
Systems of distinct representatives

1 SDRs and Hall’s Theorem

Let (X1, . . . ,Xn) be a family of subsets of a setA, indexed by the firstn natural
numbers. (We allow some of the sets to be equal.) Asystem of distinct represen-
tatives, or SDR, for the family, is a family(x1, . . . ,xn) of elements ofA satisfying
the conditions

• xi ∈ Xi for i = 1, . . . ,n;

• xi 6= x j for i 6= j.

(The first condition asserts that the elements are representatives of the sets, and
the second that they are distinct.)

Clearly the existence of an SDR imposes conditions on the family of sets: any
k sets must between them contain at leastk elements (since they must havek dis-
tinct representatives). In particular, all the sets must be non-empty. Philip Hall [5]
proved that this condition is also sufficient for the existence of an SDR. The re-
sult is often calledHall’s Marriage Theorem, since it is stated in the following
form: givenn boys, if anyk of the boys between them know at leastk girls (for
1≤ k≤ n), then it is possible to marry each boy to a girl that he knows.

We introduce some notation to state the theorem formally. Given a family
(X1, . . . ,Xn) of sets, for each setI ⊆ {1, . . . ,n} we define

X(I) =
⋃
i∈I

Xi .

We say that the family satisfiesHall’s conditionif |X(I)| ≥ |I | for anyI ⊆{1, . . . ,n}.

Theorem 1 A family of sets has a SDR if and only if it satisfies Hall’s condition.

There are many different proofs of this theorem, so we do not give one here.
Note that there is a polynomial-time algorithm which either finds an SDR or shows
that one cannot exist by finding a violation of Hall’s condition.
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2 Permanents

There is a well-known formula for the determinant of the square matrixA = (ai j ):

det(A) = ∑
π∈Sn

sgn(π)a1π(1)a2π(2) · · ·anπ(n),

whereSn is the symmetric group on{1, . . . ,n}, and sgn is the sign function (taking
the value+1 on even permutations and−1 on odd permutations). Thepermanent
is the function defined by the same formula without the sign factor:

per(A) = ∑
π∈Sn

a1π(1)a2π(2) · · ·anπ(n).

Somewhat surprisingly, while the determinant can be computed in polynomial
time, the easier-looking permanent cannot (so far as we know): its calculation is
#P-complete.

The connection with SDRs lies in the observation that, ifA is the zero-one
incidence matrix of a family ofn subsets of ann-set, then per(A) is the number
of SDRs ofA: each non-zero term in the permanent arises from a permutation
whose list of values(π(1), . . . ,π(n)) is a SDR, and every SDR contributes one to
the sum.

A matrix A is said to bedoubly stochasticif its entries are non-negative and
all row and column sums are equal to 1. The name comes from the fact that the
transition matrix of a Markov chain with finitely many states (the matrix whose
(i, j) entry is the probability of a transition from statei to statej) is non-negative
and has all row sums equal to 1 – such a matrix is calledstochastic. A permutation
matrix (a zero-one matrix with a single non-zero entry in any row or column) is
doubly stochastic, though the corresponding Markov chain is “deterministic”.

Theorem 2 Let A be a doubly stochastic matrix. Then

(a) per(A) 6= 0;

(b) A is a convex combination of permutation matrices (that is, A= x1P1 + · · ·+
xrPr , where Pi are permutation matrices and xi positive real numbers with
x1 + · · ·+xr = 1).

Part (a) is a consequence of Hall’s Theorem. IfXi is the set of indices of
columns having non-zero entries in theith row, then the entries in the columns
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indexed byX(I) have sum at least|I |, since they contain all the non-zero entries
in the rows indexed byI ; so there are at least|I | such columns. Hence this family
of sets has an SDR, of the form(π(1), . . . ,π(n)) for some permutationπ. Then
the corresponding term in the permanent is non-zero.

Part (b) is then proved by induction on the number of non-zero elements in the
matrix. Given a SDR, we subtract a multiple of the corresponding permutation
matrix and rescale to get a doubly stochastic matrix with fewer non-zero entries.

Corollary 3 Let (X1, . . . ,Xn) be a family of k-element subsets of{1, . . . ,n}, and
suppose that each element of{1, . . . ,n} lies in exactly k of these sets. Then the
family has an SDR, and indeed has k disjoint SDRs.

The first part follows from the fact that, ifA is the incidence matrix of the
family, then(1/k)A is doubly stochastic. The second part is proved by induction
as above. (Here two SDRs are said to be disjoint if the representatives of any set
in the two systems are different.)

An application of this result gives the existence of Youden “squares” [6, 4].
A block design is a setΩ of plots, with two partitionsB andT of Ω (the block
and treatment partitions). It is binary if any treatment and any block intersect in at
most one plot. A square BIBD is a binary design satisfying the three conditions

• |B|= |T|= v;

• each part ofT and each part ofB has sizek, wherek< v;

• any two treatments occur together in exactlyλ blocks, whereλ> 0.

A Youden “square” supported by such a design is a further partition ofΩ into k
parts of sizev orthogonal to the block and treatment partitions (that is, each part of
the Youden partition meets each part of the other two partitions in a single plot).

Corollary 4 Any square BIBD supports a Youden “square”.

For, if we translate the block design into an incidence structure (with the treat-
ments as points and the blocks regarded as sets of points), then a part of the Youden
partition is an SDR for the resulting family of sets, and the whole partition is a
set ofk pairwise disjoint SDRs, whose existence is guaranteed by Corollary 3.
Note that the third condition of the definition of a square BIBD is not used in this
argument.
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3 The van der Waerden conjecture

One of the most important results about permanents was conjectured by van der
Waerden and proved by Egorychev [2] and Falikman [3].

Theorem 5 Let A be an n× n doubly stochastic matrix. Thenper(A) ≥ n!/nn,
with equality if and only if A= (1/n)J, where J is the all-1 matrix.

This shows, for example, that a family of sets satisfying the hypotheses of
Corollary 3 has at leastn!(k/n)n SDRs. For the number of SDRs is the permanent
of A, and so iskn times the permanent of the doubly stochastic matrix(1/k)A.

In the case of a symmetric BIBD, we can do better. The incidence matrix
satisfiesAA> = (k−λ)I + λJ, from which we find that

det(A)2 = det(AA>) = k2(k−λ)v−1.

Thus
per(A)≥ |detA|= k(k−λ)(v−1)/2,

the first inequality holding since the determinant contains terms of both signs
which are all positive in the permanent.

4 Latin squares

The numberL(n) of Latin squares of ordern has been studied for a long time. One
of the motivations was the suggestion of Yates that, to randomize an experimental
design based on a Latin square, one should choose at random from the set of all
Latin squares of the appropriate size, and for this one should know how many
there are!

Clearly L(n) ≤ nn2
, since there are at mostn choices for the entries in each

of then2 cells of the square. This upper bound can be further improved to(n!)n,
since each row is a permutation of(1, . . . ,n). Further improvements are possible.
What about lower bounds?

Let Xi = {1, . . . ,n} for i = 1, . . . ,n. Then each row of a Latin square of ordern
is an SDR for the family(X!, . . . ,Xn); and distinct rows correspond to disjoint
transversals. So the counting problem is a special case of those considered in the
last section, and we can derive lower bounds as follows.

The ith row is an SDR for the family of sets obtained by omitting fromXj the
i−1 entries already used in thejth column in preceding rows. (This guarantees

The Encyclopedia of Design Theory Systems of distinct representatives/4



the disjointness.) The resulting sets satisfy the hypotheses of Corollary 3 with
k = n− i +1. So the number of choices for theith row is at leastn!((n− i +1)/n)n.
Multiplying these numbers together fori = 1, . . . ,n, we obtain

L(n)≥ (n!)2n

nn2 .

Sincen! ≥ (n/e)n, this givesL(n)≥ (n/e2)n2
, which is not too far from the trivial

upper bound (their logarithms are asymptotically equal).
Babai [1] exploited this lower bound to show that, asymptotically, almost all

Latin squares have trivial automorphism group. The existence of a non-trivial au-
tomorphism reduces the upper bound so drastically that, summed over all possible
permutations, the total is much smaller than the lower bound forL(n).
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