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Block intersection polynomials (invented by

Peter J. Cameron and LHS) give useful in-

formation on the feasible solutions to inte-

ger programming problems of a certain type

which arise in the study of graphs and block

designs having certain regularity properties.

I shall define block intersection polynomials,

and give some examples of the theory of these

polynomials and their applications to the stud-

ies of edge-regular graphs, amply regular graphs,

and t-designs.

All graphs in this talk are finite and undi-

rected, with no loops and no multiple edges.
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Some definitions

• A graph Γ is edge-regular with parame-

ters (v, k, λ) if Γ has exactly v vertices,

is regular of degree k, and every pair of

adjacent vertices have exactly λ common

neighbours.

• A graph is amply regular with parameters

(v, k, λ, µ) if it is edge-regular with param-

eters (v, k, λ) and every pair of vertices at

distance 2 have exactly µ common neigh-

bours.

• A graph is strongly regular with param-

eters (v, k, λ, µ) if it is edge-regular with

parameters (v, k, λ) and every pair of dis-

tinct nonadjacent vertices have exactly µ

common neighbours (so in particular, ev-

ery strongly regular graph is amply regu-

lar).
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• A clique in a graph is a set of pairwise
adjacent vertices.

• A block design is an ordered pair (V,B),
such that V is a finite non-empty set,
whose elements are called points, and B
is a finite non-empty multiset of subsets
of V called blocks.

• For t a non-negative integer and v, k, λ

positive integers with t ≤ k ≤ v, a t-
(v, k, λ) design (or simply a t-design) is a
block design with exactly v points, such
that each block has size k and each t-
subset of the point-set is contained in
exactly λ blocks.

• The incidence graph of a block design D

is the graph whose vertices are the points
and blocks of D (including repeated blocks),
with {α, β} an edge precisely when one of
α and β is a point and the other is a block
containing that point.
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For example, the block design

Z := (V,B)

with point set

V := {1, . . . ,8},

and block multiset B :=

[1234, 1238, 1256, 1357, 1458, 1467, 1678,

2367, 2457, 2468, 2578, 3456, 3478, 3568]

is a 2-(8,4,3) design.
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Now, let Γ be a graph, and let S and Q be

given vertex-subsets of Γ, with s := |S|.

We are interested in using regularity proper-

ties of Γ and information on the subgraph in-

duced on S to obtain information about the

number ni of vertices in Q adjacent to ex-

actly i vertices in S (i = 0, . . . , s), sometimes

with the aim of obtaining a contradiction to

show that no triple (Γ, S, Q) can exist with

the given properties.
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For T ⊆ S, define λT to be the number of

vertices in Q adjacent to every vertex in T ,

and for 0 ≤ j ≤ s, define

λj := 1/
(s

j

) ∑
T⊆S,|T |=j

λT .

For example, if Γ is an edge-regular graph

with parameters (v, k, λ), S an s-clique of Γ

with s ≥ 2, and Q := V (Γ) \ S, then

λ0 = v− s, λ1 = k− s +1, λ2 = λ− s +2.

For another example, if Γ is the incidence

graph of a t-(v, k, λ) design D, S the set

of vertices of Γ consisting of the points on

some block B of D, and Q the set of ver-

tices of Γ corresponding to the blocks of D,

then ni is the number of blocks of D meet-

ing B in exactly i points, and for j = 0, . . . , t,

λj = λj(D) = λ
(
v−j
t−j

)
/
(
k−j
t−j

)
, the (constant)

number of blocks of D containing a j-subset

of the point-set.
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For each known λj, we have the equation:

s∑
i=0

(i

j

)
ni =

(s

j

)
λj. (1)

Theorem (with PJC) For k a non-negative
integer, define the polynomial

P (x, k) := x(x− 1) · · · (x− k + 1),

let s and t be integers, with s ≥ t ≥ 0, let
n0, . . . , ns, m0, . . . , ms, and λ0, . . . , λt be real
numbers, and suppose that for j = 0, . . . , t,
equation (1) holds. Then

s∑
i=0

P (i− x, t)(ni −mi) =

t∑
j=0

(t

j

)
P (−x, t− j)[P (s, j)λj −

s∑
i=j

P (i, j)mi].

(2)

We call (2) the block intersection polynomial
for the sequences [m0, . . . , ms], [λ0, . . . , λt], and
denote this polynomial by

B(x, [m0, . . . , ms], [λ0, . . . , λt]).
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The preceding theorem can be applied to

prove:

Theorem Let Γ be a graph, let S and Q

be vertex-subsets of Γ, with s := |S|, and

let m0, . . . , ms be non-negative integers with

either mi ≤ ni for all i or mi ≥ ni for all

i, where ni is the number of vertices in Q

adjacent to exactly i vertices in S.

Let t be an even integer with 0 ≤ t ≤ s, and

for j = 0 . . . , t, let λj := 1/
(
s
j

) ∑
T⊆S,|T |=j λT ,

where λT is the number of vertices in Q ad-

jacent to every vertex in T .

Now, let B(x) := B(x, [m0, . . . , ms], [λ0, . . . , λt]).

Then:
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• B(x) ≡ 0 if and only if mi = ni for all i;

otherwise, B(x) is a degree t polynomial

with integer coefficients.

• B(m) ≥ 0 for every integer m if mi ≤ ni

for all i, and B(m) ≤ 0 for every integer m

if mi ≥ ni for all i.

• B(m) = 0 for some integer m if and only

if mi = ni for all i 6∈ {m, m + 1, . . . , m +

t−1}, in which case [n0, . . . , ns] is uniquely

determined by [m0, . . . , ms] and [λ0, . . . , λt].
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Example of bounding clique-size in an

edge-regular graph

The strongly regular graphs with parameters

(37,18,8,9) include Paley(37), but not all

strongly regular graphs with these parame-

ters are known. The complement of such

a graph (and such a graph) has least eigen-

value τ ≈ −3.541, and so the Hoffman bound

gives an upper bound of 6 = b37/(1−18/τ)c
on the size of a clique.

Now let Γ be any edge-regular graph with

parameters (37,18,8), and suppose that Γ

contains a clique S of size 6. We calculate

B(x) := B(x, [07], [31,13,4]) = 31x2−125x+

120, and find that B(2) = −6. Hence Γ con-

tains no clique of size 6.

I do not know whether there is some edge-

regular graph with parameters (37,18,8) and

a clique of size 5. The size of a maximum

clique in Paley(37) is 4.
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Application to amply regular graphs

Theorem Let Γ be an amply regular graph

with parameters (v, k, λ, µ), and suppose ∆

is an induced subgraph of Γ, where ∆ has

s ≥ 2 vertices and vertex-degree sequence

[d1, . . . , ds]. Further suppose that ∆ is con-

nected with diameter at most 2 if Γ is not

strongly regular. Let B(x) := x(x + 1)(v −
s) − 2xsk + (2x + λ − µ + 1)

∑s
i=1 di + s(s −

1)µ−
∑s

i=1 d2
i .

Then B(m) ≥ 0 for every integer m.

Moreover, B(m) = 0 for some integer m if

and only if each vertex not in ∆ is adjacent

to exactly m or m+1 vertices of ∆, in which

case exactly B(m+1)/2 vertices not in ∆ are

adjacent to just m vertices of ∆.
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Example

Let Γ be a strongly regular graph with param-

eters (76,30,8,14). It is unknown whether

such a graph exists, although these are “fea-

sible” parameters for a strongly regular graph.

Now suppose Γ contains an induced subgraph

∆ isomorphic to (the 1-skeleton of) an octa-

hedron, i.e. the strongly regular graph with

parameters (6,4,2,4). Then ∆ has s = 6

vertices and vertex-degree sequence [46]. We

calculate B(x) as in the Theorem above, and

determine that

B(x) = 70(x− 2)(x− 51/35).

In particular, B(2) = 0. Hence, exactly B(3)/2 =

54 vertices not in ∆ are adjacent to exactly 2

vertices of ∆, and the remaining 16 vertices

not in ∆ are adjacent to exactly 3 vertices

of ∆.
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Example of bounding the multiplicity of
a block in a t-design

Suppose D is a 4-(23,8,6) design (designs
with these parameters exist). Further sup-
pose that D has a block B of multiplicity 3
or more. Then there are at least 3 blocks
meeting B in 8 points.

Now let

Λ := [λ0(D), . . . , λ4(D)] = [759,264,84,24,6],

and calculate

B(x) := B(x, [08,3],Λ)

= 36(21x4 − 106x3 + 291x2 − 366x + 140).

Since B(1) = −720, we conclude it is impos-
sible for a block of D to have multiplicity 3
or more, and so each block of a 4-(23,8,6)
design can have multiplicity at most 2.

This also shows that each block of a 5-(24,9,6)
design (such designs exist) can have multi-
plicity at most 2.
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Example for a resolvable t-design

It is unknown whether there exists a 2-(55,11,5)
design, but we can show that in such a de-
sign, each block has multiplicity at most 2.

Suppose now D is a resolvable 2-(55,11,5)
design. (A block design is resolvable if its
blocks can be partitioned into parallel classes,
a parallel class being a set of blocks partition-
ing the point set.) Further suppose that D
has a block B of multiplicity 2 or more. Then
there are at least 2 blocks meeting B in 11
points and at least 8 blocks meeting B in no
points.

Now let

Λ := [λ0(D), λ1(D), λ2(D)] = [135,27,5],

and calculate

B(x) := B(x, [8,010,2],Λ) = 5(25x2−85x+66).

Since B(2) = −20, we conclude that no block
of a resolvable 2-(55,11,5) design has mul-
tiplicity 2 or more. In other words, each re-
solvable 2-(55,11,5) design is simple.
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Finally, here is a new theoretical application

of block intersection polynomials to the study

of t-designs.

Theorem Let t be an even positive integer,

let D be a t-(v, k, λ) design, and for B a block

of D, define I(D, B) to be the set of all i for

which some block of D, other than B, meets

B in exactly i points. Now suppose that for

some block B of D, I(D, B) is contained in a

set of t consecutive integers.

Then for every t-(v, k, λ) design E, every block

C of E, and every i = 0, . . . , k, the number

of blocks of E meeting C in exactly i points

is the same as the number of blocks of D

meeting B in exactly i points.
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In some sense, this result is best possible, for

consider the 2-(8,4,3) design Z given at the

beginning of this talk.

The sizes of the intersections of the block

1234 with the other blocks of Z are the three

consecutive integers 1,2,3, and the sizes of

the intersections of the block 1357 with the

other blocks of Z are the two nonconsecutive

integers 0,2.
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For details, generalizations, proofs, and com-

puter implementations, see:

P.J. Cameron and L.H. Soicher, Block in-

tersection polynomials, Bull. London Math.

Soc. 39 (2007), 559–564.

L.H. Soicher, More on block intersection poly-

nomials and new applications to graphs and

block designs, available from

http://designtheory.org/library/preprints/

L.H. Soicher, The DESIGN package for GAP,

Version 1.3, 2006,

http://designtheory.org/software/gap_design/
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