Galois fields

1 Fields

A field is an algebraic structure in which the operations of addition, subtraction,
multiplication, and division (except by zero) can be performed, and satisfy the
usual rules.

More precisely, dield is a setF with two binary operations- (addition) and
- (multiplication) are defined, in which the following laws hold:

(Al) a+ (b+c) = (a+b) +c (associative law for addition)
(A2) a+ b = b+ a(commutative law for addition)
(A3) There is an element O (zero) such that 0 = a for all a.
(A4) For anya, there is an elementa such that+ (—a) = 0.
(M1) a- (b-c) = (a-b) - c (associative law for multiplication)
(M2) a-b = b-a(commutative law for multiplication)
(M3) There is an element 1 (not equal to 0) such thdt = a for all a.
(M4) For anya # 0, there is an elememt ! such thati-a=! = 1.
(D) a- (b+c) = (a-b)+ (a-c) (distributive law)
Using the notion of a group, we can condense these nine axioms into just three:

e The elements of form an Abelian group with the operation (called the
additive groupof F).

e The non-zero elements &f form an Abelian group under the operation
(called themultiplicative groupof F).

e Multiplication by any non-zero element is an automorphism of the additive
group.
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We usually writex -y simply asxy. Many other familiar arithmetic properties
can be proved from the axioms: for examplg =00 for anyx.

Familiar examples of fields are found among the number systems (the rational
numbers, the real numbers, and the complex numbers are all fields). There are
many others. For example, fifis a prime number, then thetegers mod orm
a field: its elements are the congruence classes of integerpnwith addition
and multiplication induced from the usual integer operations.

For example, here are the addition and multiplication tables for the integers
mod 3. (We use (, 2 as representatives of the congruence classes.)

+]0 1 2 |0 1 2
0/0 1 2 0[0 0 0
11120 110 1 2
2|2 01 2|0 21

2 Finite fields: existence

Galois (in one of the few papers published in his lifetime) answered completely
the question of which finite fields exist.

First, the number of elements in a finite field must be a prime power, say
g=p', wherep is prime.

Then, for each prime power = p", there exists a field of ordey, and it is
unique (up to isomorphism).

The construction is as follows. First, 16y be the field of integers mog.
Now choose an irreducible polynomi&(X) of degree overF. (It can be shown
that such polynomials always exist; indeed, it is possible to count them.) We can
assume that the leading coefficientfols equal to 1; say

f(X)=X"+c_ 1 X1+ + X +co.
We take the elements &f to be all expressions of the form
r—1

Xo+X1a+Xpa2 + -+ %18 L,

whereais required to satisfyf (a) = 0, andxo, ..., % —_1 € Fo. (This is very similar
to the construction of the complex numbers as of the fosayi, where P+1 =0,
andx andy are real numbers.)
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Now the number of expressions of the above fornp'is since there arg
choices for each of the coefficientsxy,...,%_1. Adding these expressions is
straightforward. To multiply them, observe that

a=—¢_1a t— —ca—cp,
soa" (and similarly any higher power @) can be reduced to the required form.

It can be shown, using the irreducibility of the polynomialthat this con-
struction produces a field. Moreover, even though there are different choices for
the irreducible polynomials, the fields constructed are all isomorphic.

For an example, we construct a field of ordex=%®2, using the polynomial
X2+ 1, which is irreducible over the field of integers mod 3. The elements of the
field are all expressions of the forri-ya, wherea® = 2, andx,y = 0,1,2. As
examples of addition and multiplication, we have

(2+a)+(2+2a) = 4+3a=1,
(2+a)(2+2a) = 4+6a+2a°=4+0+4=8=2

3 Finite fields: properties

In this section, we describe some properties of the GaloisFietdGF(q), where
g= p" with p prime. As noted in the last section, the elements ®,...,p—1
of F form a subfield which is isomorphic to the integers mqxl for obvious
reasons, it is known as thmime subfieldbf F.

Additive group. The additive group of Gf]) is an elementary Abeliap-group.
This is because
X+ +X=(1+---+1)x=0x=0,

where there ar@ terms in the sum. Thus, it is the direct sunr alyclic groups of
orderp.

Another way of saying this is th&t is a vector space of dimensioroverFy;
that is, there is dasis(ay, ...,ar) such that every elememrtof F can be written
uniquely in the form

X=X+ -+ Xa

for someay,...,x € p={0,1,...,p—1}.
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Multiplicative group.  The most important result is thite multiplicative group
of GF(q) is cyclig that is, there exists an elemantalled aprimitive roof such
that every non-zero element Bfcan be written uniquely in the forgl for some
i with 0 <i < gq— 2. Moreover, we havg® 1 =¢® = 1.

Squares. Suppose that] is odd. Then the cyclic group of ordg— 1 has the
property that exactly half its elements are squares (those which are even posers of
a primitive element). The squares are sometimes callediratic residuesand

the non-squares aguadratic non-residues(These terms are used especially in

the case whergis prime, so that Gfg) is the field of integers mod.

Automorphism group. An automorphism oF is a one-to-one mapping— X"
from F ontoF, such that

(X+Y)T=XTHY (xy) = XY
for all x,y.

The mapo : x — xP is an automorphism df, known as thd-robenius auto-
morphism The elements df fixed by the Frobenius automorphism are precisely
those lying in the prime subfieley. Moreover, the group of automorphismsFof
is cyclic of ordemr, generated by. (This means that every automorphism has the
form x+— xP for some value of with 0 <i<r-1.

Special bases. We saw thaF has bases of sizeas a vector space oves. These
bases can be chosen to have various additional properties.

The easiest type of basis to find is one of the fdira, a2, ...,a 1}, wherea
is the root of an irreducible polynomial of degreeverky. The existence of such
basis is guaranteed by the construction.

A basis of the form{a, ao,aoz, . ,a"r*l}, whereo is the Frobenius automor-
phism, is called aormal basis Such a basis always exists. Note that the auto-
morphism group oF has a particularly simple form relative to a normal basis,
since the basis elements are just permuted cyclically by the automorphisms.

Subfields. Ifthe field GR p") has a subfield Gfp3), wherep andp; are primes,
thenp = p; ands dividesr. Conversely, ifs dividesr then GRp") has a unique
subfield of ordemp®. The necessity of the condition is proved by applying La-
grange’s Theorem to the additive and multiplicative groups. The sufficiency is
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proved by observing that, i is the Frobenius automorphism of G¥F), ands
dividesr, then the fixed elements of the automorphish{that is, the elemenis
satisfyinga® = a) form the unique subfield of orde?.

Calculation in finite fields.  Addition in GHq) is easy if we have chosen a basis:
we have

(X18a+ -+ X&) + (yrar + - +yrar) = (X +y)ar +- -+ (% +yr)ar,

in other words, we add “coordinate-wise”.

On the other hand, multiplication is easy if we have chosen a primitivegroot

we have _ _ o
(9)-(g)=g",
where the exponent is reduced mpd 1 if necessary.

In order to be able to perform both operations, we need a table telling us how to
translate between the two representations. This is essentially a table of logarithms
(for those who remember such things), sincg i= x, we can think ofi as the
“logarithm” of x.

For the field GF9) which we constructed earlier, using an elenmeesatisfying
a? = 2 (over the integers mod 3), we find thgit= 1+ a is a primitive element,
and the table of logarithms is as follows:

° 1
gt| a+1
g°| 2a

g’ 2a+1
g
g
g
g

N

N

2

2a+2
a
a+2

~N O O

For example(a+2)(2a+2) =g’ -¢g° =g*?=g*=2.
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