
CSG notes, October/November 2004
Tutte polynomial and cycle index

These notes are a composite of three talks I gave on a project whose goal is to
use both the Tutte polynomial of a matroid and the cycle index of a permutation
group to solve certain counting problems. The first section of the notes provides
motivation; the second describes the two polynomials; and the third considers a
very interesting special case, involving linear codes.

Four counting problems

To motivate this topic, I start with four counting problems, to which the answers
are polynomials. After proving this, I will show that the polynomials in the second
and third cases are specialisations of something more general (Tutte polynomial
and cycle index respectively). The appropriate generalisation of the last one is not
known!

The problems

I have a setX with n elements, and a setC with k ‘colours’; I want to colour
the elements ofX with the colours fromC. This is done by means of a function
f : X→C.

Case 1 With no restrictions, it is clear that the number of different colourings is
preciselykn.

Case 2 Suppose thatX is the vertex set of a graphΓ, and we require the colour-
ing to beproper, that is, adjacent vertices should get different colours. Then the
number of colourings is a polynomial ink with leading termkn. This polynomial
is thechromatic polynomialof the graphΓ. (Proofs will be given after the four
problems are stated.)

Case 3 Suppose thatG is a group acting faithfully onX (that is, a group of
permutations ofX). How many colourings are there if we count up to the action of
G, that is, we identify functionsf and f g for g∈G, where f g(x) = f (xg−1

)? This
asks us to countorbits of G on the set of colourings. The number is a polynomial
in k with leading termkn/|G|.
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Case 4 Now let’s combine the two preceding cases. Thus,Γ is a graph onX,
andG is a group of automorphisms ofΓ. How many proper colourings ofΓ up to
the action ofG? Again the answer is a polynomial ink with leading termkn/|G|.

Example If Γ is the null graph onX, andG is the symmetric group, then we
are counting selections ofn things fromk with repetitions allowed and order
unimportant; the answer isk(k+ 1) · · ·(k+ n−1)/n!. If Γ is the complete graph
and G the symmetric group, then repetitions are forbidden, and the number is
k(k−1) · · ·(k−n+1)/n!.

Proofs

Case 2: Chromatic Polynomial Let χΓ(k) denote the number of proper colour-
ings of the vertices ofΓ with k colours. If the graphΓ has no edges, then the
answer is the same as in Case 1, v iz.kn. So we proceed by induction on the
number of edges. Lete= {v,w} be an edge, and consider the graphΓ\eobtained
by deletingthe edgee. We divide the proper colourings of this graph into two
classes:

• Those withf (v) 6= f (w) are proper colourings ofΓ; there areχΓ(k) of them.

• Those with f (v) = f (w) are proper colourings of the graphΓ/e obtained
from Γ by contractingthe edgee; there areχΓ/e(k) of them.

So

χΓ\e(k) = χΓ(k)+ χΓ/e(k),

χΓ(k) = χΓ\e(k)−χΓ/e(k).

By the induction hypotheses, the terms on the right are polynomials with degrees
n andn−1 respectively and leading coefficient 1. So the claim is proved forΓ.

The polynomialχΓ is thechromatic polynomialof Γ.

Case 3: Orbit-Counting Lemma Suppose that the finite groupG acts on the
setΩ. Two pointsα,β of Ω lie in the same orbit ofG if α

g = β for someg∈G.
This is an equivalence relation, whose equivalence classes are the orbits.

TheOrbit-Counting Lemmaasserts that the number of orbits is equal to

1
|G| ∑g∈G

fix(g),
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where fix(g) is the number of fixed points ofg in Ω: that is, the number of orbits
is equal to the expected number of fixed points of a random element selected
uniformly fromG.

The proof is as follows. Define a bipartite graph with vertex setΩ∪G, having
an edge fromα to g if and only if g fixesα. We count edges of this graph in two
different ways (the standard combinatorialists’ trick).

First, the elementg ∈G lies in fix(g) edges, so the total number of edges is
∑g∈Gfix(g).

Second, the number of edges containingα ∈Ω is the order of thestabiliserof
α, the subgroup

Gα = {g∈G : α
g = α}

of G. So the number of edges is∑
α∈Ω |Gα |. But the size of the orbit containingα

is |G|/|Gα |. For the set of elements mappingα to a pointβ of this orbit is a coset
of Gα ; and the number of cosets is|G|/|Gα |, by Lagrange’s Theorem. So each
orbit contributes|G| to the sum, and we see that the number of edges is|G| times
the number of orbits. So the lemma is proved.

Now let Ω be the set of colourings ofX with k colours. A colouringf is fixed
by g if and only if it is constant on the cycles ofg; so the number of colourings
fixed byg is kc(g), wherec(g) is the number of cycles ofg on X. So the number
of orbits is

1
|G| ∑g∈G

kc(g).

The leading termkn/|G| comes from the identity element; any other element has
fewer thann cycles.

Case 4 Let G be a group of automorphisms of the graphΓ on X. According to
the orbit-counting lemma, the number of orbits is∑g∈G χ

g
Γ(k), whereχ

g
Γ denotes

the number of colourings ofΓ fixed byg.
Now a colouring is fixed byg if and only if every vertex in a cycle ofg has

the same colour. So, if any cycle ofg contains two adjacent vertices, then the
number of fixed colourings is zero. Otherwise, we can count it as follows. Shrink
each cycle ofg to a single vertex, and join two of these new vertices if and only
if there is an edge between some pair of vertices in these cycles in the original
graph. Every proper colouring of the resulting graphΓg extends uniquely to a
proper colouring ofΓ fixed byg.

So each term in the sum is either zero or a polynomial ink. The leading term
is χΓ(k), corresponding to the identity element ofG.
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Example Let Γ be the graph in Figure 1, and letG be the group whose
elements are the identity,(1,4), (2,3), and(1,4)(2,3).
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Figure 1: A graph

The chromatic polynomial ofΓ is k(k−1)k−2)2. The automorphisms(2,3)
and(1,4)(2,3) fix no colourings, whereas(1,4) fixes(1,4) fixesk(k−1)(k−2)
colourings, since the graphΓ(1,4) is a triangle. So the number of orbits is

1
4k(k−1)2(k−2).

Matroids and Tutte polynomial

A matroid is an abstract structure designed to capture the features of linear inde-
pendence in a vector space. Matroids arise in many areas of combinatorics as well
as linear algebra: graph theory, transversal theory, coding theory, etc. Associated
with a matroid is a two-variable polynomial, and we will see that this specialises
to the chromatic polynomial of a graph. It has many other important specialisa-
tions: the flow polynomial of a graph, the weight enumerator of a linear code, the
Jones polynomial of a knot, etc.

A matroid M consists of a pair(E,I ), whereE is a set, andI a non-empty
set of subsets ofE calledindependent sets, satisfying the two properties

• If I ∈I andJ⊆ I , thenJ ∈I .

• TheExchange Axiom: if I1, I2∈I with |I1|< |I2|, then there existsx∈ I2\ I1
with the property thatI1∪{x} ∈I .

It follows from the Exchange Axiom that all maximal independent sets have
the same cardinality. This cardinality is called therank of M, and the maximal
independent sets are thebasesof M.

More generally, ifA is any subset ofE, then all maximal independent subsets
of A have the same cardinality, called therank of A and denoted byρ(A).

Two standard examples will be important to us.

4



Vector matroids This is the original motivating example. Letv1, . . . ,vn be vec-
tors in a vector spaceV (repetitions are allowed). TakeE = {1, . . . ,n}, and let
a subsetI of E be independent if and only if the family(vi : i ∈ I) of vectors is
linearly independent inV. If {v1, . . . ,vn} spansV, then the rank of the matroid is
the dimension ofV, and the bases are the vector space bases.

Graphic matroids Let Γ be a graph (in the general sense: loops and multiple
edges are allowed). LetE be the set of edges ofΓ. A subsetI of E is independent
if I contains no circuit of the graph. (Here we regard a loop, or two edges joining
the same pair of vertices, as forming a circuit.) This is thecycle matroidof the
graphΓ. If Γ is connected, then the bases are the (edge sets of) spanning trees of
Γ. In general, the rank ofM is the number of vertices ofΓ minus the number of
connected components.

TheTutte polynomialof a matroidM = (E,I ) is defined to be the polynomial

T(M;x,y) = ∑
A⊆E

(x−1)ρ(E)−ρ(A)(y−1)|A|−ρ(A).

Note that this was not Tutte’s original definition, and a non-trivial argument is
required to show that the two definitions are the same.

The formula we have given for the Tutte polynomial contains 2|E| terms, and
in general it is hard to compute. We now give another method of computation
which is theoretically important but is also hard to compute. It may be worth
mentioning two important results here:

• Jaeger, Vertigan and Welsh showed that computing the valueT(M;x,y) at
a specific point(x,y) in the plane is #P-complete, except for some special
points and curves.

• Freedman, Kitaev, Larsen and Wang showed that any efficient quantum
computation is equivalent to a classical computation together with one eval-
uation of the Jones polynomial of a braid at a fifth root of unity. This evalua-
tion can be regarded as an evaluation of the Tutte polynomial at a ‘difficult’
point. In fact, Bordewich, Freedman, Lovász and Welsh showed that we
don’t need the exact value; it’s enough to be able to answer questions like
“in which quartile of its possible range does it lie?” Even this seems hard!
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Operations on matroids Let M = (E,I ) be a matroid. We call a pointe∈ E
a loop if it lies in no basis ofM, and acoloopif it lies in every basis. In a graphic
matroid, loops have precisely their graph-theoretic meaning, while a coloop is a
bridgeor isthmusof the graph.

We define three operations onM, as follows.

• If e∈ E is not a coloop, we define thedeletionof E to be the matroidM\e
on E \{e} whose independent sets are precisely the independent sets ofM
not containinge.

• If e∈ E is not a loop, we define thecontractionof E to be the matroidM/e
onE \{e} whose independent sets are all those of the formI \{e}, whereI
is an independent set ofM containinge.

• Thedual M∗ of M is the matroid whose bases are the complements of the
bases ofM.

If M is a graphic matroid, then deletion and contraction of an edge have their usual
graph-theoretic meanings. The dual ofM is less clear in this case, except that if
the graph happens to be planar, then the dual ofM is associated with the planar
dual graph (obtained by putting one vertex in each face of the original, and one
edge crossing each edge of the original). The skeletons of the Platonic solids thus
satisfy just the duality relations we would expect.

Now it is easy to see that, ife is not a coloop ofM, then it is not a loop ofM∗,
and

(M\e)∗ = M∗/e.

The relation between the Tutte polynomials of a matroid and its dual is very sim-
ple:

T(M∗;x,y) = T(M;y,x).

Careful analysis of the definition of the Tutte polynomial shows that the fol-
lowing four assertions hold. These allow a recursive method of calculating the
Tutte polynomial, rather like that for the chromatic polynomial of a graph. The
empty matroid( /0,{ /0}) is just a convenient place to start the induction.

Let M = (E,I ) be a matroid.

• If M is the empty matroid thenT(M;x,y) = 1.

• If e is a loop, thenT(M;x,y) = yT(M\e;x,y).

• If e is a coloop, thenT(M;x,y) = xT(M/e;x,y).
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• If e is neither a loop nor a coloop, thenT(M;x,y) = T(M\e;x,y)+T(M/e;x,y).

Using these formulae in connection with the deletion-contraction formulae for
the chromatic polynomialχΓ of a graphΓ, we come up with the following: for
any graphΓ, with graphic matroidM(Γ),

χΓ(k) = (−1)ρ(Γ)kκ(Γ)T(M;1−k,0),

whereκ(Γ) is the number of connected components ofΓ andρ(Γ) + κ(Γ) the
number of vertices (so thatρ(Γ) is the rank ofM).

Permutation groups and cycle index

Let X be a set ofn elements. Any permutationg of X has a decomposition into
disjoint cycles: letci(g) be the number of cycles of lengthi, for 1≤ i ≤ n (so
thatc1(g)+2c2(g)+ · · ·= n). Take indeterminatess1, . . . ,sn, and define thecycle
indexof g to be the monomial

z(g) = sc1(g)
1

sc2(g)
2
· · ·scn(g)

n .

Now let G be a group of permutations ofX. We define thecycle indexof G to be
the average of the cycle indices of its elements:

Z(G) =
1
|G| ∑g∈G

z(g).

It is a polynomial ins1, . . . ,sn; every term has “degree”n, if we count the degree
of the indeterminatesi as beingi, for all i.

The cycle index can be used to solve in a systematic way many orbit-counting
problems related toG. I will state the Cycle Index Theorem, which is not the most
general result about this but probably enough for our needs.

We have a setA of figures, each of which has a non-negative integerweight.
There may be infinitely many figures, but we assume that there are only finitely
many of given weight, sayai of weight i. We define thefigure-counting seriesto
be

A(x) = ∑
i≥0

aix
i .

Now a functionf : X→ A has a weight given by

w( f ) = ∑
x∈X

w( f (x)).
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If G is a permutation group omX, thenG acts on the set of functions fromX to A
preserving the weights. So we can ask for the number of orbits ofG on functions
of weight i; call this numberbi . Then thefunction-counting seriesis given by

B(x) = ∑
i≥0

bix
i .

The Cycle Index Theoremasserts that the relation between these two series is
given by

B(x) = Z(G;si ← A(xi)),

whereF(si ← ti) means the result of substitutingti for si in the polynomialF for
i = 1, . . . ,n.

This can be applied to the second of our four motivating problems. If we are
colouringX with k colours, take each figure to be a colour, having weight zero;
then the number of orbits on colourings isZ(G;si ← k). But the extra freedom
allows us to do much more. Suppose for example, that one of the colours is
black, and we want to count the colourings in which black is used exactlyj times.
Now we take black to have weight 1 and all the others to have weight 0, so that
the figure-counting series isx+ k−1; then the required number of orbits is the
coefficient ofx j in the polynomialZ(G;si ← xi +k−1).

One result about the cycle index which we need is theShift Theorem. Let G
be a permutation group onΩ. Let PΩ/G denote a set of representatives for the
G-orbits on the set of subsets ofΩ. For any subsetA of Ω, let G[A] denote the
permutation group onA induced by its setwise stabiliser inG. (By convention, the
cycle index of a permutation group on the empty set is taken to be 1.) Then we
have

∑
A∈PΩ/G

Z(G[A]) = Z(G;si ← si +1).

Example Let G be the symmetric group of degree 3. As orbit representatives
we can take one set of each cardinality 0, 1, 2, 3; the group induced on each set is
the symmetric group. The equation above says

1+s1+ 1
2(s2

1+s2)+ 1
6(s3

1+3s1s2+2s3) = 1
6((s1+1)3+3(s1+1)(s2+1)+2(s3+1)).

The main problem

The main problem that I would like solved is the following.
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Is there a polynomial (somehow ‘including’ both the Tutte polynomial
of M and the cycle index of G) associated with the action of a group
G of automorphisms of a matroid M, with the property that, given any
nice specialisation of T(M) solving a counting problem associated
with M (such as the chromatic polynomial of a graph), there is a cor-
responding specialisation of the new polynomial to count the orbits
of G on the objects being counted?

Equivariant Tutte polynomial

Let G be a group of automorphisms of the matroidM. The equivariant Tutte
polynomial T(M,G) is obtained in the manner suggested by the Orbit-Counting
Lemma: we average, overG, the terms in the summation for the Tutte polynomial
fixed by the elementg∈G. That is,

T(M,G;x,y) =
1
|G| ∑g∈G

∑
A⊆E
Ag=A

(x−1)ρE−ρA(y−1)|A|−ρA

=
1
|G| ∑

A⊆E
∑

g∈GA

(x−1)ρE−ρA(y−1)|A|−ρA

=
1
|G| ∑

A∈PE/G

|G|
|GA|
|GA|(x−1)ρE−ρA(y−1)|A|−ρA

= ∑
A∈PE/G

(x−1)ρE−ρA(y−1)|A|−ρA.

Thus, an alternative description of the equivariant Tutte polynomial is that it
contains the terms in the usual Tutte polynomial but summed over orbit represen-
tatives only.

It is clear that if we substitute(1,1), (1,2), (2,1) or (2,2) into the equivariant
Tutte polynomial, we obtain the number of orbits ofG on bases, independent sets,
spanning sets, and arbitrary sets inM.

Unfortunately, not all specialisations work so nicely. It is not true that the
substitution which gives the chromatic polynomial from the Tutte polynomial of
a graphic matroid, when applied to the equivariant Tutte polynomial, gives the
number of orbits ofG on colourings. A similar remark applies to the weight
enumerator of a linear code.

So it is clear that the equivariant Tutte polynomial defined above is not particu-
larly useful. However, we will see that it is also a specialisation of the polynomial
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defined below.

Example Let M be the uniform matroidU(2,3) (the cycle matroid of the 3-
cycle), andG the symmetric groupS3. Then

T(M) = (x−1)2 +3(x−1)+3+(y−1) = x2 +x+y,

T(M,G) = (x−1)2 +(x−1)+1+(y−1) = x2−x+y.

The chromatic polynomial ofK3 is

P(k) = kT(M;1−k,0) = k(k−1)(k−2),

and no colouring is invariant under any permutation, so the number of orbits on
k-colourings is obtained by dividing by 6. However,

kT(M,G;1−k,0) = k2(k−1).

Tutte cycle index

Our polynomial is defined as follows:

ZT(M,G) = ∑
A∈PE/G

uρE−ρAv|G:GA|Z(G(A)).

It has the following specialisations:

• Putu← 1, v← 1: we obtainZ(G;si ← si +1), by the Shift Theorem.

• Differentiate with respect tovand putv← 1,si← t i (for all i). Since|G : GA|
is the size of the orbit ofA, we obtain the sum over all ofPE; moreover,
Z(G(A);si ← t) = t |A|. So we obtain

tρE ∑
A∈PE

t |A|−ρA(u/t)ρE−ρA = tρET(M;x← u/t +1,y← t +1).

• Putv← 1, si← t i for all i: as in the preceding section, we obtain the equiv-
ariant Tutte polynomial (with the same substitution as in the previous case).
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Codes and matroids

In what follows,monomial column operationson a matrix mean column permu-
tations and multiplying columns by non-zero scalars. We say two matrices are
rmc-equivalentif one can be transformed into the other by a combination of row
operations and monomial column operations.

Let A be ak×n matrix with rankk over a fieldF . There are two constructions
we can perform onA:

1. LetC be the row space ofA. ThenC is an [n,k] code overF (a subspace
of Fn of dimensionk). Row operations simply change the basis forC while
leaving it unaltered. Monomial column operations replaceC by an “equiv-
alent” code (in the usual sense in coding theory – this is sometimes called
“monomial equivalent”). So matrices up to rmc-equivalence correspond to
linear codes up to equivalence.

2. LetE = {1, . . . ,n}, and

I = {I ⊆ E : (ci : i ∈ I) is linearly independent}.

Then(E,I ) is a matroid, indeed a vector matroid overF (we are given an
explicit representation). Now row operations onM correspond to changing
the representation to an equivalent one (two representations being equiv-
alent if they differ by an invertible linear transformation of the underly-
ing space), while monomial column operations relabel the elements of the
matroid and the choice of representing vectors. So matrices up to rmc-
equivalence correspond to representations of matroids up to equivalence.

So there is a natural correspondence between linear codes and representable
matroids, up to the natural notion of equivalence for each.

Note that, if the matrixA has no zero columns (equivalently, if the matroid
has no loops), then another way of viewing the matroid is as a family of points in
the projective space PG(k−1,F), since multiplying a point by a non-zero scalar
doesn’t change the projective point it spans. Moreover, if any two columns are
linearly independent (equivalently, if the matroid has no parallel elements), then
the points of projective space are all distinct. This occurs if and only if the dual
codeC⊥ of C has minimum weight at least 3.
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Matroid and code operations

We now consider some matroid operations and the corresponding operations on
codes.

1. Deletion of the elemente of the matroidM = (E,I ) gives M\e = (E \
{e},I ′), where

I ′ = {I ∈I : e /∈ I}.

The corresponding operation on codes ispuncturing, that is, deleting the
coordinatee from all codewords.

2. Contractionof the elemente of the matroidM = (E,I ) givesM/e= (E \
{e},I ′′), where

I ′ = {I \{e} : e∈ I ∈I }.

The corresponding operation on codes isshortening: take all codewords
which have entry 0 in theeth coordinate, and then delete this coordinate.

3. Dual M∗ of M is the matroid whose bases are the complements of the bases
of M. The corresponding operation on codes is the usual dual

C⊥ = {v∈ Fn : v.w = 0 for all w∈C}.

Polynomials

Theweightof v∈ Fn, denoted wt(v), is the number of non-zero coordinates ofv.
Theweight enumeratorof C is the polynomial

WC(X,Y) = ∑
v∈C

Xn−wt(v)Ywt(v) =
n

∑
i=0

aiX
n−iYi ,

whereai is the number of words ofC of weighti. It is a homogeneous polynomial
of degreen.

Recall that theTutte polynomialof a matroidM is

T(M;x,y) = ∑
A⊆E

(x−1)ρ(E)−ρ(A)(y−1)|A|−ρ(A),

whereρ is the rank function ofM.

12



Greene’s Theoremshows that the weight enumerator ofC is a specialisation
of the Tutte polynomial of the corresponding matroidM:

WC(X,Y) = Yn−k(XY)kT

(
M;

X +(q−1)Y
X−Y

,
X
Y

)
,

whereq = |F | andk is the dimension ofC.
Let us illustrate this by deducingMacWilliams’ Theorem:

W
C⊥

(X,Y) =
1
|C|

WC(X +(q−1)Y,X−Y).

SinceC⊥ corresponds toM∗, andT(M∗;x,y) = T(M;y,x), we have

W
C⊥

(X,Y) = Yk(X−Y)n−kT

(
M;

X
Y
,
X +(q−1)Y

X−Y

)
.

On the other hand, ifU = X+(q−1)Y andV = X−Y, thenU +(q−1)V = qX
andU−V = qY, so

1
|C|

WC(U,V) =
1
qkVn−k(U−V)kT

(
M;

qX
qY
,
X +(q−1)Y

X−Y

)
,

which reduces to the same as the other expression.

Singleton bound and MDS codes

TheSingleton boundasserts that, ifC is a code of lengthn over an alphabet with
q symbols (not necessarily linear) andC has minimum distanced, then |C| ≤
qn−d+1.

To prove this, write out all the codewords in a|C|×n array. Choose anyn−
d+1 columns of the array, and make a window which shows only those columns.
As we slide the window down the array, all the views through the window are
distinct; for, if two of them agreed, the corresponding codewords would agree in
at leastn− d + 1 positions, and would have distance at mostd− 1, contrary to
assumption. Since there are at mostqn−d+1 different views, the result is proved.

A code is calledMDS (for maximum distance separable) if it attains this
bound.

Suppose thatC is a linear code which is MDS. ThenC has dimensionk = n−
d+ 1. The argument shows that, given anyk columns, all possiblek-tuples occur
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in those positions in the code; so the correspondingk coordinates are independent
in the matroid. The converse is clear. Thus, a linear code is MDS if and only if
the corresponding matroid is auniform matroid Uk,n (that is, the independent sets
are all subsets of cardinality at mostk).

This result makes obvious a fact which is rather difficult to see directly: ifC
is a linear MDS code, thenC⊥ is also MDS. For the dual of the uniform matroid
Uk,n is justUn−k,n.

Clearly the Tutte polynomial of the uniform matroid is

T(Uk,n;x,y) =
k

∑
i=0

(
n
i

)
(x−1)k−i +

n

∑
i=k+1

(
n
i

)
(y−1)i−k.

By Greene’s Theorem, we can calculate explicitly the weight enumerator of a
linear MDS code.

If C is a linear[n,k] MDS code over GF(q), then the corresponding points of
PG(k−1,q) form anarc: that is, nok of them are contained in a hyperplane of the
projective space. Thus, the study of arcs in projective space, linear MDS codes,
and representations of uniform matroids are all the same subject.

Example Let C be a linear[n,3] MDS code over GF(q). Then

n≤
{

q+1 if q is odd,
q+2 if q is even.

For C corresponds to a setS of n points in the projective plane PG(2,q), no
three collinear. The upper boundq+ 2 arises because, ifp ∈ S, then the lines
joining it to the othern−1 points in the set are all distinct, and there are exactly
q+ 1 lines through a point in the projective plane. If equality holds, then every
line meetsS in either 0 or 2 points. Take a pointp′ outsideS; the lines throughp′

which meetSpartition it into sets of size 2, so|S|= q+2 must be even.

Hamming bound and perfect codes

There are other bounds for codes. One of the best-known is thesphere-packing
boundor Hamming bound: if C has lengthn and minimum distance at least 2e+1
over an alphabet of sizeq, then

|C| ≤ qn

∑e
i=0

(n
i

)
(q−1)i

.
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This holds because, givend ≥ 2e+ 1, the triangle inequality shows that the
balls of radiusecentred at the codewords are pairwise disjoint. Each ball contains
∑e

i=0

(n
i

)
(q−1)i words, and there areqn words altogether.

Equality holds if and only if every word is distante or less from a unique
codeword. A code with these properties is calledperfect. Tietäväinen showed
that, if q is a prime power, then perfect codes have parameters from the following
list:

• e= 1 (Hamming codes are examples);

• q = 2, e= (n−1)/2 (binary repetition codes);

• q = 2, e= 3, n = 23 (the binary Golay code);

• q = 3, e= 2, n = 11 (the ternary Golay code).

It is known that, for a perfect code containing the all-zero word, the weight
enumerator is determined by the parameters. So we conclude with two questions:

• What properties distinguish matroids corresponding to linear perfect codes?

• Is the Tutte polynomial determined by the parameters (as for MDS codes)?

Finally, in connection with the general project, the following problem arises:
Given a groupG of automorphisms of a codeC, construct a polynomial which can
be used to count orbits ofG on words of given weight inC.

End note

Following the Study Group sessions, Bill Jackson has shown that, ifA is the
abelian groupCm

2 , then for any graphΓ and groupG of automorphisms ofΓ,
the number of orbits ofG on nowhere-zeroA-flows in Γ is given by a polynomial
in k = |A|, and has calculated the degree and leading term of this polynomial.
However, if we use other abelian groupsA, then the answer is not determined by
A alone, but depends on the structure ofA. We hope to report more news about
this later.
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