
species of sets, we have

T ∗ ∼ E ×S [T ∗].
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Hence, for the exponential generating functions for labelled structures, we have

T∗(x) = xexp(T∗(x)).

This is, formally, a recurrence relation for the coefficients ofT∗(x), and we need
to show that thenth coefficient isnn−1. This can be done most easily with the
technique ofLagrange inversion, which is discussed in the next chapter.

7.6 What is a species?

We have proceeded this far without ever giving a precise definition of a species.
The informal idea is that an object of a species is constructed from a finite set, and
bijections between finite sets induce isomorphisms of the objects built on them.

It turns out that mathematics does provide a language to describe this, namely
category theory. It would take us too far afield to give all the definitions here. In
essence, a category consists of a collection ofobjectswith a collection ofmor-
phismsbetween them. In the only case with which we deal, objects are sets and
morphisms are set mappings. In particular, the classS whose objects are all finite
sets and whose morphisms are all bijections between them satisfies the axioms for
a category.

Now a species is simply afunctor F from S to itself. This means thatF
associates to each finite setSa setF(S), and to each bijectionf : S→ S′ a bijec-
tion F( f ) : F(S)→ F(S′), such thatF respects composition and identity (that is,
F( f1 f2) = F( f1)F( f2) andF(1S) = 1F(S), where 1S is the identity map onS).

The standard reference on species (apart from Joyal’s original paper) is the
book by Bergeron, Labelle and Leroux.

Exercises

7.1. Count the labelled trees in which the vertexi has valencyai for 1≤ i ≤ n,
wherea1, . . . ,an are positive integers with sum 2n−2.

7.2. Show that the cycle index for the speciesC of circular structures is

Z̃(C ) = 1− ∑
m≥1

φ(m)
m

log(1−sm).

Use the fact that
P ∼ S [C ]
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to show that
Z̃(P ) = ∏

n≥1
(1−sn)−1.

Can you give a direct proof of this?

7.3. Use the result of the preceding exercise, and the fact thatcn = 1 for all
n (wherecn is the number of unlabelledn-element structures inC ) to prove the
identity

∏
m≥1

(1−xm)−φ(m)/m = exp(x/(1−x)).

7.4. Suppose thatgn is the number of unlabelledn-element objects in the speciesG .
Show that the generating function for unlabelled structures inS [G ] is

∏
n≥1

(1−xn)−gn.

Verify this combinatorially in the caseG = S . How would you describe the objects
of S [S ]?

7.5. LetG be a species. TheStirling numbersof G are the numbersS(G)(n,k),
defined to be the number of partitions of ann-set intok parts with aG-object on
each part.

(a) Prove that, forG = S , C andL respectively, the Stirling numbers are respec-
tively the Stirling numbersS(n,k) of the second kind, the unsigned Stirling
numbers|s(n,k)| of the first kind, and the Lah numbersL(n,k) respectively.

(b) LetS(G) be the lower triangular matrix of Stirling numbers ofG . Prove that

S(G)S(H ) = S(H [G ]).

(c) Let (an) and(bn) be sequences of positive integers with exponential gener-
ating functionsA(x) andB(x) respectively. Prove that the following two
conditions are equivalent:

• a0 = b0 andbn =
n

∑
k=1

S(G)(n,k)ak for n≥ 1;

• B(x) = A(G(x)−1).



7.6. WHAT IS A SPECIES? 95

7.6. A forest is a graph whose connected components are trees. Show that there
is a bijection between labelled forests of rooted trees onn vertices, and labelled
rooted trees onn+1 vertices with rootn+1.

Hence show that, if a forest of rooted trees onn vertices is chosen at random,
then the probability that it is connected tends to the limit 1/e asn→ ∞.

Remark It is true but harder to prove that the analogous limit for unrooted trees
is 1/
√

e.

7.7. LetU be thesubsetspecies: aU-object consists of a distinguished subset of
its ground set. Calculate the cycle index ofU. Hence or otherwise prove that the
enumeration functions ofU are

U(x) = exp(2x),
u(x) = (1−x)−2.
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Chapter 8

Lagrange inversion

A formal power series over a field, with zero constant term and non-zero term in
x, has an inverse with respect to composition. Indeed, the set of all such formal
power series is a group, which has recently become known as theNottingham
group. However, the basic facts are much older. The associative, closure, and
identity laws are obvious, and the rule for finding the inverse in characteristic zero
is known asLagrange inversion.

8.1 The theorem

The basic fact can be stated as follows.

Proposition 8.1 Let f be a formal power series overR, with f(0) = 0and f′(0) 6=
0. Then there is a unique formal power series g such that g( f (x)) = x; the coeffi-
cient of yn in g(y) is [

dn−1

dxn−1

(
x

f (x)

)n]
x=0

/
n!.

This can be expressed in a more convenient way for our purpose. Let

φ(x) =
x

f (x)
.

Then the inverse functiong is given by the functional equation

g(y) = yφ(g(y)).

97
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Then Lagrange inversion has the form

g(y) = ∑
n≥1

bnyn

n!
,

where

bn =
[

dn−1

dxn−1φ(x)n
]

x=0
.

Example: Cayley’s Theorem The exponential generating function for rooted
trees satisfies the equation

T∗(x) = xexp(T∗(x)).

With φ(x) = exp(x), we find that the coefficient ofyn/n! in T∗(y) is[
dn−1

dxn−1 exp(nx)
]

x=0
= nn−1,

proving Cayley’s Theorem once again.

8.2 Proof of the theorem

The proof of Lagrange’s inversion formula involves a considerable detour. The
treatment here follows the book by Goulden and Jackson. Throughout this section,
we assume that the coefficients form a field of characteristic zero; for convenience,
we assume that the coefficient ring isR.

First, we extend the notion of formal power series toformal Laurent series,
defined to be a series of the form

f (x) = ∑
n≥m

anxn,

wherem may be positive or negative. If the series is not identically zero, we may
assume without loss of generality thatam 6= 0, in which casem is thevaluationof
f , written

m= val( f ).

We define addition, multiplication, composition, differentiation, etc., for formal
Laurent series as for formal power series. In particular,f (g(x)) is defined for any
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formal Laurent seriesf ,g with val(g)> 0. (This is less trivial than the analogous
result for formal power series. In particular, we need to know thatg(x)−m exists
as a formal Laurent series form> 0. It is enough to deal with the casem = 1,
since certainlyg(x)m exists. If val(g) = r, theng(x) = xrg1(x), and sog(x)−1 =
x−rg1(x)−1, and we have seen thatg1(x)−1 exists as a formal power series, since
g1(0) is invertible.

We denote the derivative of the formal Laurent seriesf (x) by f ′(x).
We also introduce the following notation:[xn] f (x) denotes the coefficient of

xn in the formal power series (or formal Laurent series)f (x). The casen =−1 is
especially important, as we learn from complex analysis. The value of[x−1] f (x)
is called theresidueof f (x), and is also written as Resf (x).

Everything below hinges on the following simple observation, which is too
trivial to need a proof.

Proposition 8.2 For any formal Laurent series f(x), we haveResf ′(x) = 0.

Now the following result describes the residue of the composition of two for-
mal Laurent series.

Theorem 8.3 (Residue Composition Theorem)Let f(x), g(x) be formal Lau-
rent series withval(g) = r > 0. Then

Res( f (g(x))g′(x)) = r Res( f (x)).

Proof It is enough to consider the case wheref (x) = xn, since Res is a linear
function.

Suppose thatn 6=−1, so that the right-hand side is zero. Then

Res(gn(x)g′(x)) =
1

n+1
Res

(
d
dx

gn+1(x)
)

= 0.

So consider the case wheren = −1. Let g(x) = axrh(x), wherea 6= 0 and
h(0) = 1. Then

g′(x) = raxr−1h(x)+axrh′(x),
g′(x)
g(x)

=
r
x

+
h′(x)
h(x)

,
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so
Resg′(x)g(x)−1 = r = r Resx−1,

sinceh′(x)/h(x) = (d/dx) logh(x), and logh(x) = log(1+k(x)) is a formal power
series sincek(x) is a f.p.s. with constant term zero.

It is tempting to say

g′(x)g(x)−1 =
d
dx

logg(x)

=
d
dx

(loga+ r logx+ logh(x))

=
r
x

+
d
dx

logh(x),

but this is not valid; logg(x) may not exist as a formal Laurent series. Con-
sider this point carefully; an error here would lead to the incorrect conclusion that
Res(g′(x)/g(x)) = 0.

From the Residue Composition Theorem, we can prove a more general version
of Lagrange Inversion.

Theorem 8.4 (Lagrange Inversion)Letφ be a formal power series withval(φ) =
0. Then the equation

g(x) = xφ(g(x))

has a unique formal power solution g(x). Moreover, for any Laurent series f , we
have

[xn] f (g(x)) =
{

1
n[xn−1]( f ′(x)φ(x)n) if n≥ val( f ) and n6= 0,
f (0)+Res( f ′(x) log(φ(0)−1φ(x)) if n = 0.

Proof Let Φ(x) = x/φ(x), so thatΦ(g(x)) = x and val(Φ(x)) = 1. Theng is the
inverse function ofΦ.

We have

[xn] f (g(x)) = Resx−n−1 f (g(x))
= ResΦ(y)−n−1Φ′(y) f (y),

where we have made the substitutionx = Φ(y) (so thaty = g(x)) and used the
Residue Composition Theorem.
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For n 6= 0, we have

[xn] f (g(x)) = −1
n

[y−1] f (y)
(
Φ(y)−n)′

=
1
n

[y−1] f ′(y)Φ(y)−n

=
1
n

[yn−1] f ′(y)φn(y).

Here, in the second line, we have used the fact that

Res( f ′(x)g(x)) =−Res( f (x)g′(x)),

a consequence of the fact that Res( f (x)g(x))′ = 0); in the third line we use the
fact thatΦ(x) = x/φ(x).

For n = 0, we have

[x0] f (g(x)) = [y0] f (y)− [y−1] f (y)φ′(y)φ(y)−1

= f (0)+Res( f ′(y) log(φ(y)φ−1(0)),

using the same principle as before and the fact that

(log(φ(y)φ−1(0)))′ = φ′(y)φ(y)−1.

Taking f (x) = x in this result gives the form of Lagrange Inversion quoted
earlier.

We proceed to an application, also taken from Goulden and Jackson, of the
Residue Composition Theorem.

Example: a binomial identity We use the Residue Composition Theorem to
prove that

n

∑
k=0

(
2n+1
2k+1

)(
j +k
2n

)
=
(

2 j
2n

)
.

We begin with the sum of the odd terms in(1+x)2n+1:

n

∑
k=0

(
2n+1
2k+1

)
x2k =

1
2x

(
(1+x)2n+1− (1−x)2n+1) .
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Call the right-hand side of this equationf (x). Now, if S is the sum that we want
to evaluate, then

S = [y2n](1+y) j
n

∑
k=0

(
2n+1
2k+1

)
(1+y)k

= Resy−(2n+1)(1+y) j f ((1+y)1/2).

Now we do the following rather strange thing: make the substitutiony =
z2(z2− 2). Then val(y(z)) = 2, and(1+ y)1/2 = 1− z2. So the Residue Com-
position Theorem gives

S = Res(z2−1)2 j
(

1
(z2−2)2n+1 −

1
z4n+2

)
z

= Res(z2−1)2 jz−(4n+1)

= [z4n](z2−1)2 j

=
(

2 j
2n

)
,

as required. (In the second line we have used the fact that(z2− 2)−(2n+1) is a
formal power series and so its residue is zero.)



Chapter 9

Bernoulli, Euler, Maclaurin

We saw in Chapter 1 an asymptotic estimate forn! which began by comparing
logn! = ∑n

i=1 logi to
∫ n

1 logx dx. Obviously the comparison is not exact, but the
approximation can often be improved by the Euler–Maclaurin sum formula. This
formula involves the somewhat mysterious Bernoulli numbers, which crop up in
a wide variety of other situations too.

9.1 Bernoulli numbers

The Bernoulli numbersBn can be defined by the recurrence relation

B0 = 1,
n

∑
k=0

(
n+1

k

)
Bk = 0 for n≥ 1.

Note that we can write the recurrence as

n+1

∑
k=0

(
n+1

k

)
Bk = Bn+1,

since the termBn+1 cancels from this equation (which expressesBn in terms of
earlier terms).

Conway and Guy, inThe Book of Numbers, have a typically elegant presenta-
tion of the Bernoulli numbers. They write this relation as

(B+1)n+1 = Bn+1

for n≥ 1, whereBk is to be interpreted asBk after the left-hand expression has
been evaluated using the Binomial Theorem.

103
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Thus,

B2 +2B1 +1 = B2, whence B1 =−1
2
,

B3 +3B2 +3B1 +1 = B3, whence B2 =
1
6
,

and so on. Note that, unlike most of the sequences we have considered before, the
Bernoulli numbers are not integers.

Theorem 9.1 The exponential generating function for the Bernoulli numbers is

∑
n≥0

Bnxn

n!
=

x
exp(x)−1

.

Proof Let F(x) be the e.g.f., and considerF(x)(exp(x)−1). The coefficient of
xn+1/(n+1)! is

(n+1)!
n

∑
k=0

(
Bk

k!

)(
1

(n+1−k)!

)
=

n

∑
k=0

(
n+1

k

)
Bk = 0

for n ≥ 1. (Note that the sum runs from 0 ton rather thann+ 1 because we
subtracted the constant term from the exponential.) The coefficient ofx, however,
is clearly 1. So the product isx.

Corollary 9.2 Bn = 0 for all odd n> 1.

Proof

F(x)+
x
2

=
x
2
· exp(x/2)+exp(−x/2)
exp(x/2)−exp(−x/2)

=
x
2

coth
(x

2

)
which is an even function ofx; so the coefficients of the odd powers ofx are zero.

Corollary 9.3

Bn =
n

∑
k=1

(−1)kk!S(n,k)
k+1

.
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Proof Let f (x) = log(1+x)/x = ∑anxn/n!, where

an =
(−1)nn!
(n+1)

.

By Theorem 2.9,f (exp(x)−1) = x/(exp(x)−1) = ∑Bnxn/n!, where

Bn =
n

∑
k=1

S(n,k)ak.

One application of the Bernoulli numbers is inFaulhaber’s formulafor the
sum of thekth powers of the firstn natural numbers. Everyone knows that

n

∑
i=1

i = n(n+1)/2,

n

∑
i=1

i2 = n(n+1)(2n+1)/6,

n

∑
i=1

i3 = n2(n+1)2/4,

but how does the sequence continue?

Theorem 9.4

n

∑
i=1

ik =
1

k+1

k

∑
j=0

(
k+1

j

)
B j(n+1)k+1− j .

So, for example,

n

∑
i=1

i4 =
1
5

(
(n+1)5− 5

2
(n+1)4 +

5
3

(n+1)3− 1
6

(n+1)
)

= n(n+1)(6n3 +9n2 +n−1)/30.

Proof This argument is written out in the shorthand notation of Conway and Guy.
Check that you can turn it into a more conventional proof!

We calculate

(n+1+B)k+1− (n+B)k+1 =
k+1

∑
j=1

(
k+1

j

)
nk− j((B+1) j −B j).
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Now (B+1) j = B j for all j ≥ 2, so the only surviving term in this expression is

(k+1)nk((B+1)1−B1) = (k+1)nk.

Thus we have
1

k+1
((n+1+B)k+1− (n+B)k+1) = nk,

from which by induction we obtain

1
k+1

((n+1+B)k+1−Bk+1) =
n

∑
i=1

ik.

The left-hand side of this expression is

1
k+1

k

∑
j=0

(
k+1

j

)
B j(n+1)k+1− j ,

as required.

Warning Conway and Guy use a non-standard definition of the Bernoulli num-
bers, as a result of which they haveB1 = 1/2 rather than−1/2. As a result, their
formulae look a bit different.

How large are the Bernoulli numbers? The generating functionx/(exp(x)−1)
has a removable singularity at the origin; apart from this, the nearest singularities
are at±2πi, and soBn is aboutn!(2π)−n; in fact, it can be shown that

|Bn|=
2n! ζ(n)
(2π)n

for n even, whereζ(n) = ∑k≥1k−n. Of course,Bn = 0 if n is odd andn> 1.
Another curious formula forBn is due to von Staudt and Clausen:

B2n = N− ∑
p−1|2n

1
p

for some integerN, where the sum is over the primesp for which p−1 divides
2n.
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9.2 Bernoulli polynomials

TheBernoulli polynomials Bn(t) are defined by the formula

xexp(tx)
exp(x)−1

= ∑
n≥0

Bn(t)xn

n!
.

Proposition 9.5 The Bernoulli polynomials satisfy the following conditions:

(a) Bn(0) = Bn(1) = Bn for n 6= 1, and B1(0) =−1/2, B1(1) = 1/2..

(b) Bn(t +1)−Bn(t) = ntn−1.

(c) B′n(t) = nBn−1(t).

(d) Bn(t) =
n

∑
k=0

(
n
k

)
Bn−kt

k

Proof All parts are easy exercises. LetF(t) = xexp(tx)/(exp(x)−1).
(a)F(0) is the e.g.f. for the regular Bernoulli numbers, andF(1) = x+F(0).
(b) F(t +1)−F(t) = xexp(tx).
(c) F ′(t) = xF(t).
(d) F(t) = F(0)exp(xt): use the rule for multiplying e.g.f.s.

The first few Bernoulli polynomials are

B0(t) = 1, B1(t) = t− 1
2, B2(t) = t2− t + 1

6,

B3(t) = t3− 3
2t2 + 1

2t, B4(t) = t4−2t3 + t2− 1
30.

9.3 The Euler–Maclaurin sum formula

Faulhaber’s formula gives us an exact value for the sum of the values of a polyno-
mial over the firstn natural numbers. The Euler–Maclaurin formula generalises
this to arbitrary well-behaved functions; instead of an exact value, we must be
content with error estimates, which in some cases enable us to show that we have
an asymptotic series.
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The Euler–Maclaurin sum formula connects the sum

n

∑
i=1

f (i)

with the series∫ n

1
f (t)dt +

1
2

( f (1)+ f (n))+∑ B2i

(2i)!

(
f (2i−1)(n)− f (2i−1)(1)

)
,

where f is a “sufficiently nice” function.
Here is a precise formulation due to de Bruijn.

Theorem 9.6 Let f be a real function with continuous(2k)th derivative. Let

Sk =
∫ n

1
f (t)dt +

1
2

( f (1)+ f (n))+
k

∑
i=1

B2i

(2i)!

(
f (2i−1)(n)− f (2i−1)(1)

)
.

Then
n

∑
i=1

f (i) = Sk−Rk,

where the error term is

Rk =
∫ n

1
f (2k)(t)

B2k({t})
(2k)!

dt,

with B2k(t) the Bernoulli polynomial and{t}= t−btc the fractional part of t.

Proof First letg be any function with continuous(2k)th derivative on[0,1]. We
claim that

1
2

(g(0)+g(1))−
∫ 1

0
g(t)dt

=
k

∑
i=1

B2i

(2i)!

(
g(2i−1)(1)−g(2i−1)(0)

)
−
∫ 1

0
g(2k)(t)

B2k(t)
(2k)!

dt.

The proof is by induction: both the start of the induction (atk = 1) and the induc-
tive step are done by integrating the last term by parts twice, using the fact that
B′n(t) = nBn−1(t) (see Proposition 9.5).

Now the result is obtained by applying this claim successively to the functions
g(x) = f (x+1), g(x) = f (x+2), . . . ,g(x) = f (x+n), and adding.
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If f is a polynomial, thenf (2k)(x) = 0 for sufficiently largek, and the remain-
der term vanishes, giving Faulhaber’s formula. For other applications, we must
estimate the size of the remainder term.

There are various analytic conditions which guarantee a bound on the size
of Rk, so that it can be shown that we have an asymptotic series for the sum. I will
not give precise conditions here.

Example: Stirling’s formula Let f (x) = logx. Then f (k)(x) = (−1)k−1(k−1)!
xk .

We obtain the asymptotic series

c+nlogn−n+
1
2

logn+∑ B2k

2k(2k−1)n2k−1

for
n

∑
i=1

logi = logn! .

The series begins 1/(12n)−1/(360n3)+1/(1260n5)+ · · · . Exponentiating term-
by-term (using the fact that, if logX = logY + o(n−k) thenX = Y(1+ o(n−k))),
we obtain

n! ∼
√

2π
nn+1/2

en

(
1+

1
12n

+
1

288n2 + · · ·
)
.

Note in passing that, for fixedn, this asymptotic series is divergent (see our
earlier estimate forBk).

Example: The harmonic series Applying Euler–Maclaurin tof (x) = 1/x, we
get

n

∑
i=1

1
i
∼ logn+ γ−∑ Bk

knk ,

where the sum begins 1/(2n)−1/(12n2)+1/(120n4)+ · · · . Hereγ is Euler’s con-
stant, a somewhat mysterious constant with value approximately 0.5772157. . . .
Again the series is divergent for fixedn.
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Chapter 10

Hayman’s Theorem and other tools

A number of non-trivial analytic results have been proved for the purpose of ob-
taining asymptotic formulae for combinatorially defined numbers. These include
theorems of Hayman, Meir and Moon, and Bender. I will not give proofs of these
theorems, but treat them as black boxes and give examples to illustrate their use.

10.1 Hayman’s Theorem

Hayman’s Theorem is an important result on the asymptotic behaviour of the co-
efficients of certainentirefunctions (i.e., functions which are analytic in the entire
complex plane).

The theorem applies only to a special class of such functions, the so-calledH-
admissibleor Hayman-admissiblefunctions. Rather than attempt to give a general
definition of this class, I will state a theorem of Hayman showing that it is closed
under certain operations, which suffice to show that any function in which we are
interested is H-admissible. See Hayman’s paper in the bibliography, or Odlyzko’s
survey.

Theorem 10.1 (a) If f is H-admissible and p is a polynomial with real coeffi-
cients, then f+ p is H-admissible.

(b) If p is a non-constant polynomial with real coefficients such thatexp(p(x)) =
∑qnxn with qn > 0 for n≥ n0, thenexp(p(x)) is H-admissible.

(c) If p is a non-constant real polynomial with leading term positive, and f is
H-admissible, then p( f (x)) is H-admissible.
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(d) If f and g are H-admissible, thenexp( f (x) and f(x)g(x) are H-admissible.

Corollary 10.2 The exponential function is H-admissible.

Now Hayman’s Theoremis the following.

Theorem 10.3 Let f(x) = ∑n≥0 fnxn be H-admissible. Let a(x) = x f ′(x)/ f (x)
and b(x) = xa′(x), and let rn be the smallest positive root of the equation a(x) = n.
Then

fn∼
1√

2πbn
f (rn)r−n

n .

Example: Stirling’s formula Take f (x) = exp(x) (we have noted that this func-
tion is admissible), so thatfn = 1/n!. Now a(x) = x = b(x), andrn = n. Thus

1
n!

=
1√
2πn

enn−n,

which is just Stirling’s formula the other way up!

Example: Bell numbers Let f (x) = exp(exp(x)− 1), so that fn = B(n)/n!,
whereB(n) is the number of partitions of ann-set. This function is H-admissible.
Now a(x) = xex andb(x) = (x+x2)ex.

The numberrn is the smallest positive solution ofxex = n. In terms of this, we
have

B(n)
n!
∼ 1√

2πn(1+ rn)
en/rn−1r−n

n ,

and so by Stirling’s formula,

B(n)∼ 1√
1+ rn

(
n

ern

)n

en/rn−1.

Of course, this is not much use without a good estimate forrn. However, for
n = 100, the right-hand side is within 0.4% ofB(100).

In fact, it can be shown that

rn = logn− log logn+O

(
log logn

logn

)
,

from which it can be deduced that

logB(n)∼ nlogn−nlog logn−n.
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10.2 The theorem of Meir and Moon

The theorem of Meir and Moon (which has been generalised by Bender) gives the
asymptotics of the coefficients of a power series defined by Lagrange inversion
(compare Chapter 6). Typically we have to find the inverse function off . Setting
φ(x) = x/ f (x), the inverse functiong is given by the functional equationg(y) =
yφ(g(y)). Replacingy by x andg by f , the theorem is as follows.

Theorem 10.4 Let y= f (x) = ∑ fnxn satisfy the equation

y = xΦ(y),

whereΦ is analytic in some neighbourhood of the origin, withΦ(x) = ∑anxn.
Suppose that the following conditions hold:

(a) a0 = 1 and an≥ 0 for n≥ 0.

(b) gcd{n : an > 0}= 1.

(c) There is a positive real numberα, inside the circle of convergence ofΦ,
satisfying

αΦ′(α) = Φ(α).

Then
fn∼Cn−3/2βn,

where C=
√

Φ(α)/2πΦ′′(α) andβ = Φ(α)/α = Φ′(α).

Example: Rooted trees The generating functiony = T∗(x) for labelled rooted
trees satisfies

y = xexp(y).

The exponential function converges everywhere, and the solution ofαexp(α) =
exp(α) is clearlyα = 1, so thatβ = e andC =

√
1/2π. Hence the numberT∗n of

labelled rooted trees onn vertices satisfies

T∗n
n!

=
1√
2π

n−3/2en.

SinceT∗n = nn−1 by Cayley’s Theorem, we obtain

n! ∼
√

2π
nn+1/2

en ,

in other words, Stirling’s formula.
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10.3 Bender’s Theorem

Bender’s Theorem generalises the theorem of Meir and Moon by treating a very
much more general class of implicitly defined functions. Thus,y will be defined
as a function ofx by the equationF(x,y) = 0. In the case of Meir and Moon, we
haveF(x,y) = y−xΦ(y).

Theorem 10.5 Suppose that y= f (x) is defined implicitly by the equation F(x,y) =
0, and let f(x) = ∑n≥0 fnxn. Suppose that there exist real numbersξ andη such
that

(a) F is analytic in a neighbourhood of(ξ,η);

(b) F(ξ,η) = 0 and Fy(ξ,η) = 0, but Fx(ξ,η) 6= 0 and Fyy(ξ,η) 6= 0 (subscripts
denote partial derivatives);

(c) the only solution of F(x,y) = Fy(x,y) = 0 with |x| ≤ ξ and |y| ≤ η is (x,y) =
(ξ,η).

Then
fn∼Cn−3/2ξ−n,

where

C =

√
ξFx(ξ,η)

2πFyy(ξ,η)
.

Example: Wedderburn–Etherington numbers Recall from Chapter 3 that the
generating function for these numbers satisfies

f (x) = x+
1
2

( f (x)2 + f (x2)).

Here we haveF(x,y) = y−x− (y2 + g(x))/2, whereg(x) = f (x2), which we re-
gard as a “known” function (using a truncation of its Taylor series to approximate
it).

The equationFy(ξ,η) = 0 gives us thatη = 1; the the equationF(ξ,η) = 0 then
givesg(ξ) = 1−2ξ. This equation can be solved numerically (it is the same one
we solved in Chapter 3 to find the radius of convergence off (x)). The remaining
conditions of the theorem can then be verified.
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We obtainξ−1 = 2.483. . ., and hence

fn∼Cn−3/2ξ−n,

whereC can also be found numerically if desired.

Exercises

10.1. Letsn be the number of permutations of{1, . . . ,n} which are equal to their
inverses. Prove that

∑
n≥0

snxn

n!
= exp

(
x+

x2

2

)
,

and use Hayman’s Theorem to show that

sn∼
1√
2

(n
e

)n/2
e
√

n−1/4.
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