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Block intersection polynomials (invented by
Peter J. Cameron and LHS) give useful in-
formation on the feasible solutions to inte-
ger programming problems of a certain type
which arise in the study of graphs and block
designs having certain regularity properties.

I shall define block intersection polynomials,
and give some examples of the theory of these
polynomials and their applications to the stud-
ies of edge-regular graphs, amply regular graphs,
and t-designs.

All graphs in this talk are finite and undi-
rected, with no loops and no multiple edges.



Some definitions

e A graph I is edge-regular with parame-
ters (v,k,\) if I has exactly v vertices,
IS regular of degree k, and every pair of
adjacent vertices have exactly A common
neighbours.

e A graph is amply regular with parameters
(v, k, \, ) if it is edge-regular with param-
eters (v, k, \) and every pair of vertices at
distance 2 have exactly 4 common neigh-
bours.

e A graph is strongly regular with param-
eters (v, k, A\, n) if it is edge-regular with
parameters (v, k, A\) and every pair of dis-
tinct nonadjacent vertices have exactly u
common neighbours (so in particular, ev-
ery strongly regular graph is amply regu-
lar).



e A clique in a graph is a set of pairwise
adjacent vertices.

e A block design is an ordered pair (V,B),
such that V is a finite non-empty set,
whose elements are called points, and B
is a finite non-empty multiset of subsets
of V called blocks.

e For t a non-negative integer and v, k, A
positive integers with ¢t < k£ < v, a t-
(v, k,\) design (or simply a t-design) is a
block design with exactly v points, such
that each block has size k£ and each t-
subset of the point-set is contained in
exactly A blocks.

e T he incidence graph of a block design D
IS the graph whose vertices are the points
and blocks of D (including repeated blocks),
with {a, 8} an edge precisely when one of
a and Fis a point and the other is a block
containing that point.



For example, the block design
Z = (V,B)
with point set
V.={1,...,8},

and block multiset B :=

[1234, 1238, 1256, 1357, 1458, 1467, 1678,
2367, 2457, 2468, 2578, 3456, 3478, 3568]

is a 2-(8,4,3) design.



Now, let ' be a graph, and let S and Q be
given vertex-subsets of I, with s :=|5]|.

We are interested in using regularity proper-
ties of ' and information on the subgraph in-
duced on S to obtain information about the
number n; of vertices in () adjacent to ex-
actly ¢ verticesin S (1 =0,...,s), sometimes
with the aim of obtaining a contradiction to
show that no triple (I, S, Q) can exist with
the given properties.



For T' C S, define A to be the number of
vertices in ) adjacent to every vertex in T,
and for 0 < 5 < s, define

/\j:=1/(j) Y

TCS,|T|=j

For example, if [ is an edge-regular graph
with parameters (v,k,\), S an s-clique of I
with s > 2, and Q := V(") \ S, then

A=v—8, AN =k—s4+1, Xl=A—s542.

For another example, if I is the incidence
graph of a t-(v,k,\) design D, S the set
of vertices of I’ consisting of the points on
some block B of D, and @ the set of ver-
tices of [ corresponding to the blocks of D,
then n; is the number of blocks of D meet-
ing B in exactly ¢ points, and for j =0, ...,¢,
A= Xi(D) = A(“{:j)/(]z:j) the (constant)
number of blocks of D containing a j-subset
of the point-set.



For each known Aj, we have the equation:

> (= () o

1=0

Theorem (with PJC) For k£ a non-negative
integer, define the polynomial

Pz, k) =a2(x—1)---(x —k+ 1),

let s and t be integers, with s >t > 0, let
no,...,MNs, Mo,...,Ms, and Ap,...,A\+ be real
numbers, and suppose that for j = 0O,...,t,
equation (1) holds. Then

S

> P(i—x,t)(n; —m;) =
i=0
t . . > L
(j)P<—a:,t ~ DIP(s, )N = > PG, j)my).
i=j
(2)
We call (2) the block intersection polynomial

for the sequences [mg,...,ms], [Ag,...,At], and
denote this polynomial by

B(xz,[mg,...,ms],[Ag,.-., At]).

t
7=0



The preceding theorem can be applied to
prove:

Theorem Let ' be a graph, let S and Q
be vertex-subsets of I', with s := |S]|, and
let mqg,...,ms be non-negative integers with
either m; < n; for all « or m; > n; for all
1, where n; is the number of vertices in @
adjacent to exactly ¢ vertices in S.

Let ¢t be an even integer with 0 <t < s, and
for  =0...,¢, let >‘j L= 1/(;) ETQS,|T|=]' AT,
where A is the number of vertices in @ ad-
jacent to every vertex in T'.

Now, let B(z) := B(x, [mg,...,ms],[A0,-..,\t]).
Then:



e B(x) = 0 if and only if m; = n; for all 4;
otherwise, B(x) is a degree ¢t polynomial
with integer coefficients.

e B(m) > 0 for every integer m if m; < n;
for all 7, and B(m) < 0 for every integer m
if m; > n; for all z.

e B(m) = 0 for some integer m if and only
if m; =mn; for all i € {m,m +1,... m+
t—1}, in which case [ng,...,ns] is uniquely
determined by [mg,...,ms] and [Ag, ..., A].



Example of bounding clique-size in an
edge-regular graph

The strongly regular graphs with parameters
(37,18,8,9) include Paley(37), but not all
strongly regular graphs with these parame-
ters are known. The complement of such
a graph (and such a graph) has least eigen-
value 7 = —3.541, and so the Hoffman bound
gives an upper bound of 6 = |37/(1—-18/7)]|
on the size of a clique.

Now let ' be any edge-regular graph with
parameters (37,18,8), and suppose that I
contains a clique S of size 6. We calculate
B(z) := B(z,[07],[31,13,4]) = 3122—125z+
120, and find that B(2) = —6. Hence ' con-
tains no clique of size 6.

I do not know whether there is some edge-
regular graph with parameters (37,18,8) and
a cliqgue of size 5. The size of a maximum
clique in Paley(37) is 4.
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Application to amply regular graphs

Theorem Let ' be an amply regular graph
with parameters (v, k,\,u), and suppose A
iIs an induced subgraph of ', where A has
s > 2 vertices and vertex-degree sequence
[d1,...,ds]. Further suppose that A is con-
nected with diameter at most 2 if [ is not
strongly regular. Let B(z) (= z(x + 1)(v —
s) —2xsk+ QRx +A—p+1)>7_1d; + s(s —
Dp— D1 dz'z-

Then B(m) > 0 for every integer m.

Moreover, B(m) = 0 for some integer m if
and only if each vertex not in A is adjacent
to exactly m or m+ 1 vertices of A, in which
case exactly B(m-+1)/2 vertices not in A are
adjacent to just m vertices of A.
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Example

Let [ be a strongly regular graph with param-
eters (76,30,8,14). It is unknown whether
such a graph exists, although these are ‘“fea-
sible” parameters for a strongly regular graph.

Now suppose [ contains an induced subgraph
A isomorphic to (the 1-skeleton of) an octa-
hedron, i.e. the strongly regular graph with
parameters (6,4,2,4). Then A has s = 6
vertices and vertex-degree sequence [4%]. We
calculate B(x) as in the Theorem above, and
determine that

B(x) =70(x — 2)(x — 51/35).

In particular, B(2) = 0. Hence, exactly B(3)/2 =
54 vertices not in A are adjacent to exactly 2
vertices of A, and the remaining 16 vertices
not in A are adjacent to exactly 3 vertices

of A.
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Example of bounding the multiplicity of
a block in a t-design

Suppose D is a 4-(23,8,6) design (designs
with these parameters exist). Further sup-
pose that D has a block B of multiplicity 3
or more. Then there are at least 3 blocks
meeting B in 8 points.

Now let
N :=[Xog(D),...,a(D)] = [759,264,84, 24, 6],

and calculate
B(z) := B(x, [0%,3],A)

= 36(21z* — 10623 + 29122 — 3662 + 140).

Since B(1) = —720, we conclude it is impos-
sible for a block of D to have multiplicity 3
or more, and so each block of a 4-(23,8,6)
design can have multiplicity at most 2.

This also shows that each block of a 5-(24,9,6)
design (such designs exist) can have multi-
plicity at most 2.
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Example for a resolvable t-design

It is unknown whether there exists a 2-(55,11,5)
design, but we can show that in such a de-
sign, each block has multiplicity at most 2.

Suppose now D is a resolvable 2-(55,11,5)
design. (A block design is resolvable if its
blocks can be partitioned into parallel classes,
a parallel class being a set of blocks partition-
ing the point set.) Further suppose that D
has a block B of multiplicity 2 or more. Then
there are at least 2 blocks meeting B in 11
points and at least 8 blocks meeting B in no
points.

Now let
N = [Xog(D),A\1(D), >(D)] = [135, 27, 5],

and calculate

B(z) := B(z,[8,0%9 2],A) = 5(252°—852+66).

Since B(2) = —20, we conclude that no block
of a resolvable 2-(55,11,5) design has mul-
tiplicity 2 or more. In other words, each re-
solvable 2-(55,11,5) design is simple.
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Finally, here is a new theoretical application
of block intersection polynomials to the study
of t-designs.

Theorem Let t be an even positive integer,
let D be a t-(v, k, \) design, and for B a block
of D, define I(D, B) to be the set of all i for
which some block of D, other than B, meets
B in exactly ¢ points. Now suppose that for
some block B of D, I(D, B) is contained in a
set of t consecutive integers.

Then for every t-(v, k, \) design E, every block
C of FE, and every 1 = 0,...,k, the number
of blocks of £ meeting C in exactly 7z points
iIs the same as the number of blocks of D
meeting B in exactly ¢ points.
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In some sense, this result is best possible, for
consider the 2-(8,4,3) design Z given at the
beginning of this talk.

The sizes of the intersections of the block
1234 with the other blocks of Z are the three
consecutive integers 1,2,3, and the sizes of
the intersections of the block 1357 with the
other blocks of Z are the two nonconsecutive
integers 0, 2.
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For details, generalizations, proofs, and com-
puter implementations, see:

P.J. Cameron and L.H. Soicher, Block in-
tersection polynomials, Bull. London Math.
Soc. 39 (2007), 559-564.

L.H. Soicher, More on block intersection poly-
nomials and new applications to graphs and
block designs, available from

http://designtheory.org/library/preprints/

L.H. Soicher, The DESIGN package for GAP,
Version 1.3, 2006,

http://designtheory.org/software/gap_design/
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