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Our first meeting

I first met Donald at the BCC in Aberystwyth in 1973, which I
think was his first BCC, perhaps his first combinatorics
conference. Rosemary has told this story. After his talk, I sat
next to him on the excursion coach, and the result of that
discussion was a joint publication constructing some designs
resembling the one on the title page of these slides.

This is a table from the
paper (mentioned by
Rosemary in her talk).
I didn’t understand the
exact relation between
Donald’s and my
points of view for more
than 20 years, when I
found an infinite
family of these designs.
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Donald and the BCC

With the BCC chair’s hat on, I would like to say a little about
Donald’s contribution to the British Combinatorial
Conferences.

Many BCC delegates over the years will know Donald’s
organisation of the conference concert. The amount of energy
he put into this, both physical and nervous, was phenomenal.
He would act as accompanist when required for almost
anything.
But his biggest contribution occurred in 1999. The committee
found itself without a conference venue, due to circumstances
beyond our control. Donald stepped in and, with John Lamb’s
help, organised a very successful BCC at the University of Kent
at Canterbury.
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Donald at Queen Mary





Donald came to Queen Mary as a research professor in 2000.

I immediately had to revise the impression of the very formal
gentleman that he had made on me in Aberystwyth. He signed
up for courses at the climbing wall in Mile End Park with great
enthusiasm, and was soon abseiling down tall buildings for
charity and scaling industrial chimneys all over the country. He
was on the point of starting sky-diving until a detached retina
put paid to this.
He also became involved with the Luncheon Club at Queen
Mary, and through this, became involved with the Organ in the
Great Hall, which was then in very poor condition. He was
very much concerned with the refurbishment of the organ, and
one of his compositions was played at its re-inauguration in
2013.
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This is the cover of
Donald’s remarkable
survey of East End
organs, published by
QMUL in 2012.
The cover picture
shows the console of
the refurbished organ,
which we will hear
later this afternoon.
His two copies of the
book are both heavily
annotated . . .



Terraces, daisy chains, tredoku and more

Donald threw himself into research at Queen Mary. He studied
various kinds of neighbour-balanced designs with Ian
Anderson, Matt Ollis, and others. He returned to tight
single-change covering designs. He constructed some new
types of Youden rectangles which he had been seeking for
many years.

He was always keen to stand in for a colleague and give a
lecture to undergraduates. The Combinatorics Study Group
also saw a number of his inimitable performances. Typical titles
were “Daisy chains” on 16 March 2007, and “If at first you don’t
succeed . . . a combinatorial breakthrough” on 22 October 2010.
At my retirement conference in 2013, he posed various
challenges concerned with tredoku, a 3-dimensional version of
Sudoku which appeared in The Times. Afterwards, quite a few
members of the audience could be seen trying their hand at
these.
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Primitive lambda-roots

I want to discuss two related pieces of work I did with Donald
during his time at Queen Mary, University of London, on
primitive lambda-roots and on generators in arithmetic
progression.

A primitive root modulo an integer n is an integer r which is
coprime to n and has the property that every integer coprime to
n is congruent to a power of r. For example, 3 is a primitive
root mod 5, since 31 ≡ 3, 32 ≡ 4, 33 ≡ 2, and 34 ≡ 1.
Primitive roots do not exist for every integer: only numbers
which are an odd prime power, twice an odd prime power, or 4
have them.
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It is well known to those in Donald’s field that primitive roots
modulo a prime, or more generally in a finite field, are useful in
various combinatorial constructions. But what are we to do if
we need a design where the number of points is not prime (a
frequent occurrence in statistics)?

I will give one of Donald’s constructions which shows how he
ingeniously bridged the gap. The next slide is in Donald’s
words.
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Consider the following sequence of the elements of Z35:

START
10 15 5 3 9 27 11 33 29 17 16 13 4 12 1 21 7↘

0
25 20 30 32 26 8 24 2 6 18 19 22 31 23 34 14 28↙
FINISH

The last 17 entries, in reverse order, are the negatives of the
first 17, which, with the zero, can also be written

55 56 57 31 32 33 34 35 36 37 38 39 310 311 312 74 75 0.

If we write the respective entries here as xi (i = 1, 2, . . . , 18),
then the successive differences xi+1 − xi (i = 1, 2, . . . , 17) are

5 −10 −2 6 −17 −16 −13 −4 −12 −1 −3 −9 8 −11 −15 −14 −7.

Ignoring minus signs, these differences consist of each of the
values 1, 2, . . . , 17 exactly once. This is a special type of terrace.
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Carmichael’s lambda-function λ(n) is the maximum order of
an element in the group of units of Zn, the integers mod n.
(That is, the largest number of distinct powers we can get
modulo n from a fixed element coprime to n.) An element of the
group of units Un is a primitive lambda-root if its order is λ(n).

Thus, if n is prime, λ(n) = n− 1 and primitive lambda-roots
are just primitive roots.
In the preceding example, λ(35) is the least common multiple
of λ(5) = 4 and λ(7) = 6, that is, λ(35) = 12. Now 3 is a
primitive lambda-root mod 35: its powers mod 35 are

31 = 3, 32 = 9, 33 = 27, 34 = 11, 35 = 33, 36 = 29,
37 = 17, 38 = 16, 39 = 13, 310 = 4, 311 = 12, 312 = 1.
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Motivated by this, Donald and I embarked on a study of
primitive lambda-roots. We never found a suitable place to
publish it, but you can access the notes (and the GAP functions
I wrote for computing with them) at
https://cameroncounts.wordpress.com/lecture-notes/

(I should add that I never persuaded Donald to use the
computer to do these calculations: he worked on paper on the
train journey to London from East Malling, and presented me
with his findings and his challenges, when he arrived.)
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The notes are mainly expository, and contain many open
problems. There are some unexpected connections. For
example, if λ∗(m) is the greatest n such that λ(n) = m, then
λ∗(2m) is also the denominator of the Bernoulli number B2m,
re-scaled. We give a proof, but I don’t really understand why.
(In fact, we found the key in a paper on mathematical physics!)

It was also characteristic of Donald that he invented names for
PLRs having some special property in which he was interested.
I assume that these were properties which had proved useful in
his constructions, but I never found out more. Thus a PLR
could be negating or non-negating, inward or outward, perfect,
imperfect or aberrant.
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Generators in arithmetic progression
This investigation led us on to further exploration of the group
Un of units in Zn. I guess that Donald had some combinatorial
constructions in mind, but I have no idea what they were.

As with so many things he did, the work was driven by
examples. Here are two. We write

Un = 〈x〉a × 〈y〉b × 〈z〉c

to denote that Un is the direct product of cyclic subgroups
generated by x, y, z, and that the orders of these elements are
a, b, c respectively.

U61 = 〈9〉5 × 〈11〉4 × 〈13〉3,

where the orders as well as the generators themselves are in
arithmetic progression; and

U455 = 〈92〉4 × 〈93〉12 × 〈94〉6,

where the generators are consecutive and the orders are even.
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The way we worked was that Donald would arrive at Queen
Mary with a new “theorem”, based on his extensive hand
calculations, and it was my job to write down a proof of the
theorem.

I didn’t always succeed, and there are many open problems in
the paper. Here is one case where I did. But even this raises
number-theoretic questions such as whether an infinity of such
primes exists. (Donald produced long lists by hand.)

Theorem
Let n be a prime congruent to 7 or 31 (mod 36), n > 7. Suppose that
the roots x1 and x2 of x2 + 3x + 3 = 0 in Zn have orders (n− 1)/2
and n− 1 respectively. Then

Un = 〈2x2 + 3〉m × 〈x2 + 1〉3 × 〈−1〉2,

where m = (n− 1)/6.
This and two similar theorems covered all cases of three
generators in AP with orders 2, 3 and (n− 1)/6 when n is
prime.
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Among the other things we did in the paper were:

A “lifting” technique that enabled us to use results about
primes to study composite n.

Some examples (but not much theory) about the analogous
problem in finite fields (we gave examples in fields of
orders 112, 113, 192, 193, 232 and 292).

A couple of isolated examples of 4-term arithmetic
progressions of generators: for example,

U104 = 〈77〉2 × 〈79〉2 × 〈81〉3 × 〈83〉4.

We remarked that we had been unable to find
decompositions with more than four terms; this is an open
problem.
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Donald’s legacy

Donald left a large number of pieces of paper and computer
files. He also left indelible memories, some of which we are
sharing today.

But he also left us a mathematical legacy of ideas which are not
yet completely worked out or published. He wrote to
co-authors in an email in 2010,

I’d better not say my Nunc Dimittis until I’ve written it
up properly! (If I don’t survive that long, any of you
should feel free to complete the task.)

If anyone would like to help me with my part of this task, I
would welcome your assistance!
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