
Galois fields

1 Fields

A field is an algebraic structure in which the operations of addition, subtraction,
multiplication, and division (except by zero) can be performed, and satisfy the
usual rules.

More precisely, afield is a setF with two binary operations+ (addition) and
· (multiplication) are defined, in which the following laws hold:

(A1) a+(b+c) = (a+b)+c (associative law for addition)

(A2) a+b = b+a (commutative law for addition)

(A3) There is an element 0 (zero) such thata+0 = a for all a.

(A4) For anya, there is an element−a such thata+(−a) = 0.

(M1) a· (b·c) = (a·b) ·c (associative law for multiplication)

(M2) a·b = b·a (commutative law for multiplication)

(M3) There is an element 1 (not equal to 0) such thata·1 = a for all a.

(M4) For anya 6= 0, there is an elementa−1 such thata·a−1 = 1.

(D) a· (b+c) = (a·b)+(a·c) (distributive law)

Using the notion of a group, we can condense these nine axioms into just three:

• The elements ofF form an Abelian group with the operation+ (called the
additive groupof F).

• The non-zero elements ofF form an Abelian group under the operation·
(called themultiplicative groupof F).

• Multiplication by any non-zero element is an automorphism of the additive
group.
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We usually writex ·y simply asxy. Many other familiar arithmetic properties
can be proved from the axioms: for example, 0x = 0 for anyx.

Familiar examples of fields are found among the number systems (the rational
numbers, the real numbers, and the complex numbers are all fields). There are
many others. For example, ifp is a prime number, then theintegers mod pform
a field: its elements are the congruence classes of integers modp, with addition
and multiplication induced from the usual integer operations.

For example, here are the addition and multiplication tables for the integers
mod 3. (We use 0,1,2 as representatives of the congruence classes.)

+ 0 1 2
0 0 1 2
1 1 2 0
2 2 0 1

· 0 1 2
0 0 0 0
1 0 1 2
2 0 2 1

2 Finite fields: existence

Galois (in one of the few papers published in his lifetime) answered completely
the question of which finite fields exist.

First, the number of elements in a finite field must be a prime power, say
q = pr , wherep is prime.

Then, for each prime powerq = pr , there exists a field of orderq, and it is
unique (up to isomorphism).

The construction is as follows. First, letF0 be the field of integers modp.
Now choose an irreducible polynomialf (X) of degreer overF0. (It can be shown
that such polynomials always exist; indeed, it is possible to count them.) We can
assume that the leading coefficient off is equal to 1; say

f (X) = Xr +cr−1Xr−1 + · · ·+c1X +c0.

We take the elements ofF to be all expressions of the form

x0 +x1a+x2a2 + · · ·+xr−1ar−1,

wherea is required to satisfyf (a) = 0, andx0, . . . ,xr−1 ∈ F0. (This is very similar
to the construction of the complex numbers as of the formx+yi, where i2+1= 0,
andx andy are real numbers.)

The Encyclopedia of Design Theory Galois fields/2



Now the number of expressions of the above form ispr , since there arep
choices for each of ther coefficientsx0, . . . ,xr−1. Adding these expressions is
straightforward. To multiply them, observe that

ar =−cr−1ar−1−·· ·−c1a−c0,

soar (and similarly any higher power ofa) can be reduced to the required form.
It can be shown, using the irreducibility of the polynomialf , that this con-

struction produces a field. Moreover, even though there are different choices for
the irreducible polynomials, the fields constructed are all isomorphic.

For an example, we construct a field of order 9= 32, using the polynomial
X2 + 1, which is irreducible over the field of integers mod 3. The elements of the
field are all expressions of the formx+ ya, wherea2 = 2, andx,y = 0,1,2. As
examples of addition and multiplication, we have

(2+a)+(2+2a) = 4+3a = 1,

(2+a)(2+2a) = 4+6a+2a2 = 4+0+4 = 8 = 2.

3 Finite fields: properties

In this section, we describe some properties of the Galois fieldF = GF(q), where
q = pr with p prime. As noted in the last section, the elements 0,1,2, . . . , p−1
of F form a subfieldF0 which is isomorphic to the integers modp; for obvious
reasons, it is known as theprime subfieldof F .

Additive group. The additive group of GF(q) is an elementary Abelianp-group.
This is because

x+ · · ·+x = (1+ · · ·+1)x = 0x = 0,

where there arep terms in the sum. Thus, it is the direct sum ofr cyclic groups of
orderp.

Another way of saying this is thatF is a vector space of dimensionr overF1;
that is, there is abasis(a1, . . . ,ar) such that every elementx of F can be written
uniquely in the form

x = x1a1 + · · ·+xrar

for somea1, . . . ,xr ∈ F0 = {0,1, . . . , p−1}.
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Multiplicative group. The most important result is thatthe multiplicative group
of GF(q) is cyclic; that is, there exists an elementg called aprimitive root) such
that every non-zero element ofF can be written uniquely in the formgi for some
i with 0≤ i ≤ q−2. Moreover, we havegq−1 = g0 = 1.

Squares. Suppose thatq is odd. Then the cyclic group of orderq−1 has the
property that exactly half its elements are squares (those which are even posers of
a primitive element). The squares are sometimes calledquadratic residues, and
the non-squares arequadratic non-residues. (These terms are used especially in
the case whereq is prime, so that GF(q) is the field of integers modq.

Automorphism group. An automorphism ofF is a one-to-one mappingx 7→ xπ

from F ontoF , such that

(x+y)π = xπ +yπ, (xy)π = xπyπ

for all x,y.
The mapσ : x 7→ xp is an automorphism ofF , known as theFrobenius auto-

morphism. The elements ofF fixed by the Frobenius automorphism are precisely
those lying in the prime subfieldF0. Moreover, the group of automorphisms ofF
is cyclic of orderr, generated byσ. (This means that every automorphism has the
form x 7→ xpi

for some value ofi with 0≤ i ≤ r−1.

Special bases. We saw thatF has bases of sizer as a vector space overF0. These
bases can be chosen to have various additional properties.

The easiest type of basis to find is one of the form{1,a,a2, . . . ,ar−1}, wherea
is the root of an irreducible polynomial of degreer overF0. The existence of such
basis is guaranteed by the construction.

A basis of the form{a,aσ,aσ2
, . . . ,aσr−1}, whereσ is the Frobenius automor-

phism, is called anormal basis. Such a basis always exists. Note that the auto-
morphism group ofF has a particularly simple form relative to a normal basis,
since the basis elements are just permuted cyclically by the automorphisms.

Subfields. If the field GF(pr) has a subfield GF(ps
1), wherep andp1 are primes,

thenp = p1 ands dividesr. Conversely, ifs dividesr then GF(pr) has a unique
subfield of orderps. The necessity of the condition is proved by applying La-
grange’s Theorem to the additive and multiplicative groups. The sufficiency is
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proved by observing that, ifσ is the Frobenius automorphism of GF(pr), ands
dividesr, then the fixed elements of the automorphismσs (that is, the elementsa
satisfyingaps

= a) form the unique subfield of orderps.

Calculation in finite fields. Addition in GF(q) is easy if we have chosen a basis:
we have

(x1aa + · · ·+xrar)+(y1a1 + · · ·+yrar) = (x1 +y1)a1 + · · ·+(xr +yr)ar ,

in other words, we add “coordinate-wise”.
On the other hand, multiplication is easy if we have chosen a primitive rootg:

we have
(gi) · (g j) = gi+ j ,

where the exponent is reduced modq−1 if necessary.
In order to be able to perform both operations, we need a table telling us how to

translate between the two representations. This is essentially a table of logarithms
(for those who remember such things), since ifgi = x, we can think ofi as the
“logarithm” of x.

For the field GF(9) which we constructed earlier, using an elementa satisfying
a2 = 2 (over the integers mod 3), we find thatg = 1+ a is a primitive element,
and the table of logarithms is as follows:

g0 1
g1 a+1
g2 2a
g3 2a+1
g4 2
g5 2a+2
g6 a
g7 a+2

For example,(a+2)(2a+2) = g7 ·g5 = g12 = g4 = 2.
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