
Abelian groups

1 Definition

An Abelian groupis a setA with a binary operation◦ satisfying the following
conditions:

(A1) For alla,b,c∈ A, we havea◦ (b◦c) = (a◦b)◦c (theassociative law).

(A2) There is an elemente∈ A such thata◦e= a for all a∈ A.

(A3) For anya∈ A, there existsb∈ A such thata◦b = e.

(A4) For alla,b∈ A, we havea◦b = b◦a (thecommutative law).

The first three axioms are almost identical to the axioms for a group, except
that in the case of a group we normally say, for example,a◦1= 1◦a= a in Axiom
(A2) (this is obviously not necessary if (A4) holds). Thus,an Abelian group is a
group satisfying the commutative law.

Since many important Abelian groups arise as additive structures in various
number systems (the integers, real numbers, integers modm, etc.), it is very com-
mon to write the group operation as+ instead of◦; with this convention it is
natural to write 0 instead ofe in (A2), and−a instead ofb in (A3). We usually
adopt this convention, which we describe as “additive notation”. However, mul-
tiplicative structures (the positive rationals, the non-zero complex numbers) also
give Abelian groups, and for these we might writeab for a◦b, 1 for e, anda−1

for b in (A3); we say that such a group is written with “multiplicative notation”.
A homomorphismis a mapχ : A→ B between Abelian groups satisfying

χ(a1 ◦a2) = χ(a1) ◦χ(a2). (Sometimes, as common in algebra, we writeaχ in-
stead ofχ(a).) An example we will see below is acharacterof A, which is a
homomorphism fromA to the multiplicative group of non-zero complex numbers.
If A is written additively, a characterχ thus satisfiesχ(a1 +a2) = χ(a1)χ(a2).

A homomorphism which is one-to-one and onto is called anisomorphism.
Two Abelian groups areisomorphicif there is an isomorphism between them.
Isomorphic groups are regarded as “the same” from a structural or group-theoretic
point of view, even though their elements may be quite different kinds of object.
We writeA∼= B to denote “A is isomorphic toB”.

Theorder of a finite group is the number of elements it contains. Theorder
of the elementa of A is the smallest positive integern such thatna= 0 (assuming
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thatA is written in additive notation). A connection between these concepts will
be seen in the next section. In general, the order of any element of a group divides
the order of the group.

2 The Fundamental Theorem of Finite Abelian Groups

The structure of finite Abelian groups can be described completely.

2.1 Cyclic groups

A cyclic groupis one whose elements are all of the formna for n∈ Z, for some
fixed elementa. (Here, ifn is positive, thennameansa+ · · ·+awith nsummands;
0a is the group element 0; and(−m)a is−ma, the inverse ofma, for positivem.
The elementa is called ageneratorof the group. Any cyclic group is Abelian.

In a finite cyclic group of ordern, the generatora satisfiesna = 0, andn is
the smallest positive integer with this property. In other words, the order of the
generator is equal to the order of the group (though the sense of the word “order”
is different).

Any two finite cyclic groups of the same order are isomorphic. We denote the
cyclic group of ordern by Cn. Two important realisations ofCn are:

• the additive group of integers modulon;

• the multiplicative group of complexnth roots of unity.

2.2 Direct sum

Thedirect sum A⊕B of two Abelian groupsA andB is the set of all ordered pairs
(a,b), with a∈ A andb∈ B; the operation is given by the rule

(a1,b1)+(a2,b2) = (a1 +a2,b1 +b2).

It is an Abelian group, whose zero is(0,0) (the first 0 being the zero ofA and the
second that ofB), and in which the inverse of(a,b) is (−a,−b).

The definition of direct sum is easily extended to more than two Abelian
groups.

If the groups are written in multiplicative notation, we usually speak ofdirect
productrather than direct sum, and write it asA×B.
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2.3 The Fundamental Theorem

The Fundamental Theorem on Finite Abelian Groups states, in part:

Theorem 1 Any finite Abelian group is isomorphic to a direct sum of cyclic groups.

We need more than this, because two different direct sums may be isomorphic.
For example,C2⊕C3

∼= C6. (If a andb are generators of the summands, then
2a = 3b = 0, and successive multiples of(a,b) are(a,b), (0,2b), (a,0), (0,b),
(a,2b) and(0,0).) There are two standard resolutions of this problem.

(a) An Abelian group is inSmith canonical formif it is written as

Cn1⊕·· ·⊕Cnr ,

wheren1, . . . ,nr are integers greater than 1 andni dividesni+1 for 1≤ i ≤
r−1.

(b) An Abelian group is inprime-power canonical formif it is written as

Cq1⊕·· ·⊕Cqr ,

whereq1, . . . ,qr are prime powers greater than 1.

Theorem 2 (a) Any finite Abelian group can be written in Smith canonical form.
If two groups in Smith canonical form are isomorphic, then the multisets of
orders of the cyclic factors are equal.

(b) The same holds with “prime-power” in place of “Smith”.

To convert Smith into prime power andvice versa, use the fact that ifn =
q1 · · ·qm, whereq1, . . . ,qm are distinct prime powers, then

Cn
∼= Cq1⊕·· ·⊕Cqm.

Thus, from Smith to prime-power, simply factorise the orders of the cyclic fac-
tors. From prime-power to Smith, gather up the largest power of each prime and
multiply them; then repeat until nothing remains.

For example, the groupC4⊕C12⊕C36 is in Smith canonical form; the group
C4⊕C4⊕C4⊕C3⊕C9 is in prime-power canonical form; and these two groups
are isomorphic.
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2.4 A consequence

It follows from the Fundamental Theorem that, ifm is the least common multiple
of the orders of the elements of the Abelian groupA, then there is an element of
orderm in A. (For the numbermwith this property is the order of the largest cyclic
factor in the Smith canonical form ofA.)

This is not true in arbitrary (non-Abelian) groups.

3 Characters

As defined earlier, acharacterof A is a homomorphism fromA to the multiplica-
tive group of non-zero complex numbers. The characters ofA themselves form
a multiplicative Abelian group, where(χψ)(a) = (χ(a))(ψ(a)). The group of
characters ofA is thedual groupof A, denoted byA∗.

Theorem 3 The dual group of a finite Abelian group A is isomorphic to A.

This is easily seen for cyclic groups. IfA = Cn, generated byA, then the
characters ofA all have the form

χ j(ka) = e2πi jk/n

where j belongs to the integers modn; thusχ1 generatesA∗. Now the theorem is
extended to all finite Abelian groups by using the Fundamental Theorem.

4 Groups of units

LetZ/n denote the integers modulon. The additive group ofZ/n is a cyclic group
of ordern, as we have seen. The multiplicative structure is more intricate.

First, we must select which elements to use. An elementa of Z/n is a unit
if there existsb such thatab = 1 in Z/n (that is,ab≡ 1 (modn)). Using Eu-
clid’s Algorithm, we see thata is a unit if and only ifa is coprime ton (that is,
gcd(a,n) = 1). Moreover, the set of units is a multiplicative group, called the
group of unitsmodulon and denoted byU(n). The order of this group isEuler’s
functionφ(n). The next theorem gives its structure.

Theorem 4 (a) If n = q1 · · ·qr , where q1, . . . ,qr are distinct prime powers, then

U(n)∼= U(q1)×·· ·×U(qr).
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(b) If p is an odd prime and m> 0, then U(pm) is cyclic of order pm−1(p−1).

(b)

U(2m)∼=


1 if m = 1;
C2 if m = 2;
C2×C2m−2 if m≥ 3.

Note that the decomposition given by this theorem is not usually in canonical
form. For example,

U(35)∼= U(5)×U(7)∼= C4×C6.

The Smith canonical form of this group isC2×C12, while the prime-power canon-
ical form isC2×C4×C3.

It follows from the above theorem thatU(n) is cyclic if and only if n = pa,
n = 2pa, or n = 4, wherepa is an odd prime power. In these cases, a generator of
U(n) is called aprimitive rootmodn. For example,U(9) is cyclic of order 6, and
2 is a primitive root of 9.
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