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A symmetric polynomial in n indeterminates is one which is unchanged
under any permutation of the indeterminates. The theory of symmetric poly-
nomials goes back to Newton, but more recently has been very closely con-
nected with the representation theory of the symmetric group, which we
glanced at in Lecture 3. I will just give a few simple results here. The best
reference is Ian Macdonald’s book Symmetric Functions and Hall Polynomi-
als.

6.1 Symmetric polynomials

Let x1, . . . , xn be indeterminates. If π is a permutation of {1, . . . , n}, we
denote by iπ the image of i under π. Now a polynomial F (x1, . . . , xn) is a
symmetric polynomial if

F (x1π, . . . , xnπ) = F (x1, . . . , xn) for all π ∈ Sn,

where Sn is the symmetric group of degree n (the group of all polynomials
of degree n).

Any polynomial is a linear combination of monomials xa11 · · ·xann , where
a1, . . . , an are non-negative integers. The degree of this monomial is a1+· · ·+
an. A polynomial is homogeneous of degree r if every monomial has degree
r. Any polynomial can be written as a sum of homogeneous polynomials of
degrees 1, 2, . . ..

In a homogeneous symmetric polynomial of degree r, the exponents in
any monomial form a partition of r into at most n parts; two monomials
which give rise to the same partition are equivalent under a permutation,
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and so must have the same coefficient. Thus, the dimension of the space
of homogeneous symmetric polynomials of degree r is pn(r), the number of
partitions of r with at most n parts.

There are three especially important symmetric polynomials:

(a) The elementary symmetric polynomial er, which is the sum of all the
monomials consisting of products of r distinct indeterminates. Note

that there are

(
n

r

)
monomials in the sum.

(b) The complete symmetric polynomial hr, which is the sum of all the

monomials of degree r. There are

(
n+ r − 1

r

)
terms in the sum: the

proof of this is given in the Appendix to these notes.

(c) The power sum polynomial pr, which is simply
n∑
i=1

xri .

For example, if n = 3 and r = 2,

(a) the elementary symmetric polynomial is x1x2 + x2x3 + x1x3;

(b) the complete symmetric polynomial is x1x2+x2x3+x1x3+x21+x22+x23;

(c) the power sum polynomial is x21 + x22 + x23.

Note that er(1, . . . , n) =

(
n

r

)
, hr(1, . . . , 1) =

(
n+ r − 1

r

)
, and pr(1, . . . , 1) =

n.
Also, the q-binomial theorem that we met in the last lecture shows that

er(1, q, q
2, . . . , qn−1) = qr(r−1)/2

[
n

r

]
q

,

and Heine’s formula shows that, similarly,

hr(1, q, q
2, . . . , qn−1) =

[
n+ r − 1

r

]
q

.

6.2 Generating functions

The best-known occurrence of the elementary symmetric polynomials is the
connection with the roots of polynomials. (To avoid conflict with xi, the
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variable in a polynomial is t in this section.) The coefficient of tn−r in a
polynomial of degree n is (−1)rer(a1, . . . , an), where a1, . . . , an are the roots.
This is because the polynomial can be written as

(t− a1)(t− a2) · · · (t− an),

and the term in tn−r is formed by choosing t from n − r of the factors and
−ai from the remaining r.

Said otherwise, and putting xi = −1/ai, this says that the generating
function for the elementary symmetric polynomials is

E(t) =
n∑
r=0

er(x1, . . . , xn)tr =
n∏
i=1

(1 + xit),

with the convention that e0 = 1.
In a similar way, the generating function for the complete symmetric

polynomials is

H(t) =
∑
r≥0

hr(x1, . . . , xn)tr =
n∏
i=1

(1− xit)−1.

We also take P (t) to be the generating function for the power sum polyno-
mials, with a shift:

P (t) =
∑
r≥1

pr(x1, . . . , xn)tr−1.

Now we see that H(t) = E(−t)−1, so that

n∑
r=0

(−1)r3rhn−r = 0 for n ≥ 1.

For P (t), we have

d

dt
H(t) = P (t)H(t),

d

dt
E(t) = P (−t)E(t).
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6.3 Functions indexed by partitions

We extend the definitions of symmetric polynomials as follows. Let λ =
(a1, a2, . . .) be a partition of r, a non-decreasing sequence of integers with
sum r. Then, if z denotes one of the symbols e, h or p, we define zλ to be the
product of zai over all the parts ai of λ; this is again a symmetric polynomial
of degree r. For example, if n = 3 and λ is the partition (2, 1) of 3, we have

eλ = (x1x2 + x1x3 + x2x3)(x1 + x2 + x3),

pλ = (x21 + x22 + x23)(x1 + x2 + x3),

hλ = eλ + pλ.

We also define the basic polynomial mλ to be the sum of all monomials with
exponents a1, a2, . . .. In the above case,

mλ = x21x2 + x21x3 + x22x1 + x22x3 + x23x1 + x23x2.

Theorem 6.1 If n ≥ r, and z is one of the symbols m, e, h, p, then any
symmetric polynomial of degree r can be written uniquely as a linear com-
bination of the polynomials zλ, as λ runs over all partitions. Moreover, in
all cases except z = p, if the polynomial has integer coefficients, then it is a
linear combination with integer coefficients.

So the polynomials er or hr, with r ≤ n, are generators of the ring of
symmetric polynomials in n variables with integer coefficients. For z = e,
this is a version of Newton’s Theorem on symmetric polynomials (which,
however, applies also to rational functions).

6.4 Appendix: Selections with repetition

Theorem 6.2 The number of n-tuples of non-negative integers with sum r

is

(
n+ r − 1

r

)
.

The claim about the number of monomials of degree r follows immediately
from this result, which should be contrasted with the fact that the number

of n-tuples of zeros and ones with sum r is

(
n

r

)
.
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Proof We can describe any such n-tuple in the following way. Take a line
of n + r − 1 boxes. Then choose n − 1 boxes, and place barriers in these
boxes. Let

(a) a1 be the number of empty boxes before the first barrier;

(b) a2 be the number of empty boxes between the first and second barriers;

(c) . . .

(d) an be the number of empty boxes after the last barrier.

Then a1, . . . , an are non-negative integers with sum r. Conversely, given n
non-negative integers with sum r, we can represent it with n− 1 barriers in
n+ r− 1 boxes: place the first barrier after a1 empty boxes, the second after
a2 further empty boxes, and so on.

So the required number of n-tuples is equal to the number of ways to
position n− 1 barriers in n+ r − 1 boxes, which is(

n+ r − 1

n− 1

)
=

(
n+ r − 1

r

)
,

as required.
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