
Hadamard matrices

1 Introduction

A Hadamard matrixis ann×n real matrixH which satisfiesHH> = nI.
The name derives from a theorem of Hadamard:

Theorem 1 Let X = (xi j ) be an n×n real matrix whose entries satisfy|xi j | ≤ 1
for all i , j. Then|det(X)| ≤ nn/2. Equality holds if and only if X is a Hadamard
matrix.

This is a nice example of a theorem which seems to lack any reasonable ap-
proach (we are asked to optimise a highly non-linear function over a multidimen-
sional region), yet when looked at the right way it is very easy. Letx1 . . . ,xn be
the rows ofX. Then by simple Euclidean geometry,|det(X)| is the volume of the
parallelepiped with sidesx1, . . . ,xn; so

|det(X)| ≤ |x1| · · · |xn|,

where|xi | is the Euclidean length ofxi ; equality holds if and only ifx1, . . . ,xn are
mutually perpendicular. By hypothesis,

|xi |=
(
x2

i1 + · · ·+x2
in

)1/2≤ n1/2,

with equality if and only if|xi j |= 1 for all j. The result follows, since a Hadamard
matrix is just a real matrix whose entries all have modulus 1 and whose rows are
mutually perpendicular.

For which ordersn do Hadamard matrices exist? There is a well-known nec-
essary condition:

Theorem 2 If a Hadamard matrix of order n exists, then n= 1 or 2 or n ≡ 0
(mod 4).

To see this, we observe first that changing the sign of every entry in a column
of a Hadamard matrix gives another Hadamard matrix. So changing the signs of
all columns for which the entry in the first row is−, we my assume that all entries
in the first row are+. (We abbreviate+1 and−1 to+ and− respectively.)
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a︷ ︸︸ ︷
+ · · · +
+ · · · +
+ · · · +

a︷ ︸︸ ︷
+ · · · +
+ · · · +
− ·· · −

a︷ ︸︸ ︷
+ · · · +
− ·· · −
+ · · · +

a︷ ︸︸ ︷
+ · · · +
− ·· · −
− ·· · −

Figure 1: Three rows of a Hadamard matrix

Now, since every other row is orthogonal to the first, we see that each further
row hasm entries+ andm entries−, wheren = 2m. Moreover, ifn> 2, the first
three rows are now as in Figure 1, withn = 4a.

It is conjectured that there is a Hadamard matrix of every order divisible by 4
(in other words, the above necessary condition is sufficient). The smallest multiple
of 4 for which no matrix has been constructed is currently 428. We will see a few
constructions in the following sections. See [2] for more.

2 Some constructions

The constructions given here by no means exhaust those known, but suffice to give
a Hadamard matrix of each admissible order less than 52.

2.1 Sylvester matrices

The simplest construction of new Hadamard matrices from old is the Kronecker
(or tensor) product. In general, ifA= (ai j ) andB= (bkl) are matrices of sizem×n
andp×q respectively, theKronecker product A⊗B is themp×nq matrix made
up of p× q blocks, where the(i, j) block is ai j B. Then we have the following
result:

Theorem 3 The Kronecker product of Hadamard matrices is a Hadamard matrix.

The Sylvester matrix S(k) of order 2k is the iterated Kronecker product ofk

copies of the Hadamard matrix

(
+ +
+ −

)
of order 2. By the preceding theorem,
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it is a Hadamard matrix. For example,

S(2) =


+ + + +
+ − + −
+ + − −
+ − − +

 .
The Sylvester matrices have many other descriptions. For example, if we index the
rows and columns by allk-tuples over the binary field GF(2), we can take the entry
in row a = (a1, . . . ,ak) and columnb = (b1, . . . ,bk) to be(−1)a·b, wherea ·b =
∑aibi is the usual dot product of vectors. We can regard the index(a1, . . . ,ak)
as being the base 2 representation of an integer∑ai2k−i in the range[0,2k−1].
Alternatively,S(k) is the character table of the elementary abelian group of order
2k.

2.2 Paley matrices

Let q be a prime power congruent to 3 mod 4. Recall that in the field GF(q), half
the non-zero elements are quadratic residues or squares, and half are quadratic
non-residues or non-squares; and in particular,+1 is a square and−1 is a non-
square. Thequadratic characterof GF(q) is the functionχ given by

χ(x) =

{0 if x = 0;
+1 if x is a quadratic residue;
-1 if x is a quadratic non-residue.

Now let A be the matrix whose rows and columns are indexed by elements of
GF(q), and having(x,y) entryaxy = χ(y− x). The matrixA is skew-symmetric,
with zero diagonal and±1 elsewhere, and satisfies the equation

A2 = J−qI.

The matrixA is the adjacency matrix of thePaley tournament.
Now if we replace the diagonal zeros by−1s and borderA with a row and

column of+1s, we obtain a Hadamard matrix of orderq+1 called aPaley matrix.

2.3 Order 36

The smallest order not settled by the above constructions is 36. Here are two
completely different methods for constructing Hadamard matrices of order 36.
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Construction from Latin squares Let L = (l i j ) be a Latin square of order 6:
that is, a 6×6 array with entries 1, . . . ,6 such that each entry occurs exactly once
in each row or column of the array. Now letH be a matrix with rows and columns
indexed by the 36 cells of the array: its entry in the position corresponding to a
pair (c,c′) of distinct cells is defined to be+1 if c andc′ lie in the same row, or in
the same column, or have the same entry; all other entries (including the diagonal
ones) are−1. ThenH is a Hadamard matrix.

Steiner triple systems Let S be a Steiner triple system of order 15: that is,S
is a set of “triples” or 3-element subsets of{1, . . . ,15} such that any two distinct
elements of this set are contained in a unique triple. There are 35 triples, and two
distinct triples have at most one point in common. Now letA be a matrix with
rows and columns indexed by the triples, with entry in position(t, t ′) being−1 if
t andt ′ meet in a single point; all other entries (including the diagonal ones)are
+1. Now letH be obtained by borderingA by a row and column of+1s. ThenH
is a Hadamard matrix.

3 Equivalence of Hadamard matrices

The Sylvester and Paley matrices of orders 4 and 8 are equivalent – indeed there is
essentially a unique matrix of each of these orders. For all larger orders for which
both types exist (that is,n = p+ 1, wherep is a Mersenne prime), they are not
equivalent. We proceed to make the sense of “equivalence” of Hadamard matrices
precise.

There are several operations on Hadamard matrices which preserve the Hadamard
property:

(a) permuting rows, and changing the sign of some rows;

(b) permuting columns, and changing the sign of some columns;

(c) transposition.

We call two Hadamard matricesH1 andH2 equivalentif one can be obtained
from the other by operations of types (a) and (b); that is, ifH2 = P−1H1Q, where
P andQ aremonomial matrices(having just one non-zero element in each row or
column) with non-zero entries±1.

Accordingly, theautomorphism groupof a Hadamard matrixH is the group
consisting of all pairs(P,Q) of monomial matrices with non-zero entries±1
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satisfyingP−1HQ = H; the group operation is given by(P1,Q1) ◦ (P2,Q2) =
(P1P2,Q1Q2).

Note that there is always an automorphism(−I ,−I), which lies in the centre
of the automorphism group.

This analysis is due to Marshall Hall [1]. He showed that there is, up to equiv-
alence, a unique Hadamard matrixH of order 12. Moreover, ifG = Aut(H), and
Z is the central subgroup generated by(−I ,−I), thenG/Z is isomorphic to the
sporadic simple groupM12 (the Mathieu group), and has its two 5-transitive rep-
resentations on the rows and columns. Moreover, the map(P,Q) 7→ (Q,P) gives
an outer automorphism ofM12 interchanging these two representations.

4 Designs from Hadamard matrices

If we choose a row of a Hadamard matrix of ordern= 4a, and normalise it to have
entries+1, then each of the remaining 4a−1 rows has 2aentries+1 and 2aentries
−1. If we take the set of columns as points, and the sets of columns carrying+1s
and−1s in all but the chosen row as blocks, we obtain a 3-(4a,2a,a−1) design.
Different choices of row may or may not give isomorphic designs. The Hadamard
matrix can be recovered uniquely (up to equivalence) from the design. The design
obtained from the Sylvester matrix is the point-hyperplane design of affine space
over GF(2).

Designs with parameters 3-(4a,2a,a−1) are necessarily affine, and any affine
3-design has this form. They are calledHadamard3-designs.

If we choose a row and a column of a Hadamard matrix of ordern = 4a,
we can normalise both to consist of+1s. Then take the columns other than the
distinguished one as points; for each row other than the distinguished one, take
the set of columns where its+1 entries occur as the blocks. We obtain a square
2-(4a−1,2a−1,a−1) design. Different choices of row and column may or may
not give isomorphic designs. The Hadamard matrix can be recovered uniquely (up
to equivalence) from the design. The design obtained from the Sylvester matrix is
the point-hyperplane design of projective space over GF(2).

Square designs with parameters 2-(4a−1,2a−1,a−1) are calledHadamard
2-designs.

For example, in the Paley matrix of orderq+1, one row and column is already
normalised to consist of+1s; the resulting design can be described as follows: the
point set is GF(q); one block is the setSof non-zero squares (quadratic residues)
in GF(q), and the others are its translatesS+ x = {s+ x : s∈ S}, for x∈ GF(q).
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This is thePaley design.
Yet another design can be obtained as follows. LetH be a Hadamard matrix

of order 4a. The points of the design are the columns ofH; for each pair of rows
of H, there are two blocks of size 2a, the set of columns where the entries in the
rows agree, and the set where they disagree. This is a 3-(4a,2a,2a(a−1)) design.
Equivalent matrices give the same design. Remarkably it turns out that the design
is a 4-design if and only ifa = 3, in which case it is even a 5-design (specifically
the 5-(12,6,1) Steiner system, whose automorphism group is the Mathieu group
M12 which we met above).

5 Symmetric matrices with constant row sum

If a Hadamard matrixH is symmetric with constant row sum, then its order is a
square, say 4m2, and the row sum is either 2m or−2m. If we replace the entries
−1 in the matrix by 0, we obtain the incidence matrix of a square 2-(4m2,2m2±
m,m2±m) design.

Any Sylvester matrix of square order is equivalent to a symmetric matrix with
constant row sum, and thus gives rise to such designs; these can be constructed
using quadratic forms on a vector space over GF(2).

The Hadamard matrices of order 36 constructed above from Latin squares are
also of this form.
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