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Probably you recognised in the last chapter a few things from analysis,
such as the exponential and geometric series; you may know from complex
analysis that convergent power series have all the nice properties one could
wish. But there are reasons for considering non-convergent power series, as
the following example shows.

Recall the generating function for the factorials:

F (x) =
∑
n≥0

n!xn,

which converges nowhere. Now consider the following problem. A permu-
tation of {1, . . . , n} is said to be connected if there is no number m with
1 ≤ m ≤ n− 1 such that the permutation maps {1, . . . ,m} to itself. Let Cn

be the number of connected permutations of {1, . . . , n}. Any permutation is
composed of a connected permutation on an initial interval and an arbitrary
permutation of the remainder; so

n! =
n∑

m=1

Cm(n−m)!.

Hence, if

G(x) = 1−
∑
n≥1

Cnx
n,

we have F (x)G(x) = 1, and so G(x) = 1/F (x).
Fortunately we can do everything that we require for combinatorics (ex-

cept some asymptotic analysis) without assuming any convergence proper-
ties.
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2.1 Formal power series

Let R be a commutative ring with identity. A formal power series over R is,
formally, an infinite sequence (r0, r1, r2, . . .) of elements of R; but we always
represent it in the suggestive form

r0 + r1x + r2x
2 + · · · =

∑
n≥0

rnx
n.

We denote the set of all formal power series by R[[x]].
The set R[[x]] has a lot of structure: there are many things we can do with

formal power series. All we require of any operations is that they only require
adding or multiplying finitely many elements of R. No analytic properties
such as convergence of infinite sums or products are required to hold in R.

(a) Addition: We add two formal power series term-by-term.

(b) Multiplication: The rule for multiplication of formal power series, like
that of matrices, looks unnatural but is really the obvious thing: we
multiply powers of x by adding the exponents, and then just gather up
the terms contributing to a fixed power. Thus(∑

anx
n
)
·
(∑

bnx
n
)

=
∑

cnx
n,

where

cn =
n∑

k=0

akbn−k.

Note that to produce a term of the product, only finitely many addi-
tions and multiplications are required.

(c) Infinite sums and products: These are not always defined. Suppose, for
example, that A(i)(x) are formal power series for i = 0, 1, 2, . . .; assume
that the first non-zero coefficient in A(i)(x) is the coefficient of xni ,
where ni → ∞ as i → ∞. Then, to work out the coefficient of xn in
the infinite sum, we only need the finitely many series A(i)(x) for which
ni ≤ n. Similarly, the product of infinitely many series B(i) is defined
provided that B(i)(x) = 1 + A(i)(x), where A(i) satisfy the condition
just described.
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(d) Substitution: Let B(x) be a formal power series with constant term
zero. Then, for any formal power series A(x), the series A(B(x)) ob-
tained by substituting B(x) for x in A(x) is defined. For, if A(x) =∑

anx
n, then A(B(x)) =

∑
anB(x)n, and B(x)n has no terms in xk

for k < n.

(e) Differentiation: of formal power series is always defined; no limiting
process is required. The derivative of

∑
anx

n is
∑

nanx
n−1, or alter-

natively,
∑

(n + 1)an+1x
n.

(f) Negative powers: We can extend the notion of formal power series to
formal Laurent series, which are allowed to have finitely many negative
terms: ∑

n≥−m

anx
n.

Infinitely many negative terms would not work since multiplication
would then require infintely many arithmetic operations in R.

(g) Multivariate formal power series: We do not have to start again from
scratch to define series in several variables. For R[[x]] is a commutative
ring with identity, and so R[[x, y]] can be defined as the set of formal
power series in y over R[[x]].

As hinted above, R[[x]] is indeed a commutative ring with identity: veri-
fying the axioms is straightforward but tedious, and I will just assume this.
With the operation of differentiation it is a differential ring.

Recall that a unit in a ring is an element with a multiplicative inverse.
The units in R[[x]] are easy to describe:

Proposition 2.1 The formal power series
∑

rnx
n is a unit in R[[x]] if and

only if r0 is a unit in R.

Proof If (
∑

rnx
n) (
∑

snx
n) = 1, then looking at the constant term we see

that r0s0 = 1, so r0 is a unit.
Conversely, suppose that r0s0 = 1. Considering the coefficient of xn in

the above equation with n > 0, we see that

n∑
k=0

rksn−k = 0,
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so we can find the coefficients sn recursively:

sn = −s0

(
n∑

k=1

rksn−k

)
.

This argument shows the very close connection between finding inverses
in R[[x]] and solving linear recurrence relations.

2.2 Example: partitions

We are considering partitions of a number n, rather than of a set, here. A
partition of n is an expression for n as a sum of positive integers arranged in
non-increasing order; so the five partitions of 4 are

4 = 3 + 1 = 2 + 2 = 2 + 1 + 1 = 1 + 1 + 1 + 1.

Let p(n) be the number of partitions of n.

Theorem 2.2 (Euler’s Pentagonal Numbers Theorem)

p(n) =
∑
k≥1

(−1)k−1 (p(n− k(3k − 1)/2) + p(n− k(3k + 1)/2)) ,

where the sum contains all terms where the argument n − k(3k ± 1)/2 is
non-negative.

This is a very efficient recurrence relation for p(n), allowing it to be
computed with only about

√
n arithmetic operations if smaller values are

known. For example, if we know

p(0) = 1, p91) = 1, p(2) = 2, p(3) = 3, p(4) = 5,

then we find p(5) = p(4) + p(3) − p(0) = 7, p(6) = p(5) + p(4) − p(1) = 11,
and so on.

I will give a brief sketch of the proof.

Step 1: The generating function.∑
n≥0

p(n)xn =
∏
k≥1

(1− xk)−1.

For on the right, we have the product of geometric series 1 + xk + x2k + · · ·,
and the coefficient of xn is the number of ways of writing n =

∑
kak, which

is just p(n).
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Step 2: The inverse of the generating function. We need to find∏
k≥1

(1− xk).

The coefficient of xn in this product is obtained from the expressions for n as
a sum of distinct positive integers, where sums with an even number of terms
contribute +1 and sums with an odd number contribute −1. For example,

9 = 8 + 1 = 7 + 2 = 6 + 3 = 5 + 4 = 6 + 2 + 1 = 5 + 3 + 1 = 4 + 3 + 2,

so there are four sums with an even number of terms and four with an odd
number of terms, and so the coefficient is zero.

Step 3: Pentagonal numbers appear. It turns out that the following is
true:

The numbers of expressions for n as the sum of an even or an
odd number of distinct positive integers are equal for all n except
those of the form k(3k ± 1)/2, for which the even expressions
exceed the odd ones by one if k is even, and vice versa if k is odd.

This requires some ingenuity, and I do not give the proof here.
This shows that the expression in Step 2 is equal to

1 +
∑
k≥1

(−1)k
(
xk(3k+1)/2 + xk(3k−1)/2

)
,

and we immediately obtain the required recurrence relation.

Exercises

1. Suppose that R is a field. Show that R[[x]] has a unique maximal ideal,
consisting of the formal power series with constant term zero. Describe all
the ideals of R[[x]].

2. Suppose that A(x), B(x) and C(x) are the exponential generating func-
tions of sequences (an), (bn) and (cn) respectively. Show that A(x)B(x) =
C(x) if and only if

cn =
n∑

k=0

(
n

k

)
akbn−k.
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3. (a) Let (an) be a sequence of integers, and (bn) the sequence of partial sums

of (an) (in other words, bn =
n∑

i=0

ai). Suppose that the generating function

for (an) is A(x). Show that the generating function for (bn) is A(x)/(1− x).

(b) Let (an) be a sequence of integers, and let cn = nan for all n ≥
0. Suppose that the generating function for (an) is A(x). Shos that the
generating function for (cn) is x(d/dx)A(x). What is the generating function
for the sequence (n2an)?

(c) Use the preceding parts of this exercise to find the generating function

for the sequence whose nth term is
n∑

i=1

i2, and hence find a formula for the

sum of the first n squares.
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