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1 Binary relations

We begin by taking a closer look at binary relationsR⊆ X×X. Figure 1 shows
four of the ways in which to look at a binary relation: as a setR, as a bipartite
graphG, as a directed graphD, as an incidence matrixM, where the stars∗ of the
latter are often replaced by numbers or variables. These four ways are completely
equivalent but their context is quite varied. For instance, we may be interested
in matchings, in which case the bipartite view would be most appropriate; or, we
might be interested in paths, and the directed graph view would be more suitable;
and so on. Often it is even more useful to translate one context into another.
Typical instances of such a translation are when linear algebra is applied to the
incidence matrixM in order to describe attributes of the three other structures. In
the first two of the following examples, we assume thatX contains only finitely
many elements.

Example 1.1 Replace each star∗ of the matrixM with an independent variable.
Then a subsetA ⊆ X is matched in (or, a partial transversal of) the bipartite
graphG if and only if the rows ofM corresponding to the elements ofA are
linearly independent. (The setA = (ai)I ⊆ X is matched inG if there is a set
B = (bi)I ⊆ X such that(ai ,bi) ∈ R for all i ∈ I .)
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Example 1.2 Replace each star∗ of the matrixM by the integer 1. Then the
(a,b)’th entry of Mk equals the number of paths inD from the vertexa to the
vertexb.

Example 1.3 Suppose we have two relationsR,S⊆ X, with corresponding inci-
dence matricesM andN. Replace each star∗ of the matricesM andN by the
Boolean 1 (i.e. 1+1=1). ThenM +N is the incidence matrix of the relationR∪S.

R⊆ X×X

Set
{(a,a),
(a,b),
(b,c),
(c,c)}

Incidence matrix
a b c

a ∗ ∗ 0
b 0 0 ∗
c 0 0 ∗

Bipartite graph
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Figure 1: There are always four sides to a relation

The empty set/0 is a relation, and as sets, relations may be operated upon by
complementRC, intersection∩, and union∪. Apart from these, we also introduce

2



the identity relationDX, the inverse relationR−1, and the composition operation◦:

DX = {(x,x);x∈ X};
R−1 = {(y,x);(x,y) ∈ R};
R◦R′ = {(x,z);(x,y) ∈ Rand(y,z) ∈ R′ for somey∈ X}.

The inverseR−1 is easy to visualise: in terms of sets, the order of each ele-
ment(x,y) in the relationR is reversed; the two parts ofG are interchanged; the
direction of each arc ofD is reversed; and the matrixM is transposed. The com-
position◦ is not hard to visualise either. Figure 2 illustrates the composition in
terms of bipartite graphs.
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Figure 2: Composition of binary relations on a set

Example 1.4 Let R,S⊆ X be two relations onX, with corresponding incidence
matricesM andN. Replace each star∗ of the matricesM andN by the Boolean 1.
If X contains only finitely many elements, thenM ·N is the incidence matrix of
the relationR◦S.

Thetransitive closureRof a relationR is the relation

DX ∪R∪ (R◦R)∪ (R◦R◦R)∪ . . . .

It corresponds precisely to the transitive closure of the directed graphD, that is the
graph obtained by adding toD the arc(a,b) wheneverD contains a path froma
to b. In other words, the transitive closureR is the smallest transitive relation onS
which containsR. If X contains a finite numbern of elements, then by replacing
each star∗ of M by a Boolean 1, we obtain an incidence matrix ofR, namelyMn.

3



2 What is a poset?

The term “poset” is short for “partially ordered set”, that is, a set whose elements
are ordered but not all pairs of elements are required to be comparable in the order.
Just as an order in the usual sense may be strict (as<) or non-strict (as≤), there
are two versions of the definition of a partial order:

A strict partial order is a binary relationSon a setX satisfying the conditions

(R−) for nox∈ X does(x,x) ∈ Shold;

(A−) if (x,y) ∈ S, then(y,x) /∈ S;

(T) if (x,y) ∈ Sand(y,z) ∈ S, then(x,z) ∈ S.

A non-strict partial orderis a binary relationRon a setX satisfying the conditions

(R+) for all x∈ X we have(x,x) ∈ R;

(A) if (x,y) ∈ Rand(y,x) ∈ R thenx = y;

(T) if (x,y) ∈ Rand(y,z) ∈ R then(x,z) ∈ R.

Condition (A−) appears stronger than (A), but in fact (R−) and (A) imply
(A−). So we can (as is usually done) replace (A−) by (A) in the definition of a
strict partial order. Conditions (R−), (R+), (A), (T) are calledirreflexivity, reflex-
ivity, antisymmetryandtransitivity respectively. We can restate these conditions
in terms of the identityDX, the inverseR−1, and the composition operation◦:
(R−) DX ∩R= /0;

(R+) DX ⊆ R;

(A) R∩R−1⊆ DX;

(T) R◦R⊆ R.

The two definitions of a poset are essentially the same:

Proposition 2.1 Let X be a set.

(a) If S is a strict partial order on X, then S∪DX is a non-strict partial order
on X.

(b) If R is a non-strict partial order on X, then R\DX is a strict partial order
on X.

(c) These two constructions are mutually inverse.
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Exercise: Prove this proposition.

Thus, aposetis a setX carrying a partial order (either strict or non-strict, since
we can obtain each from the other in a canonical way). If we have to choose, we
use the non-strict partial order. IfR andSare corresponding non-strict and strict
partial orders, we writex≤R y to mean(x,y) ∈ R, andx<R y to mean(x,y) ∈ S;
thusx≤R y holds if and only if eitherx<R y or x = y. (The slightly awkward
notation<R means that we regardR as the name of the partial order.) If there is
no ambiguity aboutR, we simply writex≤ y or x< y respectively.

Exercise: How many different posets are there with 3 elements?

A total order is a partial order in which every pair of elements is comparable,
that is, the following condition (known astrichotomy) holds:

• for all x,y∈ X, exactly one ofx<R y, x = y, andy<R x holds.

In a poset(X,R), we define theinterval [x,y]R to be the set

[x,y]R = {z∈ X : x≤R z≤R y}.

By transitivity, the interval[x,y]R is empty if x 6≤R y. We say that the poset is
locally finite if all intervals are finite.

The set of positive integers ordered by divisibility (that is,x≤R y if x dividesy)
is a locally finite poset.

3 Preorders

Sometimes we need to weaken the definition of a partial order. We say that apar-
tial preorderor pseudo-orderis a relationR on a setX which satisfies conditions
(R) (reflexivity) and (T) (transitivity). So it is permitted that distinct elementsx
andy satisfy(x,y) ∈ Rand(y,x) ∈ R.

Proposition 3.1 Let R be a partial preorder on X. Define a relation∼ on X by
the rule that x∼ y if and only if(x,y),(y,x)∈R. Then∼ is an equivalence relation
on X. Moreover, if x∼ x′ and y∼ y′, then(x,y)∈R if and only if(x′,y′)∈R. Thus,
R induces in a natural way a relationR on the setX of equivalence classes of X;
andR is a non-strict partial order onX.

The partial order obtained in this way is thecanonical quotientof the partial
preorderR.
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Exercise: Prove this proposition.

Exercise: How many different partial preorders are there on a set of 3 elements?

Many of the definitions for posets are also valid for preorders: chains, an-
tichains, upsets, downsets, minimal and maximal elements, local finiteness (see
below), and so on. However, the intuition behind these definitions is sometimes
different than for posets. For instance, a non-trivial finite chain does not necessar-
ily have a maximal element.

A less well-known characterisation of finite preorders is in terms of the inci-
dence matrixM. Replace the stars∗ of the incidence matrixM of some reflexive
relationR on X by independent variables, or more precisely, elements which are
algebraically independent over some field. ThenR is a preorder if and only if the
inverse matrixM−1 is also an incidence matrix ofR.

4 Properties of posets

An elementx of a poset(X,R) is calledmaximal if there is no elementy ∈ X
satisfyingx<R y. Dually,x is minimal if no element satisfiesy<R x.

In a general poset there may be no maximal element, or there may be more
than one. But in a finite poset there is always at least one maximal element, which
can be found as follows: choose any elementx; if it is not maximal, replace it
by an elementy satisfyingx<R y; repeat until a maximal element is found. The
process must terminate, since by the irreflexive and transitive laws the chain can
never revisit any element. Dually, a finite poset must contain minimal elements.

An elementx is anupper boundfor a subsetY of X if y≤R x for all y ∈ Y.
Lower boundsare defined similarly. We say thatx is a least upper boundor l.u.b.
of Y if it is an upper bound and satisfiesx≤R x′ for any upper boundx′. The
concept of agreatest lower boundor g.l.b. is defined similarly.

A chain in a poset(X,R) is a subsetC of X which is totally ordered by the
restriction ofR (that is, a totally ordered subset ofX). An antichainis a setA of
pairwise incomparable elements.

Infinite posets (such asZ), as we remarked, need not contain maximal ele-
ments.Zorn’s Lemmagives a sufficient condition for maximal elements to exist:

Let (X,R) be a poset in which every chain has an upper bound. Then
X contains a maximal element.
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As well known, there is no “proof” of Zorn’s Lemma, since it is equivalent
to the Axiom of Choice (and so there are models of set theory in which it is
true, and models in which it is false). Our proof of the existence of maximal
elements in finite posets indicates why this should be so: the construction requires
(in general infinitely many) choices of upper bounds for the elements previously
chosen (which form a chain by construction).

Theheightof a poset is the largest cardinality of a chain, and itswidth is the
largest cardinality of an antichain. We denote the height and width of(X,R) by
h(X) andw(X) respectively (suppressing as usual the relationR in the notation).

In a finite poset(X,R), a chainC and an antichainA have at most one element
in common. Hence the least number of antichains whose union isX is not less
than the sizeh(X) of the largest chain inX. In fact there is a partition ofX into
h(X) antichains. To see this, letA1 be the set of maximal elements; by definition
this is an antichain, and it meets every maximal chain. Then letA2 be the set of
maximal elements inX \A1, and iterate this procedure to find the other antichains.

There is a kind of dual statement, harder to prove, known asDilworth’s Theo-
rem:

Theorem 4.1 Let(X,R) be a finite poset. Then there is a partition of X into w(X)
chains.

An up-setin a poset(X,R) is a subsetY of X such that, ify∈Y andy≤R z,
thenz∈Y. The set of minimal elements in an up-set is an antichain. Conversely,
if A is an antichain, then

↑ (A) = {x∈ X : a≤R x for somea∈ A}

is an up-set. These two correspondences between up-sets and antichains are mu-
tually inverse; so the numbers of up-sets and antichains in a poset are equal.

Down-setsare, of course, defined dually. The complement of an up-set is a
down-set; so there are equally many up-sets and down-sets.

5 Hasse diagrams

Let x and y be distinct elements of a poset(X,R). We say thaty covers xif
[x,y]R = {x,y}; that is,x<R y but no elementz satisfiesx<R z<R y. In general,
there may be no pairsx andy such thaty coversx (this is the case in the rational
numbers, for example). However, locally finite posets are determined by their
covering pairs:
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Figure 3: A Hasse diagram

Proposition 5.1 Let (X,R) be a locally finite poset, and x,y∈ X. Then x≤R y if
and only if there exist elements z0, . . . ,zn (for some non-negative integer n) such
that z0 = x, zn = y, and zi+1 covers zi for i = 0, . . . ,n−1.

Exercise: Prove this proposition.

TheHasse diagramof a poset(X,R) is the directed graph whose vertex set is
X and whose arcs are the covering pairs(x,y) in the poset. We usually draw the
Hasse diagram of a finite poset in the plane in such a way that, ify coversx, then
the point representingy is higher than the point representingx. Then no arrows
are required in the drawing, since the directions of the arrows are implicit.

For example, the Hasse diagram of the poset of subsets of{1,2,3} is shown
in Figure 3.

Exercise: Find the height and width of the poset in Figure 3. Count its chains
and antichains of maximum size, and verify the conclusion of Dilworth’s theorem
in this case.

Note that the Hasse diagram of a poset corresponds to an operation on posets,
or more generally acyclic directed graphs, which is dual to the transitive closure.
This operation,R◦, which we might call the transitive opening, acts by removing
from Ran element(a,b) whenever there is a path froma to b, distinct from the arc
(a,b), in the corresponding directed graphD. Note thatR= R◦ and thatR◦ = R

◦
.

If R is a poset, thenR◦ is the unique minimal relation among the relations whose
transitive closure isR; indeed,R◦ is the intersection of these. This explains why
the Hasse diagram representation is unique.
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Locally finite preorders have unique representations which are similar to Hasse
diagrams of posets. Indeed, we may even use labeled Hasse diagrams, where the
dots represent subsets ofX, rather than just elements as in the case of posets.
For instance, consider the Hasse diagram in Figure 4a. The elementsf , g, andh
are all smaller thani and larger thand anda, and f ≤ g≤ h≤ f . This sort of
representation is well-defined and unique since the property that bothx≤ y and
y≤ x hold defines an equivalence relation. If we wish to do without the labeling,
we may replace each dot by a cluster of dots (see Figure 4b).
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Figure 4: Hasse diagrams of preorders

6 Linear extensions and dimension

One view of a partial order is that it contains partial information about a total order
on the underlying set. This view is borne out by the following theorem. We say
that one relationextendsanother if the second relation (as a set of ordered pairs)
is a subset of the first.

Theorem 6.1 Any partial order on a finite set X can be extended to a total order
on X.

This theorem follows by a finite number of applications of the next result.

Proposition 6.2 Let R be a partial order on a set X, and let a,b be incomparable
elements of X. Then there is a partial order R′ extending R such that(a,b) ∈ R′

(that is, a< b in the order R′).
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Proof It is just a matter of checking the consequences of puttinga below b.
Let A = {x : x ≤R a} and B = {y : b ≤R y}. Clearly, if the extension ofR is
possible, then every element ofA must lie below every element ofB. So we
takeR′ = R∪ (A×B), in other words, we include these obvious consequences of
puttinga belowb and no others. We have to show thatR′ is a partial order. This
is just a matter of checking a number of cases.

Note first thatA andB are disjoint. For, ifx∈ A∩B, thenx≤R a andb≤R x,
sob≤R a, contrary to assumption.

Suppose thatx ≤R′ y and y ≤R′ x. Then eitherx ≤R y or (x,y) ∈ A× B,
and similarly eithery ≤R x or (y,x) ∈ A×B. This gives four cases, of which
(x,y),(y,x) ∈ A×B is impossible by the previous remark. Ifx≤R y andy≤R x
thenx = y; if x≤R y and(y,x) ∈ A×B, thenb≤R x, x≤R y, y≤R a, sob≤R a,
contrary to assumption, with a similar contradiction in the other case.

For the transitive law, suppose thatx≤R′ y≤R′ z. Then eitherx≤R y or (x,y)∈
A×B, and similarly eithery≤R z or (y,z) ∈ A×B. Again there are four cases to
consider. This reduces to three, sincey∈ A andy∈ B cannot both occur. Ifx≤R y
andy≤R z, thenx≤R z. If x≤R y andy∈ A,z∈ B, theny≤ a, sox≤ a, andx∈ A,
giving (x,z) ∈ A×B. The remaining case is similar.

A total order extendingR in this sense is referred to as alinear extensionof R.
(The term “linear order” is an alternative for “total order”.)

Exercise: Find the number of linear extensions of each of the 3-element posets.

This proof does not immediately show that every infinite partial order can be
extended to a total order. If we assume Zorn’s Lemma, the conclusion follows. For
let Sbe a maximal element (under inclusion) in the set of partial orders extending
R. ThenS must be a total order, since ifa andb were incomparable inS then
Proposition 6.2 would give an extensionS′ of S such thata<S′ b, contradicting
the maximality ofS. (We have first to show that the union of a chain of posets is
a poset. This is a standard Zorn’s Lemma argument.)

It is known that the truth of the infinite analogue of Theorem 6.1 cannot be
proved from the Zermelo–Fraenkel axioms alone (assuming their consistency),
but is strictly weaker than the Axiom of Choice, that is, the Axiom of Choice
(or Zorn’s Lemma) cannot be proved from the Zermelo–Fraenkel axioms and this
assumption. In other words, assuming the axioms consistent, there is a model in
which Theorem 6.1 is false for some infinite poset, and another model in which
Theorem 6.1 is true for all posets but Zorn’s Lemma is false.
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Figure 5: A crown

The theorem gives us another measure of the size of a partially ordered set. To
motivate this, we use another model of a partial order. Suppose that a number of
products are being compared using several different attributes. We regard object
a as below objectb if b beatsa on every attribute. If each beats the other on some
attributes, we regard the objects as being incomparable. This defines a partial
order (assuming that each attribute gives a total order). More precisely, given a
setSof total orders onX, we define a partial orderRonX by x<R y if and only if
x<s y for everys∈ S. In other words,R is the intersection of the total orders inS.

Theorem 6.3 Every partial order on a finite set X is the intersection of some set
of total orders on X.

Proof Let R be a partial order onX, and letSbe the set of all total orders which
extendR. The intersection of the orders inScertainly containsR. We show it is
no bigger. So suppose thata andb are incomparable inR. By Proposition 6.2,
there is a total order extendingR in which a is less thanb, and another in which
b is less thana. So in the intersection of these total orders,a and b are still
incomparable.

Now we define thedimensionof a partial orderR to be the smallest number of
total orders whose intersection isR. In our motivating example, it is the smallest
number of attributes which could give rise to the observed total orderR.

Thecrownon 2n elementsa1, . . . ,an,b1, . . . ,bn is the partial order defined as
follows: for all indicesi 6= j, the elementsai anda j are incomparable, the elements
bi andb j are incomparable, butai < b j ; and for eachi, the elementsai andbi are
incomparable. Figure 5 shows the Hasse diagram of the 6-element crown.

Now we have the following result:

Proposition 6.4 The crown on2n elements has dimension n.

Exercise: Prove this proposition.
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Exercise: Find the dimension of each of the 3-element posets.

Proposition 6.4 shows that the dimension of a finite partial order may be ar-
bitrarily large. For infinite posets (assuming the axiom of choice), the dimension
exists but may be infinite. However, a standard application of the Compactness
Theorem gives the following:

Theorem 6.5 Let R be a partial order on a set X, and suppose that the restriction
of R to any finite subset of X has dimension at most n (for some integer n). Then
R has dimension at most n.

Proof We take a first order language containingn+ 1 binary relation symbols
R,L1, . . . ,Ln, and a constant symbolcx for eachx∈X. Let Σ consist of the follow-
ing set of sentences: a sentence asserting thatR(x,y) is equivalent to the conjunc-
tion of L1(x,y), . . . ,Ln(x,y); sentences asserting that eachLi is a linear order; and
sentences asserting that the elementscx for x∈ X are all distinct and thatR(cx,cy)
holds if and only ifx≤ y in the given poset. Any finite subset of these sentences
is satisfiable. So, by the Compactness Theorem, they are all satisfiable, and the
result follows.

7 Posets and topologies

The number of topologies on an infinite set is greater than the number of relational
structures of any fixed type. However, on a finite set, a topology is equivalent to a
particular type of relational structure, namely a partial preorder.

A topologyconsists of a setX, and a setT of subsets ofX (calledopen sets),
satisfying the following axioms:

• /0 ∈ T andX ∈ T ;

• the union of any collection of sets inT is in T ;

• the intersection of any two sets inT is in T .

It follows by induction from the third axiom that the intersection of any finite
number of members ofT is a member ofT . If X is finite, the second axiom need
only deal with finite unions, and so it too can be simplified to the statement that
the union of any two sets inT is in T ; then the axioms are ‘self-dual’. This is not
the case in general!
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Theorem 7.1 Let X be finite. Then there is a one-to-one correspondence between
the topologies on X, and the partial preorders (i.e., reflexive and transitive rela-
tions) on X.

Proof The correspondence is simple to describe.

Construction 1 Let T be a topology onX. Define a relationR by the rule that
(x,y) ∈ R if every open set containingx also containsy. It is trivial that R is
reflexive and transitive; that is,R is a partial preorder.

Construction 2 Let R be a partial preorder onX. Call a subsetU of X openif,
wheneverx∈U , we have↑ x⊆U . (Recall that↑ x = {y : (x,y) ∈ R}.) Let T be
the set of all open sets. We have to verify thatT is a topology. The first axiom
requires no comment. For the second axiom, letU1,U2, . . . be open, andx∈

⋃
i Ui ;

thenx∈U j for somej, whence

↑ x⊆U j ⊆
⋃
i

Ui .

For the third axiom, letU andV be open andx ∈ U ∩V. ThenR(x) ⊆ U and
R(x)⊆V, and soR(x)⊆ (U ∩V); thusU ∩V is open.

All this argument is perfectly general. It is the fact that we have a bijection
which depends on the finiteness ofX. We have to show that applying the two
constructions in turn brings us back to our starting point.

Suppose first thatR is a partial preorder, andT the topology derived from
it by Construction 2. Suppose that(x,y) ∈ R. Theny ∈↑ x, so every open set
containingx also containsy. Conversely, suppose that every open set containingx
also containsy. The set↑ x is itself open (this uses the transitivity ofR: if z∈↑ x,
then↑ z⊆↑ x), and soy∈↑ x; thus(x,y) ∈ R. Hence the partial preorder derived
from T by Construction 1 coincides withR. (We still haven’t used finiteness!)

Conversely, letT be a topology, andR the partial preorder obtained by Con-
struction 1. IfU ∈ T and x ∈ U , then↑ x ⊆ U ; so U is open in the sense of
Construction 2. Conversely, suppose thatU is open in this sense, that is,x ∈U
implies↑ x⊆U . Now each set↑ x is the intersection of all members ofT con-
tainingx. (This follows from the definition ofR in Construction 1.) But there are
only finitely many such open sets (here, at last, we use the fact thatX is finite!);
and the intersection of finitely many open sets is open, as we remarked earlier; so
↑ x is open inT . But, by hypothesis,U is the union of the sets↑ x for all points
x∈U ; and a union of open sets is open, soU is open inT , as required.
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In the axiomatic development of topology, the next thing one meets after the
definition is usually the so-called ‘separation axioms’. A topology is said to sat-
isfy the axiom T0 if, given any two distinct pointsx andy, there is an open set
containing one but not the other; it satisfies axiom T1 if, given distinctx andy,
there is an open set containingx but noty (andvice versa).

These two axioms for finite topologies have a natural interpretation in terms
of the partial preorderR. Axiom T1 asserts thatR never holds between distinct
pointsx andy; that is,R is the trivial relation of equality. Construction 2 in the
proof of the theorem then shows that every subset is open. (This is called the
discrete topology.) It follows that any stronger separation axiom (in particular, the
so-called ‘Hausdorff axiom’ T2) also forces the topology to be discrete.

Axiom T0 translates into the condition that the relationR is antisymmetric;
thus, it is a partial order. So there is a one-to-one correspondence between T0

topologies on the finite setX and partial orders onX.
We conclude with an extension of this principle closely related to Rafael

Sorkin’s views: we describe how an arbitrary topological space can be approx-
imated by posets. Let(X,T ) be a topological space, and letU be an open cover
of X (that is, a subset ofT whose union isX) which is locally finite(that is, every
point of X lies in only finitely many members ofU). Now we define a relationR
onX as follows:(x,y)∈R if and only if every open set inU containingx also con-
tainsy. This relation is always a partial preorder (by the same argument as above),
and so it has a canonical quotient which is a partial order. This partial order ap-
proximates the original spaceX: points are identified if they are not distinguished
by the open sets inU. Moreover, the partial order is locally finite.

Now if we take a sequence of successively finer open coverings ofX by open
sets, we obtain a sequence of partial orders, whose “inverse limit” captures the
structure of(X,T ), at least in nice cases. We do not give further details here.

8 The Möbius function

Let R be a partial order on the finite setX. We take any linear order extendingR,
and writeX = {x1, . . . ,xn}, wherex1 < .. . < xn (in the linear orderS): this is not
essential but is convenient later.

The incidence algebraA(R) of R is the set of all functionsf : X×X → R

which satisfy f (x,y) = 0 unlessx≤R y holds. We could regard it as a function
on R, regarded as a set of ordered pairs. Addition and scalar multiplication are
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defined pointwise; multiplication is given by the rule

( f g)(x,y) = ∑
z

f (x,z)g(z,y).

If we representf by then× n matrix Af with (i, j) entry f (xi ,x j), then this is
precisely the rule for matrix multiplication. Also, ifx 6≤R y, then there is no point
z such thatx≤R z andz≤R y, and so( f g)(x,y) = 0. Thus,A(R) is closed under
multiplication and does indeed form an algebra, a subset of the matrix algebra
Mn(R). Also, sincef andg vanish on pairs not inR, the sum can be restricted to
the interval[x,y]R = {z : x≤R z≤R y}:

( f g)(x,y) = ∑
z∈[x,y]R

f (x,z)g(z,y).

Incidentally, we see that the(i, j) entry of Af is zero if i > j, and soA(R)
consists of upper triangular matrices. Thus, an elementf ∈ A(R) is invertible if
and only if f (x,x) 6= 0 for all x∈ X.

Thezeta-functionζR is the element ofA(R) defined by

ζR(x,y) =
{

1 if x≤R y,
0 otherwise.

Its inverse (which also lies inA(R)) is theMöbius function µR of R. Thus, we
have, for all(x,y) ∈ R,

∑
z∈[x,y]R

µ(x,z) =
{

1 if x = y,
0 otherwise.

This relation allows the M̈obius function of a poset to be calculated recur-
sively. We begin withµR(x,x) = 1 for all x∈ X. Now, if x<R y and we know the
values ofµ(x,z) for all z∈ [x,y]R\{y}, then we have

µR(x,y) =− ∑
z∈[x,y]R\{y}

µR(x,z).

In particular,µR(x,y) =−1 if y coversx.
The definition of the incidence algebra and the Möbius function extend imme-

diately to locally finite posets, since the sums involved are over intervals[x,y]R.

Exercise: Find the M̈obius function of the poset shown in Figure 3.
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Exercise: Let X be the set of positive integers andR the relation of divisibility.
Prove thatµR(1,n) is equal to the classical M̈obius functionµ(n), which is defined
to be(−1)k if n is the product ofk distinct primes, and 0 ifn is not squarefree.
Prove also thatµR(m,n) = µ(n/m) if m dividesn (and is zero otherwise).

Exercise: The disjoint unionof posets(X1,R1) and (X2,R2) is defined to be
(X1∪X2,R1∪R2). In other words, ifx∈ X1 andy∈ X2, thenx andy are incom-
parable; but comparability within each part remains unchanged. Describe a Hasse
diagram, the number of linear extensions, the incidence algebra, and the Möbius
function, of the disjoint union in terms of those of the two parts.

The following are examples of M̈obius functions.

• The subsets of a set:

µ(A,B) = (−1)|B\A| for A⊆ B;

• The subspaces of a vector spaceV ⊆GF(q)n:

µ(U,W) = (−1)kq(k
2) for U ⊆W, wherek = dimU−dimW.

Much of the work done on incidence algebras of posets has been concentrated on
finding tools and methods with which to determine the Möbius function of various
classes of posets. It may seem odd that it generally is quite hard to determine the
Möbius function of a poset; after all, it just amounts to inverting an upper triangu-
lar (0,1)-matrix. The problem lies in that we wish to express the Möbius function
in terms of general properties of the poset, and not in terms of the particular zeta
function. However, the efforts in finding the M̈obius function are well-rewarded,
as the remaining part of this section indicate.

The following trivial result is the M̈obius inversion for locally finite posets.

Theorem 8.1 f = gζ⇔ g = f µ. Similarly, f= ζg⇔ g = µ f .

Example 8.1 Suppose thatf andg are functions on the natural numbers which
are related by the identityf (n) = ∑d|ng(d). We may express this identity as
f = gζ where we considerf andg as vectors and whereζ is the zeta function for
the lattice of positive integer divisors ofn. Theorem 8.1 implies thatg = f µ, or

g(n) = ∑
d|n

µ(d,n) f (d) = ∑
d|n

µ

(
d
n

)
f (d),

which is precisely the classical M̈obius inversion.
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Example 8.2 Suppose thatf andg are functions on the subsets of some fixed
(countable) setX which are related by the identityf (A) = ∑B⊇Ag(B). We may
express this identity asf = ζg whereζ is the zeta function for the lattice of subsets
of X. Theorem 8.1 implies thatg = µ f, or

g(A) = ∑
B⊇A

µ(A,B) f (B) = ∑
B⊇A

(−1)|B\A| f (B)

which is a rather general form of the inclusion/exclusion principle.

9 Lattices

A lattice is a poset(X,R) with the properties

• X has an upper bound 1 and a lower bound 0;

• for any two elementsx,y ∈ X, there is a least upper bound and a greatest
lower bound of the set{x,y}.

A simple example of a poset which is not a lattice is the posetr rr r��@@ .

In a lattice, we denote the l.u.b. of{x,y} by x∨y, and the g.l.b. byx∧y. We
commonly regard a lattice as being a set with two distinguished elements and two
binary operations, instead of as a special kind of poset.

Lattices can be axiomatised in terms of the two constants 0 and 1 and the
two operations∨ and∧. The result is as follows, though the details are not so
important for us. The axioms given below are not all independent. In particular,
for finite lattices we don’t need to specify 0 and 1 separately, since 0 is just the
meet of all elements in the lattice and 1 is their join.

Proposition 9.1 Let X be a set,∧ and∨ two binary operations defined on X,
and0 and1 two elements of X. Then(X,∨,∧,0,1) is a lattice if and only if the
following axioms are satisfied:

• Associative laws: x∧ (y∧z) = (x∧y)∧z and x∨ (y∨z) = (x∨y)∨z;

• Commutative laws: x∧y = y∧x and x∨y = y∨x;

• Idempotent laws: x∧x = x∨x = x;
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• x∧ (x∨y) = x = x∨ (x∧y);

• x∧0 = 0, x∨1 = 1.

Proof The proof will not be given here (you may regard it as an exercise). We
remark merely that the order must be defined byx≤ y if x∨y= y (this is equivalent
to x∧y = x, by the second-last axiom).

A sublatticeof a lattice is a subset of the elements containing 0 and 1 and
closed under the operations∨ and∧. It is a lattice in its own right.

The following are a few examples of lattices.

• The subsets of a (fixed) set:
A∧B = A∩B
A∨B = A∪B

• The subspaces of a vector space:
U ∧V = U ∩V
U ∨V = span(U ∪V)

• The partial pseudo-orders on a set:
R∧T = R∩T
R∨T = R∪T

The last example has as a sublattice the equivalence relations on a set, with the
same l.u.b. and g.l.b. The posets on a set do not form a lattice. See C. H. Yan,
Discrete Math.183(1998), 285–292, for this example.

These examples illustrate the typical situation when the order is defined by
set-inclusion: the g.l.b. is the intersection, and the l.u.b. is an appropriate closure
of the union. A closely related example of a lattice is the subsets of a multiset (see
Figure 6a).

If the multiset is finite, the lattice may be viewed from an alternative view-
point. In particular, it is the lattice of positive divisors of a fixed integer, which
has as g.l.b.∧ and l.u.b.∨ the greatest common denominator and the least com-
mon factor. For instance, the lattice of positive integer divisors of 18 (Figure 6b)
corresponds to the lattice of submultisets of the multiset{a,b,b} (Figure 6a).

10 Distributive and modular lattices

A lattice isdistributiveif it satisfies thedistributive laws
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Figure 6: A class of lattices

(D) x∧ (y∨z) = (x∧y)∨ (x∧z) andx∨ (y∧z) = (x∨y)∧ (x∨z) for all x,y,z.

A lattice ismodularif it satisfies themodular law

(M) x∨ (y∧z) = (x∨y)∧z for all x,y,z such thatx≤ z.

Exercise: Prove that a distributive lattice is modular.

Exercise: Prove that the two conditions in (D) are equivalent for any lattice.

Exercise: State the modular law as a law valid for all choices of the variables.

Figure 7 presents a lattice,N5, which is not modular, as well as a modular
lattice,M3, which is not distributive.

Not only areN5 andM3 the smallest lattices with these properties, they are,
in a certain sense, the only lattices with these properties. The following theorem
states this more precisely.

Theorem 10.1 A lattice is modular if and only if it does not contain the lattice N5

as a sublattice. A lattice is distributive if and only if it contains neither the lat-
tice N5 nor the lattice M3 as a sublattice.

In the same way as in Proposition 9.1, we are able to describe distributive
lattices axiomatically.

Proposition 10.2 Let X be a set,∧ and∨ two binary operations defined on X,
and0 and1 two elements of X. Then(X,∨,∧,0,1) is a distributive lattice if and
only if the condition (D) and the following axioms are satisfied:

19



t
t
t

t
t

@@

��

...........
...........
...........
...........
...........
...........
...........
...........
...........

................................................................................................... t t t
t
t

�
��

�
��@

@@

@
@@

N5 M3

Figure 7: Two lattices

• Idempotent law: x∧x = x;

• x∨1 = 1∨x = 1;

• x∨0 = 0∨x = 0.

Exercise: Prove this.
Proposition 10.2 seems (erroneously) to suggest that fewer conditions are

needed for a distributive lattice than for lattices in general. This is due to the
fact that the distributive conditions (D) are strong enough to imply, together with
the three conditions stated in Proposition 10.2, the second idempotent law, as well
as the associative and commutative laws.

The poset of all subsets of a setS(ordered by inclusion) is a distributive lattice:
we have 0= /0, 1= S, and l.u.b. and g.l.b. are union and intersection respectively.
Hence every sublattice of this lattice is a distributive lattice.

Conversely, every finite distributive lattice is a sublattice of the lattice of sub-
sets of a set. We describe how this representation works. This is important in that
it gives us another way to look at posets.

Let (X,R) be a poset. Recall that andown-setin X is a subsetY with the
property that, ify∈Y andz≤R y, thenz∈Y.

Let L be a lattice. A non-zero elementx ∈ L is called join-irreducible if,
wheneverx = y∨z, we havex = y or x = z.

Theorem 10.3 (a) Let (X,R) be a finite poset. Then the set of down-sets in X,
with the operations of union and intersection and the distinguished elements
0 = /0 and1 = X, is a distributive lattice.

(b) Let L be a finite distributive lattice. Then the set X of non-zero join-irreducible
elements of L is a sub-poset of L.
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(c) These two operations are mutually inverse.

Meet-irreducibleelements are defined dually, and there is of course a dual
form of Theorem 10.3.

Figure 8 illustrates a simple algorithm with which to extract the poset from the
corresponding distributive lattice.
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Figure 8: Posets and distributive lattices
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