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Abstract

These notes describe what might be a Markov chain method for choos-
ing a random Steiner triple system. Many things are not known, including
whether or not the Markov chain is connected! I include a positive result of
Grannell and Griggs according to which any two isomorphic Steiner triple
systems lie in the same connected component.

1 Choosing at random

Suppose I have a fair coin. How can I choose a random Steiner triple system on
103 points?

A fair coin is a device which can in one step (or toss) produce one bit of infor-
mation (a 0 or a 1, or informally, “heads” or “tails”), in such a way that the results
of different tosses are independent – this means that each of the 2n sequences of
results produced byn tosses occurs with the same probability, namely 1/2n.

Given a fair coin, there is a simple algorithm for choosing a random integerx
in the range[0,2n−1]. We just toss the coinn times and interpret the sequence of
bits as the expansion ofx in base 2.

What about choosing an integer in the range[0,N−1], whereN is arbitrary?
We cannot do this with a bounded number of coin tosses ifN is not a power of 2,
since the probability of any event defined byncoin tosses is a rational number with
denominator 2n. So we have to make a small compromise, as follows. Choosen
to be the least integer such that 2n≥ N. Choose an integer in the range[0,2n−1]
as before. If it is smaller thanN, we accept this result; otherwise we try agin, and
continue until a result is obtained. It is not hard to show that, ifp = N/2n, then

• the resulting integer is uniformly distributed in the range[0,N−1];
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• the expected number of attempts is 1/p;

• the probability that more thanm attempts are required isqm, whereq =
1− p.

(The last two statements follow because the number of attempts is a geometric
random variable). Sincep> 1/2, the expected number of attempts is less than 2
and the probability of needing a long series of tries is exponentially small.

Now we can choose a random structure of a certain type in some situations. If
we can count the structures, then we may suppose there areN altogether; choose
a random numberx from [0,N−1], skip over the firstx structures in the count,
and take the next one. If each structure is determined by a sequence of choices,
and making these choices uniformly gives the uniform distribution, then we can
make the choices at random as long as we know how many choices there are at
each stage.

For example, how can we choose a random permutationσ of the set{1, . . . ,n}?
The image 1σ of 1 can be any of 1, . . . ,n; choose this image at random. Then 2σ
can be any of 1, . . . ,n except 1σ; choose a random numberx from 1, . . . ,n−1 and
add one ifx≥ 1σ, then set 2σ = x. Continuing in this way gives the required
random permutation.

Choosing a random graph onn vertices is even easier: simply decide with a
single coin toss whether each pair of vertices is joined by an edge or not. (Indeed,
the number of graphs is 2n(n−1)/2, and counting them is equivalent to choosing
one at random.)

In other cases, e.g. Latin squares, Steiner systems, we don’t even know how
many structures there are, so choosing one at random cannot be done by these
methods; we need a new idea.

2 Markov chains and random walks

We consider only Markov chains with a finite number of states. LetS= {s1, . . . ,sm}
be a finite set ofstates. Suppose we are given a matrixP= (pi j ) of orderm, whose
entries are non-negative real numbers satisfying

m

∑
j=1

pi j = 1.

The interpretation is that we have a marker on one of the states; at a certain mo-
ment it moves to a new state, where the probability of moving from statesi to state
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sj is pi j . The displayed equation just reflects the fact that the marker is bound to
move to some state!

We can now iterate this procedure. The marker starts out on some state, pos-
sibly chosen at random from an arbitrary probability distribution. At each postive
integer time it makes a transition according to the specification above. We are in-
terested in how it behaves in the long term. There are two extremes of behaviour:

• Suppose thatpi i+1 = 1 for i = 1, . . . ,m−1 andpm1 = 1, all other probabil-
ities being zero. Then the marker simply marches around them-cycle in a
mechanical way; if it starts at statesi then aftern steps it is certainly at state
sj , where j ≡ i +n (modm).

• Suppose thatpi j = 1/m for all i, j. Then, no matter where the marker starts,
after one transition it is in a random state chosen uniformly froms1, . . . ,sm,
and this remains true after any number of transitions.

For most interesting chains, we don’t have either of these extremes, but in-
stead, under certain hypotheses the marker’s position approaches a limiting distri-
bution as the number of transitions increases.

The displayed equation above can be rewritten asP j> = j>, where j is the
all-one vector,j = (1,1, . . . ,1). So 1 is a right eigenvalue ofP. Since the left and
right eigenvalues of a matrix are the same, there is a vectorq = (q1, . . . ,qm) such
thatqP= q.

It can be proved that we can chooseq to have all its entries non-negative,
so we can normalise the entries so that∑m

i=1qi = 1. Then we can interpretq
as a probability distribution on the states. Suppose that the marker starts in this
distribution. Then after one transition, its probability of being in statesj is

m

∑
i=1

qi pi j = q j ,

that is, the same as before the transition! So if the marker starts in the distribution
q, then it remains in this distribution. Soq is certainly a candidate for a limiting
distribution.

We need a couple of conditions on the chain to guarantee good limiting be-
haviour and rule out cases like the first example above. Letpn

i j be the probability
of moving from statesi to statesj aftern transititions. (Exercise: this is just the
(i, j) entry of the matrixPn.) The chain is said to beirreducible if, for any two
statessi andsj , there existsn such thatpn

i j > 0, that is, it is possible to move from
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si to sj . The chain is said to beaperiodicif, for any statesi , the greatest common
divisor of the set

{n : pn
ii > 0}

is equal to 1.

Theorem 1 Let P be an irreducible and aperiodic Markov chain, and q the nor-
malised left eigenvector of P with eigenvalue1. Then, starting from an arbitrary
initial distribution, the distribution after n steps approaches q as n→ ∞.

The particular type of Markov chain we consider is the random walk on an
undirected graph. The states are the vertices of the graph, and a transition consists
of choosing an edge through the vertex on which the marker sits (all edges being
equally likely) and moving to the other end of this edge. In other words,pi j is the
reciprocal of the valency of theith vertexvi if vi andv j are adjacent, and is zero
if they are non-adjacent. It is not hard to see that the random walk is irreducible if
and only if the graph is connected, and is aperiodic if and only if the graph is not
bipartite. (Since the graph is undirected, we can always return to the start vertex
after 2 steps with non-zero probability.)

With our fair coin we can do a random walk on a graph, since we have to
choose among a number of edges at each step, giving each edge the same proba-
bility.

It is also simple to compute the limiting state. We claim that the vector whose
ith component is the valency ofvi is a left eigenvector with eigenvalue 1. This is
an easy exercise; here is a heuristic argument. If the probability of starting atvi is
cki , whereki is the valency ofvi andc is a constant, then the probability of passing
along any given edge isc, and so the probability of arriving atv j is ckj .

In other words, if a graph is connected and non-bipartite, then the random
walk on that graph has the property that, in the limit, the probability of being at
any vertex is proportional to its valency. In particular, if the graph is regular, then
the limiting distribution is uniform.

3 Steiner triple systems

A Steiner triple systemconsists of a setS of n pointsand a setT of triples or
3-subsets ofSwith the property that any two points ofSare contained in a unique
triple. It is well-known that a Steiner triple system onn points exists if and only
if n = 0 orn≡ 1 or 3 (mod 6).
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Steiner triple systems on at most 3 points are trivial. On a set of 7 points, there
are precisely 30 different Steiner triple systems, all of which are isomorphic. (An
isomorphismof Steiner triple systems is a bijection of their point sets which car-
ries triples to triples.) Similarly on 9 points there are 840 Steiner triple systems,
all isomorphic. In these cases, it is simple to choose a random Steiner triple sys-
tem: just start with any Steiner triple system and apply a random permutation to
it.

After that, life gets more complicated. There are two non-isomorphic Steiner
triple systems on 13 points, and 80 (up to isomorphism) on 15 points. (The total
numbers of systems are 1197504000 and 60281712691200 respectively.) For
the next value,n = 19, Petteri Kaski and Patric R. J.Österg̊ard [6] have very
recently shown that the number of isomorphism classes is 11084874829, while
the total number of systems is 1348410350618155344199680000.

Asymptotically, Richard Wilson [7] has shown that the number of isomor-
phism classes of Steiner triple systems onn points is between(e−5n)n2/6 and
nn2/6. Lászlo Babai [1] showed that almost all of these have trivial automorphism
group, so the total number of Steiner triple systems is obtained approximately by
multiplying this number byn!; but n! is negligible even compared tocn2/6.

In the absence of an exact count, we could attempt to choose a random system
by a Markov chain method. The idea is to start with any Steiner triple system and
make some random modification of it to produce another system. Unfortunately
there isn’t an obvious way to do this, so we have to enlarge the space in which we
work by including some so-calledimproperSteiner triple systems, as follows.

First, we re-define Steiner triple systems slightly. Instead of taking a setT of
triples or 3-subsets ofS, we take a functionf from the set of 3-subsets ofS to
{0,1} (the characteristic function ofT); it has the property that, for any distinct
x,y∈ S, we have

∑
z∈S

f ({x,y,z}) = 1.

Now we define animproperSteiner triple system onSto be a functionf from the
set of 3-subsets ofS to {−1,0,1} satisfying the two conditions:

• there is a unique 3-set{x,y,z} with f ({x,y,z}) =−1;

• ∑
z∈S

f ({x,y,z}) = 1.

We call a Steiner triple systemproperwhere necessary to avoid confusion.
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Now the state space of the Markov chain is defined to beP∪ I , whereP and
I are the sets of proper and improper Steiner triple systems onS, respectively. A
transition works as follows. Letf be a state.

(a) If f is proper, choose{x,y,z} with f ({x,y,z}) = 0; if f is improper, start with
the unique{x,y,z} such thatf ({x,y,z}) =−1.

(b) Letx′,y′,z′ be points such that

f ({x′,y,z}) = f ({x,y′,z}) = f ({x,y,z′}) = 1.

(If f is proper, these points are unique; iff is improper, there are two
choices for each of them. The pointsx′,y′,z′ are distinct.)

(c) Now increase the value off by 1 on{x,y,z}, {x,y′,z′}, {x′,y,z′}, and{x′,y′,z},
and decrease it by 1 on{x′,y,z}, {x,y′,z}, {x,y,z′}, and{x′,y′,z′}. We ob-
tain another proper or improper Steiner triple system, according as in the
original system we havef ({x′,y′,z′}) = 1 or f ({x′,y′,z′}) = 0.

All choices are to be made uniformly.
This definition is a simple modification of one proposed for Latin squares by

Jacobson and Matthews [5].

We denote the move above by

(
x
x′

y
y′

z
z′

)
. If the bottom row of the symbol

is a triple, we obtain a proper STS; otherwise we obtain an improper STS for
which the bottom row is the negative block. Note that the number of moves from
a proper STS is

(n
3

)
−n(n−1)/6 = n(n−1)(n−3)/6; the number of moves from

an improper STS is 8.

The first thing to note is that the moves are reversible: that is, if there is a move
from f to f ′, then there is a move fromf ′ to f . Also, our stipulation of uniformity
means that all states which can be reached in one move fromf are equally likely.
So the Markov chain is just the random walk on the graphG with vertex setP∪ I
whose edges are the transitions defined above. We call this thetransition graph
for Steiner triple systems.

In this graph, as we have noted, any proper system has valencyn(n−1)(n−
3)/6, whereas any improper system has valency 8. So we conclude:

If the graphG is connected and not bipartite, then the unique limit-
ing distribution of the Markov chain has the property that all proper
Steiner triple systems are equally likely.
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This means that if we run the Markov chain for sufficiently long and then stop
once we reach a proper Steiner triple system, it will be approximately uniformly
distributed, and the approximation will be better the more steps we take.

So the crucial question is:

Question Is the above graphG connected and non-bipartite?

In fact, connectedness is not essential: all we require is that the proper STSs
are all in the same connected component.

In the next section, we outline a result of Grannell and Griggs [4] which shows
that any two isomorphic Steiner triple systems lie in the same connected compo-
nent of the graphG.

If connectedness can be proved, then other questions arise, such as:

• What is the diameter of the transition graph?

• What is the maximum value of the minimum distance of an improper STS
from all proper STSs?

• How fast does the probability distribution converge to its limit?

4 Small values ofn

For motivation, we look at the casen = 7. In this (atypical) case, there are no
improper Steiner triple systems. For suppose thatf ({1,2,3}) = −1. Then there
are two triples (withf = +1) containing{1,2}, say{1,2,4} and{1,2,5}. Also
there are two triples containing{1,3}; these can have no further points in common
with the triples containing{1,2}, so must be{1,3,6} and{1,3,7}. Now there is
no way to choose the triples containing{2,3}.

In particular, a move in the Markov chain must take a proper system to another
proper system. If we begin with the system (written in the obvious short form)
{123,145,167,246,257,347,356}, and take(x,y,z) = (1,2,4), then we make the

move

(
1
6

2
5

4
3

)
, and we obtain{124,135,236,456,167,257,347}, which is the

image of the first system under the transposition(34). By a sequence of moves,
we can apply any permutation of{1, . . . ,7} to the points of the original system.
Since all Steiner triple systems of order 7 are isomorphic, we have shown that the
graph is connected. Also, since the automorphism group of a system contains only

7



even permutations, we see that the graph is bipartite, since every step changes the
parity of the permutation applied.

The casen = 9 is a bit more typical. In this case, there is a unique improper
STS up to isomorphism. For suppose that 123 is the negative triple. Then, without
loss, we have positive triples 124,125,136,137,238,239. Each of 1,2,3 lies in
just one further triple; these must be 189,267,345. The remaining triples are
transversals to 45,67,89, for which there are just two (isomorphic) possibilities,
one of which is 468,479,569,578.

Now we examine the eight possible moves from this improper STS. For the

four moves like

(
1
8

2
6

3
4

)
, where the bottom row is a (positive) triple, we move to

a proper STS (in this case it would have triples 125,137,239,189,267,345,479,

569,578,146,248,368). For the four moves like

(
1
9

2
6

3
4

)
, where the bottom row

is not a triple, we obtain another improper system, in which (in this case) 469 is
the negative block.

Hence we can move from a proper STS to another proper STS in three moves.
We will see in the next section that we can move from any proper STS to any

isomorphic system in an even number of moves. This shows that, forn = 9, the
graph is non-bipartite. From this we deduce:

Theorem 2 The transition graph is non-bipartite for all admissible n≥ 19.

Proof The Doyen–Wilson theorem [3] asserts that, for all admissiblem,n with
n≥ 2m+ 1, there is a STS of ordern with a subsystem of orderm. So, for all
admissiblen≥ 19, there is a STS of ordern containing a subsystem of order 9.
Now there is a sequence of moves of odd length which starts and ends at this
subsystem; since the moves only involve points within the subsystem, the rest of
the STS is unaltered.

In fact the graph is non-bipartite for alln> 7. The remaining cases (n = 13
andn = 15) were settled by Matt Ollis, as we will describe at the end of the next
section.

Connectedness is more difficult. We have seen that the graph is connected for
n= 7; its connectedness forn= 9 is easily shown by similar arguments, or follows
from the next section. For larger values, the question is open.
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5 Applying a permutation

Grannell and Griggs [4] proved the following result.

Theorem 3 Any two isomorphic proper Steiner triple systems lie in the same con-
nected component of the graph defined earlier.

Proof Starting with any fixed STS of ordern, we obtain all systems isomorphic
to it by applying all permutations of the symmetric groupSn to its points. Since
Sn is generated by transpositions, it is enough to show that the result of applying
an arbitrary transposition lies in the same connected component.

Let a andb be any two points of the (proper) STSS. There is a unique triple
{a,b,c} containing them. Consider the graph whose vertices are the points dif-
ferent froma,b,c, in whichx andy are joined by a red edge if{a,x,y} is a triple,
a blue edge if{b,x,y} is a triple, and by no edge otherwise. Any vertex lies on
one red and one blue edge, so that the graph is the disjoint union of cycles of even
length.

Suppose that(0,1, . . . ,2m−1) is a cycle, with the edge 01 red. Thus, we have
triples

{a,0,1},{b,1,2},{a,2,3}, . . . ,{a,2m−2,2m−1},{b,2m−1,0}.

We will replace these by the triples

{b,0,1},{a,1,2},{b,2,3}, . . . ,{b,2m−2,2m−1},{a,2m−1,0}.

in m−1 moves.

The first move is

(
a
b

1
3

2
0

)
. This changes the first three triples on the list to

{b,0,1}, {a,1,2} and{b,2,3}, and also introduces a positive triple{a,0,3} and
a negative triple{b,0,3}.

The second move is

(
a
b

3
5

4
0

)
, which interchangesa andb in the next two

triples in the list and chages 3 to 5 in the positive and negative pair.
It is readily checked that on them− 1st move, we have achieved our aim.

The last move is

(
a
b

2m−3
2m−1

2m−2
0

)
. Instead of introducing a positive triple

{a,0,2m−1} and a negative triple{b,0,2m−1}, we cancel the existing positive
triple {b,0,2m−1} and replace it with{a,0,2m−1}.

Repeating this procedure for each cycle of the graph, we end up with a system
havinga andb interchanged.
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The number of steps required to apply the transposition(a,b) is equal to(n−
3)/2− c, wherec is the number of cycles in the above graph. In the casen = 9,
each graph has a single cycle, so two moves are required for each transposition.
This justifies the claim at the end of the last section.

Matt Ollis used this observation to show that the transition graph is not bipar-
tite in the remaining casesn = 13 andn = 15, as follows.

Consider firstn = 13. There are two STS of order 13; we take the more sym-
metric one, whose points are the integers mod 13 and whose blocks are translates
of {0,1,4} and{0,2,8}. The graph associated with{0,1} is a 10-cycle

2,8,6,11,10,9,3,12,7,5,2,

so the transposition(0,1) is achieved in 5−1 = 4 moves. The transposition(1,2)
also requires four moves. Similarly, the graph associated with(0,2) has a 4-
cycle and a 6-cycle, so the transposition(1,2) is achieved in 5− 2 = 3 moves.
Now (1,2)(0,1)(0,2)(0,1) is the identity permutation, so we return to the original
system in 4+4+3+4 = 15 moves.

For n = 15, a similar analysis can be applied to system number 44 in the list
in the CRC Handbook [2].
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