Posets

This is an abbreviated version of the Combinatorics Study Group notes by
Thomas Britz and Peter Cameron.

1 Whatis a poset?

A binary relation Ron a seiX is a set of ordered pairs of elementsqfthat is, a
subset ofX x X. We can represemR by a matrix with rows and columns indexed
by X, with (x,y) entry 1 if (x,y) € R, 0 otherwise.

The term “poset” is short for “partially ordered set”, that is, a set whose ele-
ments are ordered but not all pairs of elements are required to be comparable in
the order. Just as an order in the usual sense may be stric) @snon-strict (as
<), there are two versions of the definition of a partial order:

A strict partial orderis a binary relatiorson a sei satisfying the conditions

(R—) for nox € X does(x,x) € Shold,;
(A—)if (x,y) € S then(y,x) ¢ S,
(M) if (x,y) € Sand(y,z) € S then(x,z) € S.
A non-strict partial orderis a binary relatioliRr on a seiX satisfying the conditions
(R+) for all x e X we have(x,x) € R;
(A)if (x,y) € Rand(y,x) € Rthenx=Yy;
(Mif (x,y) € Rand(y,z) € Rthen(x,z) € R.

Condition (A—) appears stronger than (A), but in fact-(Rand (A) imply
(A—). So we can (as is usually done) replace-()Aby (A) in the definition of
a strict partial order. Conditions (R, (R+), (A), (T) are calledirreflexivity,
reflexivity, antisymmetryand transitivity respectively. We often write < y if
(x,y) € S andx <yif (x,y) € R We usually prefer the non-strict version.

The two definitions are essentially the same: we get from one to the other in
the obvious way, setting<yif x<yorx=Yy, and settingk <y if x<ybutx#Yy.
Thus, aposetis a setX carrying a partial order (either strict or non-strict).

If there is ambiguity abouR, we simply writex <ry.

A total orderis a partial order in which every pair of elements is comparable,
that is, the following condition (known agchotomy holds:
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e for all x,y € X, exactly one ok <ry, x=Yy, andy <g x holds.

In a poset X, R), we define thénterval [x, y|r to be the set
XYr={ze X : x<rz<rYVY}.

By transitivity, the intervalx,y|r is empty ifx £gry. We say that the poset is
locally finiteif all intervals are finite.

The set of positive integers ordered by divisibility (thatis;r y if x dividesy)
is a locally finite poset.

2 Properties of posets

An elementx of a poset(X,R) is calledmaximalif there is no elemeny € X
satisfyingx <ry. Dually, x is minimalif no element satisfieg <gr X.

In a general poset there may be no maximal element, or there may be more
than one. But in a finite poset there is always at least one maximal element, which
can be found as follows: choose any elemenif it is not maximal, replace it
by an elemeny satisfyingx <ry; repeat until a maximal element is found. The
process must terminate, since by the irreflexive and transitive laws the chain can
never revisit any element. Dually, a finite poset must contain minimal elements.

An elementx is anupper boundor a subsel of X if y<gxforallyeY.

Lower boundsre defined similarly. We say thais aleast upper boundr l.u.b.
of Y if it is an upper bound and satisfi#s<gr X' for any upper bound’. The
concept of gyreatest lower boundr g.l.b. is defined similarly.

A chainin a poset(X,R) is a subseC of X which is totally ordered by the
restriction ofR (that is, a totally ordered subsetXj. An antichainis a setA of
pairwise incomparable elements.

Infinite posets (such ag), as we remarked, need not contain maximal ele-
ments.Zorn’s Lemmagives a sufficient condition for maximal elements to exist:

Let (X,R) be a poset in which every chain has an upper bound. Then
X contains a maximal element.

As well known, there is no “proof” of Zorn’s Lemma, since it is equivalent
to the Axiom of Choice (and so there are models of set theory in which it is
true, and models in which it is false). Our proof of the existence of maximal
elements in finite posets indicates why this should be so: the construction requires
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(in general infinitely many) choices of upper bounds for the elements previously
chosen (which form a chain by construction).

The heightof a poset is the largest cardinality of a chain, andhiidth is the
largest cardinality of an antichain. We denote the height and widtiXdR) by
h(X) andw(X) respectively (suppressing as usual the relaRam the notation).

In a finite posetX,R), a chainC and an antichaid have at most one element
in common. Hence the least number of antichains whose unignissnot less
than the sizén(X) of the largest chain iiX. In fact there is a partition oX into
h(X) antichains. To see this, |84 be the set of maximal elements; by definition
this is an antichain, and it meets every maximal chain. TheAddte the set of
maximal elements iX \ A;, and iterate this procedure to find the other antichains.

There is a kind of dual statement, harder to prove, knowbiagorth’s Theo-
rem

Theorem 1 Let (X,R) be a finite poset. Then there is a partition of X intody
chains.

An up-setin a poset(X,R) is a subseY of X such that, ify € Y andy <gr z,
thenz e Y. The set of minimal elements in an up-set is an antichain. Conversely,
if Ais an antichain, then

T (A)={xe X:a<rxforsomeac A}

is an up-set. These two correspondences between up-sets and antichains are mu-
tually inverse; so the numbers of up-sets and antichains in a poset are equal.

Down-setsare, of course, defined dually. The complement of an up-set is a
down-set; so there are equally many up-sets and down-sets.

3 Hasse diagrams

Let x andy be distinct elements of a poseX,R). We say thaty covers xif

X, Y]r = {X,y}; that is,x <r y but no element satisfiesx <g z<rY. In general,
there may be no pairsandy such thaty coversx (this is the case in the rational
numbers, for example). However, locally finite posets are determined by their
covering pairs:

Proposition 2 Let (X,R) be a locally finite poset, and xe X. Then x<ry if
and only if there exist elementg, z ., z, (for some non-negative integer n) such
thatz =X, z, =Y, and z.1 covers zfori=0,...,n— 1.
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Figure 1. A Hasse diagram

TheHasse diagranof a poset X, R) is the directed graph whose vertex set is
X and whose arcs are the covering paisy) in the poset. We usually draw the
Hasse diagram of a finite poset in the plane in such a way thata¥ersx, then
the point representing is higher than the point representirg Then no arrows
are required in the drawing, since the directions of the arrows are implicit.

For example, the Hasse diagram of the poset of subsdis, 8f3} is shown
in Figure 1.

4 Linear extensions and dimension

One view of a partial order is that it contains partial information about a total order
on the underlying set. This view is borne out by the following theorem. We say
that one relatiorextendsanother if the second relation (as a set of ordered pairs)
is a subset of the first.

Theorem 3 Any partial order on a finite set X can be extended to a total order
on X.

This theorem follows by a finite number of applications of the next result.

Proposition 4 Let R be a partial order on a set X, and lettabe incomparable
elements of X. Then there is a partial ordéréktending R such thag,b) € R
(that is, a< b in the order R).

A total order extending in this sense is referred to asimear extensiorof R.
(The term “linear order” is an alternative for “total order”.)
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Figure 2: A crown

This proof does not immediately show that every infinite partial order can be
extended to a total order. If we assume Zorn’s Lemma, the conclusion follows. It
cannot be proved from the Zermelo—Fraenkel axioms alone (assuming their con-
sistency), but it is strictly weaker than the Axiom of Choice, that is, the Axiom of
Choice (or Zorn’s Lemma) cannot be proved from the Zermelo—Fraenkel axioms
and this assumption. In other words, assuming the axioms consistent, there is a
model in which Theorem 3 is false for some infinite poset, and another model in
which Theorem 3 is true for all posets but Zorn’s Lemma is false.

The theorem gives us another measure of the size of a partially ordered set. To
motivate this, we use another model of a partial order. Suppose that a number of
products are being compared using several different attributes. We regard object
a as below objech if b beatsa on every attribute. If each beats the other on some
attributes, we regard the objects as being incomparable. This defines a partial
order (assuming that each attribute gives a total order). More precisely, given a
setSof total orders orX, we define a partial ordé on X by x <ry if and only if
X <gyfor everyse S In other wordsR s the intersection of the total orders$n

Theorem 5 Every partial order on a finite set X is the intersection of some set of
total orders on X.

Now we define thelimensiorof a partial ordeR to be the smallest number of
total orders whose intersectionRs In our motivating example, it is the smallest
number of attributes which could give rise to the observed total dder

Thecrownon 2n elementsay, ..., ay, b1, ..., by is the partial order defined as
follows: for all indices # j, the elements; anda; are incomparable, the elements
bi andbj are incomparable, b# < bj; and for each, the elements; andb; are
incomparable. Figure 2 shows the Hasse diagram of the 6-element crown.

Now we have the following result:

Proposition 6 The crown or2n elements has dimension n.
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5 The Mobius function

Let R be a partial order on the finite s€t We take any linear order extendiRy
and writeX = {Xg,...,Xn}, Wherex; < ... < X, (in the linear ordef): this is not
essential but is convenient later.

Theincidence algebra4(R) of R is the set of all functiond : X x X — R
which satisfy f (x,y) = 0 unlessx <ry holds. We could regard it as a function
on R, regarded as a set of ordered pairs. Addition and scalar multiplication are
defined pointwise; multiplication is given by the rule

(fo(xy) = f(x29(zy).

If we representf by then x n matrix A with (i, j) entry f(x,x;), then this is
precisely the rule for matrix multiplication. Also, X<Rr Yy, then there is no point
zsuch thatx <r zandz <ry, and so( fg)(x,y) = 0. Thus,4(R) is closed under
multiplication and does indeed form an algebra, a subset of the matrix algebra
Mn(R). Also, sincef andg vanish on pairs not iRk, the sum can be restricted to
the intervallx,yjr = {z: x <rz<rYs}:

(fo)xy)= > f(x29(zy).
ze[xylr
Incidentally, we see that th@, j) entry of As is zero ifi > j, and so4(R)
consists of upper triangular matrices. Thus, an elenient4(R) is invertible if
and only if f (x,x) # 0 for all x € X.
Thezeta-functior{r is the matrix representing the relatiBras defined earlier;
that is, the element ofl(R) defined by

_ 1 ifx<Rry,
ZR(X’y)_{o otherwise.

Its inverse (which also lies ir(R)) is the Mobius function g of R. Thus, we
have, for all(x,y) € R,

1 ifx=y
H(X» Z) = !
ze[Xylr { 0 otherwise.

This relation allows the Nbius function of a poset to be calculated recur-
sively. We begin withugr(x,x) = 1 for all x € X. Now, if x <ry and we know the
values ofu(x, z) for all z€ [x,y|r\ {y}, then we have

UR(X7 y) = - z UR(X7 Z)'
ze[xylR\{y}
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In particular,pr(x,y) = —1 if y coversx.
The definition of the incidence algebra and thés function extend imme-
diately to locally finite posets, since the sums involved are over intepxals.
The following are examples of §bius functions.

e The subsets of a set:
U(A,B) = (—1)/B\ for AC B;

e The subspaces of a vector spate GF(q)"™:
WU, W) = (~1)%q®) for U C W, wherek = dimU — dimW.

e The (positive) divisors of an integer
u(a,b) = (=" if g is tr_]e product of distinct primes;
0 otherwise.
In number theory, the classical@ius function is the function of one variable
given byp(n) = (1, n) (in the notation of the third example above).
The following result is théobius inversiorfor locally finite posets. From the
present point of view, it is obvious.

Theorem 7 f =g{ < g= fu. Similarly, f={g< g= pf.

Example: Suppose that andg are functions on the natural numbers which are
related by the identityf (n) = 3 4,,9(d). We may express this identity ds= g¢
where we considef andg as vectors and wher&is the zeta function for the
lattice of positive integer divisors @f Theorem 7 implies thag = f|, or

d

atn) = 5 W, () =5 (£ ) (0
din djn

which is precisely the classicaldbius inversion.

Example: Suppose thaf and g are functions on the subsets of some fixed

(countable) seK which are related by the identiti(A) = Sg-409(B). We may

express this identity as= (g where( is the zeta function for the lattice of subsets
of X. Theorem 7 implies thay = uf, or

gA) =5 HAB)F(B) =5 (-1)PAf(B)
& &
which is a rather general form of the inclusion/exclusion principle.
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6 Lattices

A latticeis a poset X, R) with the properties
e X has an upper bound 1 and a lower bound O;

e for any two elements,y € X, there is a least upper bound and a greatest
lower bound of the seftx,y}.

A simple example of a poset which is not a lattice is the pM .

In a lattice, we denote the l.u.b. ¢k, y} by xVy, and the g.l.b. bxAy. We
commonly regard a lattice as being a set with two distinguished elements and two
binary operations, instead of as a special kind of poset.

Lattices can be axiomatised in terms of the two constants 0 and 1 and the
two operationsy andA. The result is as follows, though the details are not so
important for us. The axioms given below are not all independent. In particular,
for finite lattices we don’t need to specify 0 and 1 separately, since O is just the
meet of all elements in the lattice and 1 is their join.

Proposition 8 Let X be a set)\ andV two binary operations defined on X, a@d
and1two elements of X. TheX, Vv, A,0,1) is a lattice if and only if the following
axioms are satisfied:

e Associative laws: X (YA Z) = (XAy)Azand X/ (YVz) = (XVY)Vz;

Commutative laws: Xxy=yAxand x\vy=yVx;

Idempotent laws: x X =XV X = X;

XA (XVY) =X=XV (XAY);
e XAN0=0,xv1=1.

A sublatticeof a lattice is a subset of the elements containing 0 and 1 and
closed under the operationsandA. It is a lattice in its own right.
The following are a few examples of lattices.

e The subsets of a (fixed) set:
AAB = ANB
AvB = AUB
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e The subspaces of a vector space:
uanv = Unv
UvVv = spanUuV)

e The patrtitions of a set:
RAT = RNT
RVT = RUT

HereRUT is the partition whose classes are the connected components of the
graph in which two points are adjacent if they lie in the same class of dRber
T.

7 Distributive and modular lattices

A lattice isdistributiveif it satisfies thedistributive laws
(D) XA (YVZ) = (XAY)V (XAZ) andXV (YA Z) = (XVY) A (XV2z) for all x,y,z
A lattice ismodularif it satisfies themodular law
(M) xVv (yAz) = (xVy)Azfor all x,y,zsuch thak < z

Figure 3 presents a latticéls, which is not modular, as well as a modular
lattice,M3, which is not distributive.

Not only areNs and M3 the smallest lattices with these properties, they are,
in a certain sense, the only lattices with these properties. The following theorem
states this more precisely.

Theorem 9 A lattice is modular if and only if it does not contain the latticed$
a sublattice. A lattice is distributive if and only if it contains neither the lattige N
nor the lattice M as a sublattice.

The poset of all subsets of a &(ordered by inclusion) is a distributive lattice:
we have 0= 0, 1= S and l.u.b. and g.l.b. are union and intersection respectively.
Hence every sublattice of this lattice is a distributive lattice.

Conversely, every finite distributive lattice is a sublattice of the lattice of sub-
sets of a set. We describe how this representation works. This is important in that
it gives us another way to look at posets.
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Ns M3

Figure 3: Two lattices

Let (X,R) be a poset. Recall that atown-setin X is a subset with the
property that, ify € Y andz <ry, thenze Y.

Let L be a lattice. A non-zero elemenrte L is calledjoin-irreducible if,
whenevex =y\Vz we havex=yorx=z

Theorem 10 (@) Let(X,R) be a finite poset. Then the set of down-sets in X,
with the operations of union and intersection and the distinguished elements
0=0and1= X, is a distributive lattice.

(b) Let L be afinite distributive lattice. Then the set X of non-zero join-irreducible
elements of L is a sub-poset of L.

(c) These two operations are mutually inverse.
Meet-irreducibleelements are defined dually, and there is of course a dual
form of Theorem 10.
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