
Posets

This is an abbreviated version of the Combinatorics Study Group notes by
Thomas Britz and Peter Cameron.

1 What is a poset?

A binary relation Ron a setX is a set of ordered pairs of elements ofX, that is, a
subset ofX×X. We can representR by a matrix with rows and columns indexed
by X, with (x,y) entry 1 if (x,y) ∈ R, 0 otherwise.

The term “poset” is short for “partially ordered set”, that is, a set whose ele-
ments are ordered but not all pairs of elements are required to be comparable in
the order. Just as an order in the usual sense may be strict (as<) or non-strict (as
≤), there are two versions of the definition of a partial order:

A strict partial order is a binary relationSon a setX satisfying the conditions

(R−) for nox∈ X does(x,x) ∈ Shold;

(A−) if (x,y) ∈ S, then(y,x) /∈ S;

(T) if (x,y) ∈ Sand(y,z) ∈ S, then(x,z) ∈ S.

A non-strict partial orderis a binary relationRon a setX satisfying the conditions

(R+) for all x∈ X we have(x,x) ∈ R;

(A) if (x,y) ∈ Rand(y,x) ∈ R thenx = y;

(T) if (x,y) ∈ Rand(y,z) ∈ R then(x,z) ∈ R.

Condition (A−) appears stronger than (A), but in fact (R−) and (A) imply
(A−). So we can (as is usually done) replace (A−) by (A) in the definition of
a strict partial order. Conditions (R−), (R+), (A), (T) are calledirreflexivity,
reflexivity, antisymmetryand transitivity respectively. We often writex < y if
(x,y) ∈ S, andx≤ y if (x,y) ∈ R. We usually prefer the non-strict version.

The two definitions are essentially the same: we get from one to the other in
the obvious way, settingx≤ y if x< y or x = y, and settingx< y if x≤ y butx 6= y.
Thus, aposetis a setX carrying a partial order (either strict or non-strict).

If there is ambiguity aboutR, we simply writex≤R y.
A total order is a partial order in which every pair of elements is comparable,

that is, the following condition (known astrichotomy) holds:
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• for all x,y∈ X, exactly one ofx<R y, x = y, andy<R x holds.

In a poset(X,R), we define theinterval [x,y]R to be the set

[x,y]R = {z∈ X : x≤R z≤R y}.

By transitivity, the interval[x,y]R is empty if x 6≤R y. We say that the poset is
locally finite if all intervals are finite.

The set of positive integers ordered by divisibility (that is,x≤R y if x dividesy)
is a locally finite poset.

2 Properties of posets

An elementx of a poset(X,R) is calledmaximal if there is no elementy ∈ X
satisfyingx<R y. Dually,x is minimal if no element satisfiesy<R x.

In a general poset there may be no maximal element, or there may be more
than one. But in a finite poset there is always at least one maximal element, which
can be found as follows: choose any elementx; if it is not maximal, replace it
by an elementy satisfyingx<R y; repeat until a maximal element is found. The
process must terminate, since by the irreflexive and transitive laws the chain can
never revisit any element. Dually, a finite poset must contain minimal elements.

An elementx is anupper boundfor a subsetY of X if y≤R x for all y ∈ Y.
Lower boundsare defined similarly. We say thatx is a least upper boundor l.u.b.
of Y if it is an upper bound and satisfiesx≤R x′ for any upper boundx′. The
concept of agreatest lower boundor g.l.b. is defined similarly.

A chain in a poset(X,R) is a subsetC of X which is totally ordered by the
restriction ofR (that is, a totally ordered subset ofX). An antichainis a setA of
pairwise incomparable elements.

Infinite posets (such asZ), as we remarked, need not contain maximal ele-
ments.Zorn’s Lemmagives a sufficient condition for maximal elements to exist:

Let (X,R) be a poset in which every chain has an upper bound. Then
X contains a maximal element.

As well known, there is no “proof” of Zorn’s Lemma, since it is equivalent
to the Axiom of Choice (and so there are models of set theory in which it is
true, and models in which it is false). Our proof of the existence of maximal
elements in finite posets indicates why this should be so: the construction requires
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(in general infinitely many) choices of upper bounds for the elements previously
chosen (which form a chain by construction).

Theheightof a poset is the largest cardinality of a chain, and itswidth is the
largest cardinality of an antichain. We denote the height and width of(X,R) by
h(X) andw(X) respectively (suppressing as usual the relationR in the notation).

In a finite poset(X,R), a chainC and an antichainA have at most one element
in common. Hence the least number of antichains whose union isX is not less
than the sizeh(X) of the largest chain inX. In fact there is a partition ofX into
h(X) antichains. To see this, letA1 be the set of maximal elements; by definition
this is an antichain, and it meets every maximal chain. Then letA2 be the set of
maximal elements inX \A1, and iterate this procedure to find the other antichains.

There is a kind of dual statement, harder to prove, known asDilworth’s Theo-
rem:

Theorem 1 Let (X,R) be a finite poset. Then there is a partition of X into w(X)
chains.

An up-setin a poset(X,R) is a subsetY of X such that, ify∈Y andy≤R z,
thenz∈Y. The set of minimal elements in an up-set is an antichain. Conversely,
if A is an antichain, then

↑ (A) = {x∈ X : a≤R x for somea∈ A}

is an up-set. These two correspondences between up-sets and antichains are mu-
tually inverse; so the numbers of up-sets and antichains in a poset are equal.

Down-setsare, of course, defined dually. The complement of an up-set is a
down-set; so there are equally many up-sets and down-sets.

3 Hasse diagrams

Let x and y be distinct elements of a poset(X,R). We say thaty covers xif
[x,y]R = {x,y}; that is,x<R y but no elementz satisfiesx<R z<R y. In general,
there may be no pairsx andy such thaty coversx (this is the case in the rational
numbers, for example). However, locally finite posets are determined by their
covering pairs:

Proposition 2 Let (X,R) be a locally finite poset, and x,y ∈ X. Then x≤R y if
and only if there exist elements z0, . . . ,zn (for some non-negative integer n) such
that z0 = x, zn = y, and zi+1 covers zi for i = 0, . . . ,n−1.
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Figure 1: A Hasse diagram

TheHasse diagramof a poset(X,R) is the directed graph whose vertex set is
X and whose arcs are the covering pairs(x,y) in the poset. We usually draw the
Hasse diagram of a finite poset in the plane in such a way that, ify coversx, then
the point representingy is higher than the point representingx. Then no arrows
are required in the drawing, since the directions of the arrows are implicit.

For example, the Hasse diagram of the poset of subsets of{1,2,3} is shown
in Figure 1.

4 Linear extensions and dimension

One view of a partial order is that it contains partial information about a total order
on the underlying set. This view is borne out by the following theorem. We say
that one relationextendsanother if the second relation (as a set of ordered pairs)
is a subset of the first.

Theorem 3 Any partial order on a finite set X can be extended to a total order
on X.

This theorem follows by a finite number of applications of the next result.

Proposition 4 Let R be a partial order on a set X, and let a,b be incomparable
elements of X. Then there is a partial order R′ extending R such that(a,b) ∈ R′

(that is, a< b in the order R′).

A total order extendingR in this sense is referred to as alinear extensionof R.
(The term “linear order” is an alternative for “total order”.)
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Figure 2: A crown

This proof does not immediately show that every infinite partial order can be
extended to a total order. If we assume Zorn’s Lemma, the conclusion follows. It
cannot be proved from the Zermelo–Fraenkel axioms alone (assuming their con-
sistency), but it is strictly weaker than the Axiom of Choice, that is, the Axiom of
Choice (or Zorn’s Lemma) cannot be proved from the Zermelo–Fraenkel axioms
and this assumption. In other words, assuming the axioms consistent, there is a
model in which Theorem 3 is false for some infinite poset, and another model in
which Theorem 3 is true for all posets but Zorn’s Lemma is false.

The theorem gives us another measure of the size of a partially ordered set. To
motivate this, we use another model of a partial order. Suppose that a number of
products are being compared using several different attributes. We regard object
a as below objectb if b beatsa on every attribute. If each beats the other on some
attributes, we regard the objects as being incomparable. This defines a partial
order (assuming that each attribute gives a total order). More precisely, given a
setSof total orders onX, we define a partial orderRonX by x<R y if and only if
x<s y for everys∈ S. In other words,R is the intersection of the total orders inS.

Theorem 5 Every partial order on a finite set X is the intersection of some set of
total orders on X.

Now we define thedimensionof a partial orderR to be the smallest number of
total orders whose intersection isR. In our motivating example, it is the smallest
number of attributes which could give rise to the observed total orderR.

Thecrownon 2n elementsa1, . . . ,an,b1, . . . ,bn is the partial order defined as
follows: for all indicesi 6= j, the elementsai anda j are incomparable, the elements
bi andb j are incomparable, butai < b j ; and for eachi, the elementsai andbi are
incomparable. Figure 2 shows the Hasse diagram of the 6-element crown.

Now we have the following result:

Proposition 6 The crown on2n elements has dimension n.
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5 The Möbius function

Let R be a partial order on the finite setX. We take any linear order extendingR,
and writeX = {x1, . . . ,xn}, wherex1 < .. . < xn (in the linear orderS): this is not
essential but is convenient later.

The incidence algebraA(R) of R is the set of all functionsf : X×X → R

which satisfy f (x,y) = 0 unlessx≤R y holds. We could regard it as a function
on R, regarded as a set of ordered pairs. Addition and scalar multiplication are
defined pointwise; multiplication is given by the rule

( f g)(x,y) = ∑
z

f (x,z)g(z,y).

If we representf by then× n matrix Af with (i, j) entry f (xi ,x j), then this is
precisely the rule for matrix multiplication. Also, ifx 6≤R y, then there is no point
z such thatx≤R z andz≤R y, and so( f g)(x,y) = 0. Thus,A(R) is closed under
multiplication and does indeed form an algebra, a subset of the matrix algebra
Mn(R). Also, sincef andg vanish on pairs not inR, the sum can be restricted to
the interval[x,y]R = {z : x≤R z≤R y}:

( f g)(x,y) = ∑
z∈[x,y]R

f (x,z)g(z,y).

Incidentally, we see that the(i, j) entry of Af is zero if i > j, and soA(R)
consists of upper triangular matrices. Thus, an elementf ∈ A(R) is invertible if
and only if f (x,x) 6= 0 for all x∈ X.

Thezeta-functionζR is the matrix representing the relationRas defined earlier;
that is, the element ofA(R) defined by

ζR(x,y) =
{

1 if x≤R y,
0 otherwise.

Its inverse (which also lies inA(R)) is theMöbius function µR of R. Thus, we
have, for all(x,y) ∈ R,

∑
z∈[x,y]R

µ(x,z) =
{

1 if x = y,
0 otherwise.

This relation allows the M̈obius function of a poset to be calculated recur-
sively. We begin withµR(x,x) = 1 for all x∈ X. Now, if x<R y and we know the
values ofµ(x,z) for all z∈ [x,y]R\{y}, then we have

µR(x,y) =− ∑
z∈[x,y]R\{y}

µR(x,z).
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In particular,µR(x,y) =−1 if y coversx.
The definition of the incidence algebra and the Möbius function extend imme-

diately to locally finite posets, since the sums involved are over intervals[x,y]R.
The following are examples of M̈obius functions.

• The subsets of a set:

µ(A,B) = (−1)|B\A| for A⊆ B;

• The subspaces of a vector spaceV ⊆GF(q)n:

µ(U,W) = (−1)kq(k
2) for U ⊆W, wherek = dimU−dimW.

• The (positive) divisors of an integern:

µ(a,b) =
{

(−1)r if b
a is the product ofr distinct primes;

0 otherwise.

In number theory, the classical M̈obius function is the function of one variable
given byµ(n) = µ(1,n) (in the notation of the third example above).

The following result is theMöbius inversionfor locally finite posets. From the
present point of view, it is obvious.

Theorem 7 f = gζ⇔ g = f µ. Similarly, f= ζg⇔ g = µ f .

Example: Suppose thatf andg are functions on the natural numbers which are
related by the identityf (n) = ∑d|ng(d). We may express this identity asf = gζ
where we considerf andg as vectors and whereζ is the zeta function for the
lattice of positive integer divisors ofn. Theorem 7 implies thatg = f µ, or

g(n) = ∑
d|n

µ(d,n) f (d) = ∑
d|n

µ

(
d
n

)
f (d),

which is precisely the classical M̈obius inversion.

Example: Suppose thatf and g are functions on the subsets of some fixed
(countable) setX which are related by the identityf (A) = ∑B⊇Ag(B). We may
express this identity asf = ζg whereζ is the zeta function for the lattice of subsets
of X. Theorem 7 implies thatg = µ f, or

g(A) = ∑
B⊇A

µ(A,B) f (B) = ∑
B⊇A

(−1)|B\A| f (B)

which is a rather general form of the inclusion/exclusion principle.
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6 Lattices

A lattice is a poset(X,R) with the properties

• X has an upper bound 1 and a lower bound 0;

• for any two elementsx,y ∈ X, there is a least upper bound and a greatest
lower bound of the set{x,y}.

A simple example of a poset which is not a lattice is the posetr rr r��@@ .

In a lattice, we denote the l.u.b. of{x,y} by x∨y, and the g.l.b. byx∧y. We
commonly regard a lattice as being a set with two distinguished elements and two
binary operations, instead of as a special kind of poset.

Lattices can be axiomatised in terms of the two constants 0 and 1 and the
two operations∨ and∧. The result is as follows, though the details are not so
important for us. The axioms given below are not all independent. In particular,
for finite lattices we don’t need to specify 0 and 1 separately, since 0 is just the
meet of all elements in the lattice and 1 is their join.

Proposition 8 Let X be a set,∧ and∨ two binary operations defined on X, and0
and1 two elements of X. Then(X,∨,∧,0,1) is a lattice if and only if the following
axioms are satisfied:

• Associative laws: x∧ (y∧z) = (x∧y)∧z and x∨ (y∨z) = (x∨y)∨z;

• Commutative laws: x∧y = y∧x and x∨y = y∨x;

• Idempotent laws: x∧x = x∨x = x;

• x∧ (x∨y) = x = x∨ (x∧y);

• x∧0 = 0, x∨1 = 1.

A sublatticeof a lattice is a subset of the elements containing 0 and 1 and
closed under the operations∨ and∧. It is a lattice in its own right.

The following are a few examples of lattices.

• The subsets of a (fixed) set:
A∧B = A∩B
A∨B = A∪B
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• The subspaces of a vector space:
U ∧V = U ∩V
U ∨V = span(U ∪V)

• The partitions of a set:
R∧T = R∩T
R∨T = R∪T

HereR∪T is the partition whose classes are the connected components of the
graph in which two points are adjacent if they lie in the same class of eitherR or
T.

7 Distributive and modular lattices

A lattice isdistributiveif it satisfies thedistributive laws

(D) x∧ (y∨z) = (x∧y)∨ (x∧z) andx∨ (y∧z) = (x∨y)∧ (x∨z) for all x,y,z.

A lattice ismodularif it satisfies themodular law

(M) x∨ (y∧z) = (x∨y)∧z for all x,y,z such thatx≤ z.

Figure 3 presents a lattice,N5, which is not modular, as well as a modular
lattice,M3, which is not distributive.

Not only areN5 andM3 the smallest lattices with these properties, they are,
in a certain sense, the only lattices with these properties. The following theorem
states this more precisely.

Theorem 9 A lattice is modular if and only if it does not contain the lattice N5 as
a sublattice. A lattice is distributive if and only if it contains neither the lattice N5

nor the lattice M3 as a sublattice.

The poset of all subsets of a setS(ordered by inclusion) is a distributive lattice:
we have 0= /0, 1= S, and l.u.b. and g.l.b. are union and intersection respectively.
Hence every sublattice of this lattice is a distributive lattice.

Conversely, every finite distributive lattice is a sublattice of the lattice of sub-
sets of a set. We describe how this representation works. This is important in that
it gives us another way to look at posets.
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Figure 3: Two lattices

Let (X,R) be a poset. Recall that andown-setin X is a subsetY with the
property that, ify∈Y andz≤R y, thenz∈Y.

Let L be a lattice. A non-zero elementx ∈ L is called join-irreducible if,
wheneverx = y∨z, we havex = y or x = z.

Theorem 10 (a) Let (X,R) be a finite poset. Then the set of down-sets in X,
with the operations of union and intersection and the distinguished elements
0 = /0 and1 = X, is a distributive lattice.

(b) Let L be a finite distributive lattice. Then the set X of non-zero join-irreducible
elements of L is a sub-poset of L.

(c) These two operations are mutually inverse.

Meet-irreducibleelements are defined dually, and there is of course a dual
form of Theorem 10.
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functions,Z. Wahrscheinlichkeitstheorie2 (1964), 340–368.

Peter J. Cameron
May 8, 2002

The Encyclopedia of Design Theory Posets/10


