CSG notes, October/November 2004
Tutte polynomial and cycle index

These notes are a composite of three talks | gave on a project whose goal is to
use both the Tutte polynomial of a matroid and the cycle index of a permutation
group to solve certain counting problems. The first section of the notes provides
motivation; the second describes the two polynomials; and the third considers a
very interesting special case, involving linear codes.

Four counting problems

To motivate this topic, | start with four counting problems, to which the answers
are polynomials. After proving this, | will show that the polynomials in the second
and third cases are specialisations of something more general (Tutte polynomial
and cycle index respectively). The appropriate generalisation of the last one is not
known!

The problems

| have a seiX with n elements, and a sé€t with k ‘colours’; | want to colour
the elements oK with the colours fronC. This is done by means of a function
f:X—=C.

Case 1 With no restrictions, it is clear that the number of different colourings is
preciselyk".

Case 2 Suppose thaX is the vertex set of a gragh and we require the colour-
ing to beproper, that is, adjacent vertices should get different colours. Then the
number of colourings is a polynomial knwith leading ternk". This polynomial

is thechromatic polynomiabf the graph". (Proofs will be given after the four
problems are stated.)

Case 3 Suppose thaG is a group acting faithfully orX (that is, a group of
permutations oK). How many colourings are there if we count up to the action of
G, that is, we identify functiong and f9 for g € G, wheref9(x) = f(x‘fl)? This
asks us to courtdrbits of G on the set of colourings. The number is a polynomial
in k with leading ternk"/|G|.



Case 4 Now let's combine the two preceding cases. THuss a graph orX,
andG is a group of automorphisms 6f How many proper colourings &f up to
the action ofG? Again the answer is a polynomial kwith leading ternk"/|G|.

Example If T is the null graph orX, andG is the symmetric group, then we
are counting selections of things fromk with repetitions allowed and order
unimportant; the answer lgk+1)---(k+n—21)/nl. If T is the complete graph
and G the symmetric group, then repetitions are forbidden, and the number is
kK(k—1)---(k—n+1)/nl.

Proofs

Case 2: Chromatic Polynomial Let x-(k) denote the number of proper colour-
ings of the vertices of with k colours. If the grapi” has no edges, then the
answer is the same as in Case 1, vkiZ. So we proceed by induction on the
number of edges. Let= {v,w} be an edge, and consider the gr&ple obtained
by deletingthe edgee. We divide the proper colourings of this graph into two
classes:

e Those withf (v) # f(w) are proper colourings df; there arey- (k) of them.

e Those withf(v) = f(w) are proper colourings of the graplye obtained
from " by contractingthe edgeg; there arey- /e(k) of them.

So
2o = 20 (K + 2 oK),
(K = xre(K) =2 e(K)-

By the induction hypotheses, the terms on the right are polynomials with degrees
nandn— 1 respectively and leading coefficient 1. So the claim is proved for
The polynomialy- is thechromatic polynomiabf I".

Case 3: Orbit-Counting Lemma Suppose that the finite group acts on the

setQ. Two pointsa,  of Q lie in the same orbit 06 if a9 = 8 for someg € G.

This is an equivalence relation, whose equivalence classes are the orbits.
TheOrbit-Counting Lemmasserts that the number of orbits is equal to

1 .
@ géflx(g)a
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where fiXg) is the number of fixed points @fin Q: that is, the number of orbits
is equal to the expected number of fixed points of a random element selected
uniformly from G.

The proof is as follows. Define a bipartite graph with vertexetG, having
an edge fronw to g if and only if g fixes o. We count edges of this graph in two
different ways (the standard combinatorialists’ trick).

First, the elemeng €G lies in fix(g) edges, so the total number of edges is
3 gec fiX(9).

Second, the number of edges containing Q is the order of thetabiliserof
o, the subgroup

Gy=1{0eG:a’=0a}

of G. So the number of edgesJs, ., |Gq|. Butthe size of the orbit containing
is|G|/|Gq|. For the set of elements mappingto a pointp of this orbit is a coset
of G,; and the number of cosets [i§|/|G,|, by Lagrange’s TheoremSo each
orbit contributegG| to the sum, and we see that the number of edggs|ismes
the number of orbits. So the lemma is proved.

Now letQ be the set of colourings of with k colours. A colouringf is fixed
by g if and only if it is constant on the cycles gf so the number of colourings
fixed by g is k%9, wherec(g) is the number of cycles af on X. So the number

of orbits is 1
= N K@)
Gl 2

The leading ternk" /|G| comes from the identity element; any other element has
fewer tham cycles.

Case 4 Let G be a group of automorphisms of the grdplon X. According to
the orbit-counting lemma, the number of orbit@'g%er?(k), Wherexﬁ’ denotes
the number of colourings df fixed byg.

Now a colouring is fixed by if and only if every vertex in a cycle aj has
the same colour. So, if any cycle gfcontains two adjacent vertices, then the
number of fixed colourings is zero. Otherwise, we can count it as follows. Shrink
each cycle ofj to a single vertex, and join two of these new vertices if and only
if there is an edge between some pair of vertices in these cycles in the original
graph. Every proper colouring of the resulting grdphextends uniquely to a
proper colouring of fixed byg.

So each term in the sum is either zero or a polynomi#l ifihe leading term
is xr-(k), corresponding to the identity element®f
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Example LetTl be the graph in Figure 1, and |& be the group whose
elements are the identity],4), (2,3), and(1,4)(2,3).

2
10<I> 4

3

Figure 1: A graph

The chromatic polynomial of is k(k — 1)k — 2)2. The automorphismg, 3)
and(1,4)(2,3) fix no colourings, whereadl, 4) fixes (1,4) fixesk(k—1)(k—2)
colourings, since the grapi'# is a triangle. So the number of orbits is

Tk(k—1)2(k—2).

Matroids and Tutte polynomial

A matroid is an abstract structure designed to capture the features of linear inde-
pendence in a vector space. Matroids arise in many areas of combinatorics as well
as linear algebra: graph theory, transversal theory, coding theory, etc. Associated
with a matroid is a two-variable polynomial, and we will see that this specialises
to the chromatic polynomial of a graph. It has many other important specialisa-
tions: the flow polynomial of a graph, the weight enumerator of a linear code, the
Jones polynomial of a knot, etc.

A matroid M consists of a paifE,.#), whereE is a set, and? a nhon-empty
set of subsets dE calledindependent setsatisfying the two properties

o Iflec.ZandJClI,thend e .#.

e TheExchange Axiomif I, 1, € .7 with |I;| < |l,|, then there existsc |\ I;
with the property that, U {x} € ..

It follows from the Exchange Axiom that all maximal independent sets have
the same cardinality. This cardinality is called taak of M, and the maximal
independent sets are thasesof M.

More generally, ifA is any subset o, then all maximal independent subsets
of A have the same cardinality, called tfzenk of A and denoted bp (A).

Two standard examples will be important to us.
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Vector matroids  This is the original motivating example. Lef, ..., v, be vec-
tors in a vector spac¥ (repetitions are allowed). Take = {1,...,n}, and let
a subset of E be independent if and only if the family;, : i € 1) of vectors is
linearly independent iN. If {v,,...,va} spans/, then the rank of the matroid is
the dimension oY/, and the bases are the vector space bases.

Graphic matroids Let[l be a graph (in the general sense: loops and multiple
edges are allowed). L& be the set of edges 6f A subset of E is independent

if 1 contains no circuit of the graph. (Here we regard a loop, or two edges joining
the same pair of vertices, as forming a circuit.) This isdiiele matroidof the
graphl’. If T is connected, then the bases are the (edge sets of) spanning trees of
I". In general, the rank d¥1 is the number of vertices ¢f minus the number of
connected components.

TheTutte polynomiabf a matroidM = (E, .#) is defined to be the polynomial

T(M’X,y) — zE(X_ 1)p(E)_p(A) (y_ 1>|A|_P(A)'
AC

Note that this was not Tutte’s original definition, and a non-trivial argument is
required to show that the two definitions are the same.

The formula we have given for the Tutte polynomial contaifts 2rms, and
in general it is hard to compute. We now give another method of computation
which is theoretically important but is also hard to compute. It may be worth
mentioning two important results here:

e Jaeger, Vertigan and Welsh showed that computing the Vielive x,y) at
a specific poin{x,y) in the plane is #P-complete, except for some special
points and curves.

e Freedman, Kitaev, Larsen and Wang showed that any efficient quantum
computation is equivalent to a classical computation together with one eval-
uation of the Jones polynomial of a braid at a fifth root of unity. This evalua-
tion can be regarded as an evaluation of the Tutte polynomial at a ‘difficult’
point. In fact, Bordewich, Freedman, Lasz and Welsh showed that we
don’t need the exact value; it's enough to be able to answer questions like
“in which quartile of its possible range does it lie?” Even this seems hard!



Operations on matroids LetM = (E,.#) be a matroid. We call a poite E
aloopif it lies in no basis oM, and acoloopif it lies in every basis. In a graphic
matroid, loops have precisely their graph-theoretic meaning, while a coloop is a
bridge or isthmusof the graph.

We define three operations &h as follows.

e If ec E is not a coloop, we define trdeletionof E to be the matroidv\e
on E\ {e} whose independent sets are precisely the independent ddts of
not containinge.

e If ec E is not a loop, we define theontractionof E to be the matroidv /e
onE\ {e} whose independent sets are all those of the fotrfe}, wherel
is an independent set df containinge.

e Thedual M* of M is the matroid whose bases are the complements of the
bases oM.

If M is a graphic matroid, then deletion and contraction of an edge have their usual
graph-theoretic meanings. The dualMfis less clear in this case, except that if
the graph happens to be planar, then the dudM a$ associated with the planar
dual graph (obtained by putting one vertex in each face of the original, and one
edge crossing each edge of the original). The skeletons of the Platonic solids thus
satisfy just the duality relations we would expect.

Now it is easy to see that, &is not a coloop oM, then it is not a loop oM*,
and

(M\e)* =M"*/e.

The relation between the Tutte polynomials of a matroid and its dual is very sim-

ple:
T(M*xy) = T(My,X).

Careful analysis of the definition of the Tutte polynomial shows that the fol-
lowing four assertions hold. These allow a recursive method of calculating the
Tutte polynomial, rather like that for the chromatic polynomial of a graph. The
empty matroid 0, {0}) is just a convenient place to start the induction.

LetM = (E,.#) be a matroid.

e If M is the empty matroid thefi(M;x,y) = 1.
e If eisaloop, therl (M;x,y) =yT(M\€ X,y).
e If eis a coloop, the (M;x,y) = xT(M/€gX,y).
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e If eis neither aloop nor a coloop, th&iiM; x,y) =T (M\ex,y)+T(M/eX,y).

Using these formulae in connection with the deletion-contraction formulae for
the chromatic polynomiag of a graphl’, we come up with the following: for
any graph, with graphic matroid(I"),

2 (k) = (~D)POKOT(M;1-k,0),

wherek(I") is the number of connected componentd adndp (") + k(") the
number of vertices (so that(I") is the rank ofM).

Permutation groups and cycle index

Let X be a set oh elements. Any permutatiog of X has a decomposition into
disjoint cycles: letc;(g) be the number of cycles of lengthfor 1 <i < n (so
thatc, (g) +2¢,(9) + - -- = n). Take indeterminates, ..., s,, and define theycle
indexof g to be the monomial

2g) = 190 .0,

Now let G be a group of permutations &f. We define theycle indexof G to be
the average of the cycle indices of its elements:

2(6) = ‘—;géz@

Itis a polynomial ins;, ..., s,; every term has “degreet, if we count the degree
of the indeterminatsg as being, for all i.

The cycle index can be used to solve in a systematic way many orbit-counting
problems related t&. | will state the Cycle Index Theorem, which is not the most
general result about this but probably enough for our needs.

We have a sef of figures each of which has a non-negative integexight
There may be infinitely many figures, but we assume that there are only finitely
many of given weight, sag. of weighti. We define thdigure-counting serieto

be .
AX) =Y ax.
Now a functionf : X — A has a weight given by

w(f)= Z(W(f(x)).
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If Gis a permutation group oq, thenG acts on the set of functions frokto A
preserving the weights. So we can ask for the number of orbi&af functions
of weighti; call this numbeb;. Then thefunction-counting seriess given by

B(x) = i; bx.

The Cycle Index Theorerasserts that the relation between these two series is
given by _
B(X) = Z(G;5 < A(X)),

whereF (s < t;) means the result of substitutimgor s in the polynomialF for
i=1...,n

This can be applied to the second of our four motivating problems. If we are
colouring X with k colours, take each figure to be a colour, having weight zero;
then the number of orbits on colourings4$G;s, < k). But the extra freedom
allows us to do much more. Suppose for example, that one of the colours is
black, and we want to count the colourings in which black is used exgattiyes.
Now we take black to have weight 1 and all the others to have weight 0, so that
the figure-counting series s+ k— 1; then the required number of orbits is the
coefficient ofx! in the polynomialZ(G;s « x' +k— 1).

One result about the cycle index which we need isShédt TheoremLet G
be a permutation group d. Let #2Q /G denote a set of representatives for the
G-orbits on the set of subsets ©f For any subsef of Q, let G[A] denote the
permutation group oA induced by its setwise stabiliser@ (By convention, the
cycle index of a permutation group on the empty set is taken to be 1.) Then we
have

Z(GIA) =Z(G;s «—s+1).
AcZQ/G

Example LetG bethe symmetric group of degree 3. As orbit representatives
we can take one set of each cardinality 0, 1, 2, 3; the group induced on each set is
the symmetric group. The equation above says

L4814 5(S145,) +5(ST 4385+ 259) = (S, + 1)+ 3(8y + 1) (S, 1) +2(83+1)-

The main problem

The main problem that | would like solved is the following.



Is there a polynomial (somehow ‘including’ both the Tutte polynomial
of M and the cycle index of G) associated with the action of a group
G of automorphisms of a matroid M, with the property that, given any
nice specialisation of TM) solving a counting problem associated
with M (such as the chromatic polynomial of a graph), there is a cor-
responding specialisation of the new polynomial to count the orbits
of G on the objects being counted?

Equivariant Tutte polynomial

Let G be a group of automorphisms of the matréid The equivariant Tutte
polynomial T(M, G) is obtained in the manner suggested by the Orbit-Counting
Lemma: we average, ov&, the terms in the summation for the Tutte polynomial
fixed by the elemeng € G. That is,

1
. _ _ 1\PE-pA/, _ 1\|AI-PA
T(M,G;x,y) —,G‘gg AZA(X 1) (y—1)
g:

1
= LSy (xo 1Ay 1A
O 2e2e,

= 1 E|GA|(X— 1)PE-PA(y — 1)\A\—pA

@AGW’E/G |GA’
= Y (x=1)PEPAy-1)AeA
AcZE/G

Thus, an alternative description of the equivariant Tutte polynomial is that it
contains the terms in the usual Tutte polynomial but summed over orbit represen-
tatives only.

It is clear that if we substitutél, 1), (1,2), (2,1) or (2,2) into the equivariant
Tutte polynomial, we obtain the number of orbits@bn bases, independent sets,
spanning sets, and arbitrary setdvn

Unfortunately, not all specialisations work so nicely. It is not true that the
substitution which gives the chromatic polynomial from the Tutte polynomial of
a graphic matroid, when applied to the equivariant Tutte polynomial, gives the
number of orbits ofG on colourings. A similar remark applies to the weight
enumerator of a linear code.

Soitis clear that the equivariant Tutte polynomial defined above is not particu-
larly useful. However, we will see that it is also a specialisation of the polynomial
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defined below.

Example Let M be the uniform matroidJ (2,3) (the cycle matroid of the 3-
cycle), andG the symmetric grouf®;. Then

T(M) = (x=1%+3(x=1)+3+(y—1) =x*+x+Y,
TM,G) = (Xx=1)24+(X—=1)+1+(y—1) =x>—x+Y.

The chromatic polynomial df; is
P(k) =kT(M;1—-k,0) = k(k—1)(k—2),

and no colouring is invariant under any permutation, so the number of orbits on
k-colourings is obtained by dividing by 6. However,

KT(M,G;1—k,0) = k?(k—1).

Tutte cycle index

Our polynomial is defined as follows:

ZTM,G) = 5  WEPACCIZ(G(A)).
AcZE/G

It has the following specialisations:
e Putu«—1,v« 1: we obtainZ(G;s « s + 1), by the Shift Theorem.

« Differentiate with respect teand putv« 1, s «t! (for alli). Since|G: G,
is the size of the orbit oA, we obtain the sum over all a#?E; moreover,
Z(G(A);s «t) =tIAl. So we obtain

tPE tA=PAU/E)PEPA —tPET (M X — U/t + 1,y — t 4+ 1).
AcZE

e Putv—1,5 « t' for all i: as in the preceding section, we obtain the equiv-
ariant Tutte polynomial (with the same substitution as in the previous case).
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Codes and matroids

In what follows,monomial column operationsn a matrix mean column permu-
tations and multiplying columns by non-zero scalars. We say two matrices are
rmc-equivalentf one can be transformed into the other by a combination of row
operations and monomial column operations.

Let A be ak x n matrix with rankk over a fieldF. There are two constructions
we can perform o:

1. LetC be the row space d&. ThenC is an[n,k] code overF (a subspace
of F" of dimensiork). Row operations simply change the basisGarhile
leaving it unaltered. Monomial column operations repl@dsy an “equiv-
alent” code (in the usual sense in coding theory — this is sometimes called
“monomial equivalent”). So matrices up to rmc-equivalence correspond to
linear codes up to equivalence.

2. LetE={1,...,n},and
S ={I CE: (¢ :iel)islinearly independent

Then(E,.#) is a matroid, indeed a vector matroid o¥efwe are given an
explicit representation). Now row operations ncorrespond to changing

the representation to an equivalent one (two representations being equiv-
alent if they differ by an invertible linear transformation of the underly-
ing space), while monomial column operations relabel the elements of the
matroid and the choice of representing vectors. So matrices up to rmc-
equivalence correspond to representations of matroids up to equivalence.

So there is a natural correspondence between linear codes and representable
matroids, up to the natural notion of equivalence for each.

Note that, if the matrixA has no zero columns (equivalently, if the matroid
has no loops), then another way of viewing the matroid is as a family of points in
the projective space R&— 1,F), since multiplying a point by a non-zero scalar
doesn’t change the projective point it spans. Moreover, if any two columns are
linearly independent (equivalently, if the matroid has no parallel elements), then
the points of projective space are all distinct. This occurs if and only if the dual
codeC* of C has minimum weight at least 3.

11



Matroid and code operations

We now consider some matroid operations and the corresponding operations on
codes.

1. Deletion of the elemene of the matroidM = (E,.#) givesM\e = (E \
{e},#"), where
I'={les:egll.

The corresponding operation on codeguscturing that is, deleting the
coordinatee from all codewords.

2. Contractionof the element of the matroidM = (E,.#) givesM/e= (E\
{e},#"), where
I'={I\{e}:ecle s}

The corresponding operation on codesi®rtening take all codewords
which have entry 0 in theth coordinate, and then delete this coordinate.

3. Dual M* of M is the matroid whose bases are the complements of the bases
of M. The corresponding operation on codes is the usual dual

Ct={veF":vw=0foralweC}.

Polynomials

Theweightof v e F", denoted wiv), is the number of non-zero coordinatesvof
Theweight enumeratoof C is the polynomial

n

WL(X,Y) = § XM Wvywiv) — aixn—iYi7
Y= 2, >

wherea, is the number of words @ of weighti. Itis a homogeneous polynomial
of degreen.
Recall that thélutte polynomiabf a matroidM is

T(Mxy) = 3 (x- 1) P (y- 1A,

AC

wherep is the rank function oM.
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Greene’s Theorershows that the weight enumerator®fis a specialisation
of the Tutte polynomial of the corresponding matrtid

_ un—k/y K X+(q-1)Y X
WC(X7Y) =Y (XY> T (M' X Y 7Y )

whereq = |F| andk is the dimension of.
Let us illustrate this by deducingacWilliams’ Theorem

W, (X,Y) = |—(1:|wc(x +(g—1)Y,X-Y).

SinceC+ corresponds tv*, andT (M*;x,y) = T(M;y, X), we have

_ X X+(g-1)Y
_vkiy _v\n—k SANANES YA
W, (X,Y) =Y5(X=Y) T(M,Y, Y, )

Onthe other hand, # = X+ (g—1)Y andV =X Y, thenU +(q—1)V =gX
andU —V =qY, so

EVEUY) =

gX X+(g-1)Y
[P ’

n—ki _\/\k
\VAR(V] V)T(M,qY, -

which reduces to the same as the other expression.

Singleton bound and MDS codes

The Singleton boundsserts that, i€ is a code of lengtim over an alphabet with
q s;(gmbols (not necessarily linear) a@dhas minimum distancd, then|C| <
qn— +l_

To prove this, write out all the codewords i@ x n array. Choose any—
d 4 1 columns of the array, and make a window which shows only those columns.
As we slide the window down the array, all the views through the window are
distinct; for, if two of them agreed, the corresponding codewords would agree in
at leastn — d + 1 positions, and would have distance at mist 1, contrary to
assumption. Since there are at mgstd*? different views, the result is proved.

A code is calledMDS (for maximum distance separablé it attains this
bound.

Suppose that is a linear code which is MDS. Thé&hhas dimensiok = n—
d+ 1. The argument shows that, given dngolumns, all possibl&-tuples occur
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in those positions in the code; so the correspon#iogordinates are independent
in the matroid. The converse is clear. Thus, a linear code is MDS if and only if
the corresponding matroid isiform matroid U}  (that is, the independent sets
are all subsets of cardinality at mddt

This result makes obvious a fact which is rather difficult to see directlg: if
is a linear MDS code, the@" is also MDS. For the dual of the uniform matroid
UnisjustU, .

Clearly the Tutte polynomial of the uniform matroid is

TUypixy) = ii (7)oc-ve +i_”+l (o~

By Greene’s Theorem, we can calculate explicitly the weight enumerator of a
linear MDS code.

If Cis alinear[n,k] MDS code over GFj), then the corresponding points of
PG(k—1,q) form anarc: that is, nok of them are contained in a hyperplane of the
projective space. Thus, the study of arcs in projective space, linear MDS codes,
and representations of uniform matroids are all the same subject.

Example LetC be a lineafn,3] MDS code over GFg). Then

n< g+1 ifqisodd,
—1qg+2 ifqiseven.

For C corresponds to a s&of n points in the projective plane R&q), no
three collinear. The upper bounpt 2 arises because, g € S, then the lines
joining it to the othem — 1 points in the set are all distinct, and there are exactly
g+ 1 lines through a point in the projective plane. If equality holds, then every
line meetsSin either 0 or 2 points. Take a poipt outsideS,; the lines throughy’
which meetSpartition it into sets of size 2, S& = g+ 2 must be even.

Hamming bound and perfect codes

There are other bounds for codes. One of the best-known ispthere-packing
boundor Hamming boundif C has lengtin and minimum distance at least 2 1
over an alphabet of sizg then

qn
>to()(@—1)
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This holds because, giveh> 2e+ 1, the triangle inequality shows that the
balls of radiuse centred at the codewords are pairwise disjoint. Each ball contains
5% o(})(g—1)" words, and there am words altogether.

Equality holds if and only if every word is distaetor less from a unique
codeword. A code with these properties is calpifect Tietavainen showed
that, if g is a prime power, then perfect codes have parameters from the following
list:

e e=1 (Hamming codes are examples);

e g=2,e=(n—1)/2 (binary repetition codes);
e g=2,e=3,n=23 (the binary Golay code);
e g=3,e=2,n=11 (the ternary Golay code).

It is known that, for a perfect code containing the all-zero word, the weight
enumerator is determined by the parameters. So we conclude with two questions:

e What properties distinguish matroids corresponding to linear perfect codes?
¢ Is the Tutte polynomial determined by the parameters (as for MDS codes)?

Finally, in connection with the general project, the following problem arises:
Given a groups of automorphisms of a codg construct a polynomial which can
be used to count orbits @ on words of given weight iC.

End note

Following the Study Group sessions, Bill Jackson has shown tha#,isf the
abelian groupC3’, then for any graph and groupG of automorphisms of",

the number of orbits o5 on nowhere-zeré-flows inT is given by a polynomial

in k= |A|, and has calculated the degree and leading term of this polynomial.
However, if we use other abelian grouppsthen the answer is not determined by
A alone, but depends on the structurefofWe hope to report more news about
this later.
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