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1 Binary relations

We begin by taking a closer look at binary relatidds- X x X. Figure 1 shows

four of the ways in which to look at a binary relation: as aRegs a bipartite
graphG, as a directed graph, as an incidence matriM, where the stars of the

latter are often replaced by numbers or variables. These four ways are completely
equivalent but their context is quite varied. For instance, we may be interested
in matchings, in which case the bipartite view would be most appropriate; or, we
might be interested in paths, and the directed graph view would be more suitable;
and so on. Often it is even more useful to translate one context into another.
Typical instances of such a translation are when linear algebra is applied to the
incidence matriXM in order to describe attributes of the three other structures. In
the first two of the following examples, we assume tatontains only finitely
many elements.

Example 1.1 Replace each starof the matrixM with an independent variable.
Then a subsef C X is matched in (or, a partial transversal of) the bipartite
graphG if and only if the rows ofM corresponding to the elements Afare
linearly independent. (The sét= (&), C X is matched inG if there is a set

B = (bj); € X such thata;,b;) € Rforalliel.)



Example 1.2 Replace each star of the matrixM by the integer 1. Then the
(a,b)’th entry of M equals the number of paths i from the vertexa to the

vertexb.

Example 1.3 Suppose we have two relatioRsS C X, with corresponding inci-
dence matriced! andN. Replace each starof the matricesM andN by the
Boolean 1 (i.e. 1+1=1). TheM + N is the incidence matrix of the relatiddu S.

Set Bipartite graph
{(aa), N
(a,b), AN
(b,c), b: b
(c,c)} ¢ ¢
RCXxX
Incidence matrix Directed graph
abc
a x x 0 b
b 0 0 - od ve
c 00 %

Figure 1: There are always four sides to a relation

The empty se0 is a relation, and as sets, relations may be operated upon by
complemen®C, intersectiom), and unior. Apart from these, we also introduce
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the identity relatiorDy, the inverse relatioR~, and the composition operation

Dx = {(x,x);x € X};

R = {(sx);(xy) €R}
RoR = {(x,2);(x,y) € Rand(y,z) € R for somey € X}.

The inverseR1 is easy to visualise: in terms of sets, the order of each ele-
ment(x,y) in the relationR is reversed; the two parts & are interchanged; the
direction of each arc dD is reversed; and the matrM is transposed. The com-
positiono is not hard to visualise either. Figure 2 illustrates the composition in
terms of bipartite graphs.

R R RoR

Figure 2: Composition of binary relations on a set

Example 1.4 Let R,SC X be two relations orX, with corresponding incidence
matricesM andN. Replace each starof the matricesM andN by the Boolean 1.

If X contains only finitely many elements, thith:- N is the incidence matrix of
the relationRo S

Thetransitive closureR of a relationR is the relation
Dx URU(RoR)U(RoRoR)U....

It corresponds precisely to the transitive closure of the directed dpaftat is the
graph obtained by adding @ the arc(a,b) wheneveiD contains a path froma
to b. In other words, the transitive closurds the smallest transitive relation @
which containR. If X contains a finite number of elements, then by replacing
each stax of M by a Boolean 1, we obtain an incidence matrix@yhamelyM".



2 Whatis a poset?

The term “poset” is short for “partially ordered set”, that is, a set whose elements
are ordered but not all pairs of elements are required to be comparable in the order.
Just as an order in the usual sense may be strictJas non-strict (as<), there
are two versions of the definition of a partial order:

A strict partial orderis a binary relatiorson a seX satisfying the conditions

(R—) for nox € X does(x,x) € Shold,;
(A—)if (x,y) € S then(y,x) ¢ S,
(M if (x,y) € Sand(y,z) € S then(x,z) € S.
A non-strict partial orderis a binary relatiolRr on a seiX satisfying the conditions
(R+) for all x e X we have(x,x) € R;
(A) if (x,y) € Rand(y,x) € Rthenx=Y;
(T) if (x,y) € Rand(y,z) € Rthen(x,z) € R

Condition (A—) appears stronger than (A), but in fact{Rand (A) imply
(A—). So we can (as is usually done) replace-(Ay (A) in the definition of a
strict partial order. Conditions (R), (R+), (A), (T) are calledrreflexivity, reflex-
ivity, antisymmetnandtransitivity respectively. We can restate these conditions
in terms of the identityy, the inverseR—1, and the composition operatien

(R—) Dx NR=10;
(R+)Dx CR;
(A) RNR!CDy;
(T) RoRCR.
The two definitions of a poset are essentially the same:

Proposition 2.1 Let X be a set.

(a) If S is a strict partial order on X, then$Dx is a non-strict partial order
on X.

(b) If R is a non-strict partial order on X, then Dy is a strict partial order
on X.

(c) These two constructions are mutually inverss.
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Exercise: Prove this proposition.

Thus, gposetis a setX carrying a partial order (either strict or non-strict, since
we can obtain each from the other in a canonical way). If we have to choose, we
use the non-strict partial order. RandS are corresponding non-strict and strict
partial orders, we writg <ry to mean(x,y) € R, andx <gry to mean(x,y) € S
thusx <ry holds if and only if eitheixx <gry or x=Yy. (The slightly awkward
notation<r means that we regai as the name of the partial order.) If there is
no ambiguity abouR, we simply writex <y or x < y respectively.

Exercise: How many different posets are there with 3 elements?

A total orderis a partial order in which every pair of elements is comparable,
that is, the following condition (known @schotomy) holds:

e for all x,y € X, exactly one ok <ry, x=Yy, andy <gr x holds.

In a poset X, R), we define thénterval [x, y|r to be the set
X,Y|r={z€ X:x<rzZ<RrY}.

By transitivity, the intervalx,y|r is empty ifx £ry. We say that the poset is
locally finiteif all intervals are finite.

The set of positive integers ordered by divisibility (thatis;r y if x dividesy)
is a locally finite poset.

3 Preorders

Sometimes we need to weaken the definition of a partial order. We sayhat a
tial preorder or pseudo-orders a relationR on a sefX which satisfies conditions
(R) (reflexivity) and (T) (transitivity). So it is permitted that distinct elemexts
andy satisfy(x,y) € Rand(y,x) € R

Proposition 3.1 Let R be a partial preorder on X. Define a relatienon X by
the rule that x y if and only if(x,y), (Y, X) € R. Then~ is an equivalence relation
on X. Moreover, if xo X and y~ Y, then(x,y) € R ifand only if(X',y') € R. Thus,
R induces in a natural way a relatiodR on the seX of equivalence classes of X;
andR is a non-strict partial order oiX. =

The partial order obtained in this way is thanonical quotientf the partial
preordemR.



Exercise: Prove this proposition.

Exercise: How many different partial preorders are there on a set of 3 elements?

Many of the definitions for posets are also valid for preorders: chains, an-
tichains, upsets, downsets, minimal and maximal elements, local finiteness (see
below), and so on. However, the intuition behind these definitions is sometimes
different than for posets. For instance, a non-trivial finite chain does not necessar-
ily have a maximal element.

A less well-known characterisation of finite preorders is in terms of the inci-
dence matriXM. Replace the starsof the incidence matri¥ of some reflexive
relationR on X by independent variables, or more precisely, elements which are
algebraically independent over some field. Theis a preorder if and only if the
inverse matrixVl—? is also an incidence matrix ¢,

4 Properties of posets

An elementx of a poset(X,R) is calledmaximalif there is no elemeny € X
satisfyingx <ry. Dually, x is minimalif no element satisfieg <gr x.

In a general poset there may be no maximal element, or there may be more
than one. But in a finite poset there is always at least one maximal element, which
can be found as follows: choose any elemenif it is not maximal, replace it
by an elemeny satisfyingx <ry; repeat until a maximal element is found. The
process must terminate, since by the irreflexive and transitive laws the chain can
never revisit any element. Dually, a finite poset must contain minimal elements.

An elementx is anupper boundor a subsetf of X if y<gxforallyeY.

Lower boundsre defined similarly. We say thais aleast upper bounar l.u.b.
of Y if it is an upper bound and satisfigs<g X' for any upper bound’. The
concept of agreatest lower boundr g.l.b. is defined similarly.

A chainin a poset(X,R) is a subseC of X which is totally ordered by the
restriction ofR (that is, a totally ordered subsetXj. An antichainis a setA of
pairwise incomparable elements.

Infinite posets (such ag), as we remarked, need not contain maximal ele-
ments.Zorn’s Lemmagives a sufficient condition for maximal elements to exist:

Let (X,R) be a poset in which every chain has an upper bound. Then
X contains a maximal element.



As well known, there is no “proof” of Zorn’s Lemma, since it is equivalent
to the Axiom of Choice (and so there are models of set theory in which it is
true, and models in which it is false). Our proof of the existence of maximal
elements in finite posets indicates why this should be so: the construction requires
(in general infinitely many) choices of upper bounds for the elements previously
chosen (which form a chain by construction).

The heightof a poset is the largest cardinality of a chain, andiidth is the
largest cardinality of an antichain. We denote the height and widtXdR) by
h(X) andw(X) respectively (suppressing as usual the relaRam the notation).

In a finite poset X, R), a chainC and an antichaii have at most one element
in common. Hence the least number of antichains whose unignissnot less
than the sizén(X) of the largest chain iiX. In fact there is a partition oX into
h(X) antichains. To see this, |84 be the set of maximal elements; by definition
this is an antichain, and it meets every maximal chain. TheAJdte the set of
maximal elements iXX\ Ay, and iterate this procedure to find the other antichains.

There is a kind of dual statement, harder to prove, knowbiagorth’s Theo-
rem

Theorem 4.1 Let (X, R) be a finite poset. Then there is a partition of X intody
chains. m

An up-setin a poset(X,R) is a subseY of X such that, ify € Y andy <gr z,
thenz e Y. The set of minimal elements in an up-set is an antichain. Conversely,
if Ais an antichain, then

T (A) = {xe X:a<rxforsomeac A}

is an up-set. These two correspondences between up-sets and antichains are mu-
tually inverse; so the numbers of up-sets and antichains in a poset are equal.

Down-setsare, of course, defined dually. The complement of an up-set is a
down-set; so there are equally many up-sets and down-sets.

5 Hasse diagrams

Let x andy be distinct elements of a poseX,R). We say thaty covers xif

X, Y]r = {X,y}; that is,x <r y but no element satisfiesx <g z<rY. In general,
there may be no pairsandy such thaty coversx (this is the case in the rational
numbers, for example). However, locally finite posets are determined by their
covering pairs:



Figure 3: A Hasse diagram

Proposition 5.1 Let (X,R) be a locally finite poset, and x€ X. Then x<ry if
and only if there exist elementg, z ., z, (for some non-negative integer n) such
thatz =X, z,=Yy,and z.1 covers zfori=0,....n—1. =

Exercise: Prove this proposition.

TheHasse diagranof a poset X, R) is the directed graph whose vertex set is
X and whose arcs are the covering pdits/) in the poset. We usually draw the
Hasse diagram of a finite poset in the plane in such a way thatatersx, then
the point representing is higher than the point representirg Then no arrows
are required in the drawing, since the directions of the arrows are implicit.

For example, the Hasse diagram of the poset of subsdts, 8f3} is shown
in Figure 3.

Exercise: Find the height and width of the poset in Figure 3. Count its chains
and antichains of maximum size, and verify the conclusion of Dilworth’s theorem
in this case.

Note that the Hasse diagram of a poset corresponds to an operation on posets,
or more generally acyclic directed graphs, which is dual to the transitive closure.
This operationR°, which we might call the transitive opening, acts by removing
from Ran elementa, b) whenever there is a path froato b, distinct from the arc
(a,b), in the corresponding directed graph Note thaiR = R° and thatR® = R’.

If Ris a poset, theR® is the unique minimal relation among the relations whose
transitive closure iR; indeed,R° is the intersection of these. This explains why
the Hasse diagram representation is unique.



Locally finite preorders have unique representations which are similar to Hasse
diagrams of posets. Indeed, we may even use labeled Hasse diagrams, where the
dots represent subsets Xf rather than just elements as in the case of posets.
For instance, consider the Hasse diagram in Figure 4a. The elefmapntandh
are all smaller tham and larger thard anda, andf < g<h < f. This sort of
representation is well-defined and unique since the property thatxioth and
y < x hold defines an equivalence relation. If we wish to do without the labeling,
we may replace each dot by a cluster of dots (see Figure 4b).

(@) (b)

Figure 4. Hasse diagrams of preorders

6 Linear extensions and dimension

One view of a partial order is that it contains partial information about a total order
on the underlying set. This view is borne out by the following theorem. We say
that one relatiorextendsanother if the second relation (as a set of ordered pairs)
is a subset of the first.

Theorem 6.1 Any partial order on a finite set X can be extended to a total order
on X.

This theorem follows by a finite number of applications of the next reswuit.

Proposition 6.2 Let R be a partial order on a set X, and letebe incomparable
elements of X. Then there is a partial ordéréktending R such thag,b) € R
(thatis, a< b in the order R).



Proof It is just a matter of checking the consequences of putiirgelow b.

Let A= {x:x<ra} andB = {y: b <ry}. Clearly, if the extension oR is
possible, then every element Afmust lie below every element &. So we
takeR = RU (A x B), in other words, we include these obvious consequences of
puttinga belowb and no others. We have to show tiRatis a partial order. This

is just a matter of checking a number of cases.

Note first thatA andB are disjoint. For, itx € ANB, thenx <g a andb <gr x,
sob <g a, contrary to assumption.

Suppose thak <g y andy <g x. Then eitherx <gry or (x,y) € Ax B,
and similarly eithery <g x or (y,x) € Ax B. This gives four cases, of which
(X,¥), (¥,X) € Ax B is impossible by the previous remark. ¥ry andy <gr x
thenx =Yy, if x<pyand(y,x) € Ax B, thenb <gx, x<ry, Yy <ra, sob <gra,
contrary to assumption, with a similar contradiction in the other case.

For the transitive law, suppose thatr Yy <gr z. Then eithex <gyor(x,y) €
A x B, and similarly eithey <r zor (y,z) € Ax B. Again there are four cases to
consider. This reduces to three, siiyace A andy € B cannot both occur. ik <ry
andy <rzthenx<grz If x<gyandy € A ,ze B, theny < a, sox < a, andx € A,
giving (x,z) € A x B. The remaining case is similarm

A total order extendindg in this sense is referred to adimear extensiorof R.
(The term “linear order” is an alternative for “total order”.)

Exercise: Find the number of linear extensions of each of the 3-element posets.

This proof does not immediately show that every infinite partial order can be
extended to a total order. If we assume Zorn’s Lemma, the conclusion follows. For
let Sbe a maximal element (under inclusion) in the set of partial orders extending
R. ThenS must be a total order, since & andb were incomparable 1% then
Proposition 6.2 would give an extensi&of S such thata <g b, contradicting
the maximality ofS. (We have first to show that the union of a chain of posets is
a poset. This is a standard Zorn’s Lemma argument.)

It is known that the truth of the infinite analogue of Theorem 6.1 cannot be
proved from the Zermelo—Fraenkel axioms alone (assuming their consistency),
but is strictly weaker than the Axiom of Choice, that is, the Axiom of Choice
(or Zorn’s Lemma) cannot be proved from the Zermelo—Fraenkel axioms and this
assumption. In other words, assuming the axioms consistent, there is a model in
which Theorem 6.1 is false for some infinite poset, and another model in which
Theorem 6.1 is true for all posets but Zorn’s Lemma is false.
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Figure 5: A crown

The theorem gives us another measure of the size of a partially ordered set. To
motivate this, we use another model of a partial order. Suppose that a number of
products are being compared using several different attributes. We regard object
a as below objech if b beatsa on every attribute. If each beats the other on some
attributes, we regard the objects as being incomparable. This defines a partial
order (assuming that each attribute gives a total order). More precisely, given a
setSof total orders orX, we define a partial ordét on X by x <ry if and only if
X <sYyforeveryse S In other wordsR s the intersection of the total orders$

Theorem 6.3 Every partial order on a finite set X is the intersection of some set
of total orders on X.

Proof LetRbe a partial order oX, and letSbe the set of all total orders which
extendR. The intersection of the orders $icertainly containd)k. We show it is
no bigger. So suppose thatandb are incomparable iR. By Proposition 6.2,
there is a total order extendirRjin which a is less tharb, and another in which
b is less thama. So in the intersection of these total ordeasand b are still
incomparable. m

Now we define thelimensiorof a partial ordeR to be the smallest number of
total orders whose intersectionks In our motivating example, it is the smallest
number of attributes which could give rise to the observed total dder

Thecrownon 2n elementsay,...,a, b1, ..., by is the partial order defined as
follows: for all indices # j, the elements; anda; are incomparable, the elements
bi andbj are incomparable, ba < bj; and for each, the elements; andb; are
incomparable. Figure 5 shows the Hasse diagram of the 6-element crown.

Now we have the following result:

Proposition 6.4 The crown orgn elements has dimension na

Exercise: Prove this proposition.
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Exercise: Find the dimension of each of the 3-element posets.

Proposition 6.4 shows that the dimension of a finite partial order may be ar-
bitrarily large. For infinite posets (assuming the axiom of choice), the dimension
exists but may be infinite. However, a standard application of the Compactness
Theorem gives the following:

Theorem 6.5 Let R be a partial order on a set X, and suppose that the restriction
of R to any finite subset of X has dimension at most n (for some integer n). Then
R has dimension at most n.

Proof We take a first order language containimg- 1 binary relation symbols

R L1,...,Ln, and a constant symbao} for eachx € X. Let Z consist of the follow-

ing set of sentences: a sentence assertindRbay) is equivalent to the conjunc-

tion of L1(X,y),...,Ln(X,y); Sentences asserting that eagls a linear order; and
sentences asserting that the elemegtsr x € X are all distinct and theR(cy, cy)

holds if and only ifx <y in the given poset. Any finite subset of these sentences

is satisfiable. So, by the Compactness Theorem, they are all satisfiable, and the
result follows. =

7 Posets and topologies

The number of topologies on an infinite set is greater than the number of relational
structures of any fixed type. However, on a finite set, a topology is equivalent to a
particular type of relational structure, namely a partial preorder.

A topologyconsists of a seX, and a sefl’ of subsets oK (calledopen sets
satisfying the following axioms:

e 0T andX € T;
¢ the union of any collection of sets A is in T
¢ the intersection of any two sets‘his in 7.

It follows by induction from the third axiom that the intersection of any finite
number of members ¢f is a member off . If X is finite, the second axiom need
only deal with finite unions, and so it too can be simplified to the statement that
the union of any two sets i is in 7; then the axioms are ‘self-dual’. This is not
the case in general!
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Theorem 7.1 Let X be finite. Then there is a one-to-one correspondence between
the topologies on X, and the partial preorders (i.e., reflexive and transitive rela-
tions) on X.

Proof The correspondence is simple to describe.

Construction 1 Let 7T be a topology orX. Define a relatiorR by the rule that
(x,y) € Rif every open set containing also containg. It is trivial that R is
reflexive and transitive; that iR is a partial preorder.

Construction 2 Let R be a partial preorder od. Call a subset) of X openif,
wheneverx € U, we have] x CU. (Recall that] x={y: (x,y) € R}.) LetT be
the set of all open sets. We have to verify tHais a topology. The first axiom
requires no comment. For the second axiomUlet)s, ... be open, ana € | J; U;;
thenx € U; for somej, whence

TxCUjCJu.
i

For the third axiom, let) andV be open ank € UNV. ThenR(x) C U and
R(x) CV, and soR(x) C (UNV); thusU NV is open.

All this argument is perfectly general. It is the fact that we have a bijection
which depends on the finiteness %f We have to show that applying the two
constructions in turn brings us back to our starting point.

Suppose first thaR is a partial preorder, and” the topology derived from
it by Construction 2. Suppose théty) € R. Theny €7 X, so every open set
containingx also containy. Conversely, suppose that every open set contaiing
also containy. The set] x is itself open (this uses the transitivity Bf if z€7 X,
thenT zC1 x), and soy €7 x; thus(x,y) € R. Hence the partial preorder derived
from 7 by Construction 1 coincides witR. (We still haven't used finiteness!)

Conversely, letI’ be a topology, an the partial preorder obtained by Con-
struction 1. IfU € 7 andx € U, thenT x C U; soU is open in the sense of
Construction 2. Conversely, suppose tbhais open in this sense, that s U
impliesT x CU. Now each set x is the intersection of all members af con-
tainingx. (This follows from the definition oR in Construction 1.) But there are
only finitely many such open sets (here, at last, we use the facKtisatinite!);
and the intersection of finitely many open sets is open, as we remarked earlier; so
T Xis open in7. But, by hypothesid) is the union of the sets x for all points
x € U; and a union of open sets is opensds open inT, as required. m
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In the axiomatic development of topology, the next thing one meets after the
definition is usually the so-called ‘separation axioms’. A topology is said to sat-
isfy the axiom T if, given any two distinct pointx andy, there is an open set
containing one but not the other; it satisfies axiomif] given distinctx andy,
there is an open set containirdput noty (andvice versa

These two axioms for finite topologies have a natural interpretation in terms
of the partial preordeR. Axiom T; asserts thaR never holds between distinct
pointsx andy; that is,R is the trivial relation of equality. Construction 2 in the
proof of the theorem then shows that every subset is open. (This is called the
discrete topology It follows that any stronger separation axiom (in particular, the
so-called ‘Hausdorff axiom’ 9) also forces the topology to be discrete.

Axiom Ty translates into the condition that the relatiBns antisymmetric;
thus, it is a partial order. So there is a one-to-one correspondence betgeen T
topologies on the finite set and partial orders oK.

We conclude with an extension of this principle closely related to Rafael
Sorkin’s views: we describe how an arbitrary topological space can be approx-
imated by posets. LéX,T) be a topological space, and letbe an open cover
of X (that is, a subset ¢f’ whose union iX) which islocally finite (that is, every
point of X lies in only finitely many members afl). Now we define a relatioR
on X as follows:(x,y) € Rif and only if every open set ifi containingx also con-
tainsy. This relation is always a partial preorder (by the same argument as above),
and so it has a canonical quotient which is a partial order. This partial order ap-
proximates the original spa¢é points are identified if they are not distinguished
by the open sets ifil. Moreover, the partial order is locally finite.

Now if we take a sequence of successively finer open coveringshyfopen
sets, we obtain a sequence of partial orders, whose “inverse limit” captures the
structure of(X,7), at least in nice cases. We do not give further details here.

8 The Mobius function

Let Rbe a partial order on the finite st We take any linear order extendiiRy
and writeX = {Xq,...,%n}, wherex; < ... < X, (in the linear ordef): this is not
essential but is convenient later.

Theincidence algebra4(R) of R is the set of all functiond : X x X — R
which satisfy f(x,y) = 0 unlessx <ry holds. We could regard it as a function
on R, regarded as a set of ordered pairs. Addition and scalar multiplication are
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defined pointwise; multiplication is given by the rule

(fa)(xy) => f(x,299(zy).

If we representf by then x n matrix A with (i, j) entry f(x,x;), then this is
precisely the rule for matrix multiplication. Also, X<y, then there is no point
zsuch thatx <r zandz <ry, and so( fg)(x,y) = 0. Thus,4(R) is closed under
multiplication and does indeed form an algebra, a subset of the matrix algebra
Mnh(R). Also, sincef andg vanish on pairs not iRk, the sum can be restricted to
the intervallx,yjr = {z: x <rz<rYs}:

(fo)(xy) = ;] f(x,2)9(zy).
Ze|XY|r

Incidentally, we see that th@, j) entry of A is zero ifi > j, and so4(R)
consists of upper triangular matrices. Thus, an elenfient4(R) is invertible if
and only if f (x,x) # 0 for all x € X.

Thezeta-functior(r is the element of4(R) defined by

_ 1 ifx<Rry,
ZR(X’y)_{o otherwise.

Its inverse (which also lies it (R)) is the Mobius function g of R. Thus, we
have, for all(x,y) € R,

z u(x,z):{l ifx=y,

o 0 otherwise.
This relation allows the Nbius function of a poset to be calculated recur-
sively. We begin withur(x,x) = 1 for all x € X. Now, if x <gy and we know the
values ofu(x, z) for all z€ [x,y|r\ {Y}, then we have

UR(Xv y) - - ; UR(X7 Z)'
ze[xylr\{y}

In particular,pr(x,y) = —1 if y coversx.
The definition of the incidence algebra and thés function extend imme-
diately to locally finite posets, since the sums involved are over intejx3fs.

Exercise: Find the Mbbius function of the poset shown in Figure 3.
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Exercise: Let X be the set of positive integers aRdhe relation of divisibility.
Prove thatir(1,n) is equal to the classical dbius functioru(n), which is defined
to be (—1)K if n is the product ok distinct primes, and 0 ifi is not squarefree.
Prove also thair(m,n) = p(n/m) if mdividesn (and is zero otherwise).

Exercise: The disjoint unionof posets(X;,R;1) and (Xz,Ry) is defined to be
(X1UX2,RiURy). In other words, ifx € X; andy € Xy, thenx andy are incom-
parable; but comparability within each part remains unchanged. Describe a Hasse
diagram, the number of linear extensions, the incidence algebra, anditbiesvi
function, of the disjoint union in terms of those of the two parts.

The following are examples of &bius functions.

e The subsets of a set:
W(A,B) = (—1)/B\ for AC B;

e The subspaces of a vector space GF(q)"™:
WU, W) = (~1)%q®)  for U C W, wherek = dimU — dimWw.

Much of the work done on incidence algebras of posets has been concentrated on
finding tools and methods with which to determine thélWus function of various
classes of posets. It may seem odd that it generally is quite hard to determine the
Mobius function of a poset; after all, it just amounts to inverting an upper triangu-
lar (0,1)-matrix. The problem lies in that we wish to express th&dilis function
in terms of general properties of the poset, and not in terms of the particular zeta
function. However, the efforts in finding the®ius function are well-rewarded,
as the remaining part of this section indicate.

The following trivial result is the Mbius inversion for locally finite posets.

Theorem 8.1 f = g{ < g= fy. Similarly, f={g< g= puf.

Example 8.1 Suppose that andg are functions on the natural numbers which
are related by the identity(n) = y4,9(d). We may express this identity as
f = g where we considef andg as vectors and wheteis the zeta function for
the lattice of positive integer divisors af Theorem 8.1 implies thaf= fy, or

LISTCLICES: u(5)

din

which is precisely the classical ®bius inversion.
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Example 8.2 Suppose thaf andg are functions on the subsets of some fixed
(countable) seK which are related by the identitf(A) = Sg-409(B). We may
express this identity ak= (g where( is the zeta function for the lattice of subsets
of X. Theorem 8.1 implies thaf= uf, or

gA) = WAB(B)= Y (-1)PNf(B)
BOA BOA

which is a rather general form of the inclusion/exclusion principle.

9 Lattices

A latticeis a poset X, R) with the properties
e X has an upper bound 1 and a lower bound O;

o for any two elements,y € X, there is a least upper bound and a greatest
lower bound of the seftx,y}.

A simple example of a poset which is not a lattice is the p{)}&ﬁ[ .

In a lattice, we denote the l.u.b. ¢k y} by xVy, and the g.l.b. bxAy. We
commonly regard a lattice as being a set with two distinguished elements and two
binary operations, instead of as a special kind of poset.

Lattices can be axiomatised in terms of the two constants O and 1 and the
two operationsy andA. The result is as follows, though the details are not so
important for us. The axioms given below are not all independent. In particular,
for finite lattices we don't need to specify 0 and 1 separately, since O is just the
meet of all elements in the lattice and 1 is their join.

Proposition 9.1 Let X be a setA and Vv two binary operations defined on X,
and 0 and1 two elements of X. TheiX, Vv, A,0,1) is a lattice if and only if the
following axioms are satisfied:

e Associative laws: x (YyAZ) = (XAy)Azand XV (YV zZ) = (XVYy)VZ;
e Commutative laws: Xxy=yAxand x\vy=yVx;

e Idempotent laws: X X = XV X = X;
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o XA (XVY)=X=XV(XAY);
e XA0=0,xv1=1

Proof The proof will not be given here (you may regard it as an exercise). We
remark merely that the order must be defineadbyy if x\Vy =Yy (this is equivalent
to XAy = X, by the second-last axiom). m

A sublatticeof a lattice is a subset of the elements containing 0 and 1 and
closed under the operationsandA. It is a lattice in its own right.
The following are a few examples of lattices.

e The subsets of a (fixed) set:
AAB = ANB
AvB = AuUB

e The subspaces of a vector space:
UAV = UnNV
UvVvV = spaifuuV)

e The partial pseudo-orders on a set:
RAT = RNT
RVT = RUT

The last example has as a sublattice the equivalence relations on a set, with the
same l.u.b. and g.l.b. The posets on a set do not form a lattice. See C. H. Yan,
Discrete Math.183(1998), 285-292, for this example.

These examples illustrate the typical situation when the order is defined by
set-inclusion: the g.l.b. is the intersection, and the l.u.b. is an appropriate closure
of the union. A closely related example of a lattice is the subsets of a multiset (see
Figure 6a).

If the multiset is finite, the lattice may be viewed from an alternative view-
point. In particular, it is the lattice of positive divisors of a fixed integer, which
has as g.l.bA and l.u.b.v the greatest common denominator and the least com-
mon factor. For instance, the lattice of positive integer divisors of 18 (Figure 6b)
corresponds to the lattice of submultisets of the multjseb, b} (Figure 6a).

10 Distributive and modular lattices

A lattice isdistributiveif it satisfies thedistributive laws

18
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Figure 6: A class of lattices

(D) XA (yVz) = (XAY)V (XAZ) andxV (YA Z) = (xVY) A (xVz) forall x,y,z
A lattice ismodularif it satisfies themodular law

(M) xVv (yAz) = (xVvy) Azforall x,y,zsuch tha < z
Exercise: Prove that a distributive lattice is modular.
Exercise: Prove that the two conditions in (D) are equivalent for any lattice.

Exercise: State the modular law as a law valid for all choices of the variables.

Figure 7 presents a lattic&ls, which is not modular, as well as a modular
lattice,M3, which is not distributive.

Not only areNs and M3 the smallest lattices with these properties, they are,
in a certain sense, the only lattices with these properties. The following theorem
states this more precisely.

Theorem 10.1 A lattice is modular if and only if it does not contain the lattice N
as a sublattice. A lattice is distributive if and only if it contains neither the lat-
tice N5 nor the lattice M as a sublattice.

In the same way as in Proposition 9.1, we are able to describe distributive
lattices axiomatically.

Proposition 10.2 Let X be a set\ and Vv two binary operations defined on X,
and0 and1 two elements of X. TheiX, Vv, A,0,1) is a distributive lattice if and
only if the condition (D) and the following axioms are satisfied:
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Ns M3

Figure 7: Two lattices

e Idempotent law: X\ x = X;
e XV1=1vx=1;

e XVO0=0vx=0.

Exercise: Prove this.

Proposition 10.2 seems (erroneously) to suggest that fewer conditions are
needed for a distributive lattice than for lattices in general. This is due to the
fact that the distributive conditions (D) are strong enough to imply, together with
the three conditions stated in Proposition 10.2, the second idempotent law, as well
as the associative and commutative laws.

The poset of all subsets of a &fordered by inclusion) is a distributive lattice:
we have 0=0, 1= S and l.u.b. and g.l.b. are union and intersection respectively.
Hence every sublattice of this lattice is a distributive lattice.

Conversely, every finite distributive lattice is a sublattice of the lattice of sub-
sets of a set. We describe how this representation works. This is important in that
it gives us another way to look at posets.

Let (X,R) be a poset. Recall that atown-setin X is a subseY with the
property that, ify € Y andz <gry, thenze Y.

Let L be a lattice. A non-zero elemenrte L is calledjoin-irreducible if,
whenevex =yVz we havex=yorx=z

Theorem 10.3 (a) Let(X,R) be a finite poset. Then the set of down-sets in X,
with the operations of union and intersection and the distinguished elements
0=0and1= X, is a distributive lattice.

(b) Let L be afinite distributive lattice. Then the set X of non-zero join-irreducible
elements of L is a sub-poset of L.
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(c) These two operations are mutually inversa.

Meet-irreducibleelements are defined dually, and there is of course a dual
form of Theorem 10.3.

Figure 8 illustrates a simple algorithm with which to extract the poset from the
corresponding distributive lattice.

o : join-irreducible
¢ 1 join-reducible

Figure 8. Posets and distributive lattices
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