Borcherds’ proof of the moonshine conjecture

pjc, after V. Nikulin

Abstract

These CSG notes contain a condensed account of a talk by V. Nikulin
in the London algebra Colloquium on 24 May 2001. None of the content
is original to me: it is provided simply as a service for those who missed
Nikulin's talks.

I have relied mainly on my notes from the lectures, So any errors are the
product of the note-taking and are not to be attributed to the content of the
lectures.

1 The monster

The monster, or Fischer-Griess groiyp(otherwise known as the Friendly Giant)
is the largest sporadic simple group. Its order is

808017 424794512875886459904 961710757 005 754 368 000 000 000
—2%6.320.59.76.112.13%.17.19.23.29-31-41-47-59- 71.

It was discovered by Fischer and Griess in 1973 and constructed by Griess in
1982.

The Monster has 194 conjugacy classes (a very small number for a simple
group of this size). The smallest faithful permutation representation has degree
roughly 16° (very large). The smallest faithful matrix representation @éras
degree 196 883; the second smallest, 21296 876.

Griess constructell as the automorphism of a commutative non-associative
algebra with identity on a real vector space of dimension 196 884 (on which it acts
as the sum of the trivial representation and the representation of degree 196 883).
This algebra also has avi-invariant inner product, since the representatioiviof
is self-dual. This algebra is known as tBeiess algebra



2 Modular functions

Themodular groupPSL(2,Z) is the group of linear fractional transformations
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fora,b,c,d € Z, ad—bc= 1. It can be regarded as a group of transformations of
the upper half-plangl (including the pointo).

A modular function fis a complex function on the upper half plane which is
meromorphidi.e. analytic except for a discrete set of poles) and satisfies
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for all transformations in PS12,Z).

Since the modular group contains in particular the transformatient +
1, we see in particular that modular function is periodic with period 1. By the
theory of Fourier series, it can be written in terms of the varigbtee?™™. (More
specifically, the Laurent series fdrin terms ofq is the Fourier series fof in
terms oft.) By abuse of notation we will sometimes writéq) instead off (1).

It can be shown that the modular functions form a field isomorphic to the field
of rational functions in one variable ov€r. A generator for this field is called a
main modular functionor Hauptmodul As function ofq, it has a pole of order 1
at the origin, and is said to bermalisedif its Laurent series begins

F@=q'+0-q°+-.

There is a unique normalised main modular function, usually denotgd lby
has the remarkable expression
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where
as(n) = 5 d°.
din



Its Fourier series begins
j(0) =q ' +196884+21493760°7 + - --.

More generally, iH is any subgroup of the modular group, a modular function
for H is a meromorphic function on the upper half-plane which is invariant under
the transformations ikl. If H hasgenus zerdthis means that the quotient Bf
by H is isomorphic to the Riemann sphere), then the field ehodular functions
again form a field isomorphic to the rational functions in one variable, and we can
define a normalised main modular function fbras before. It turns out that there
are about 370 subgroups of genus zero in the modular group; all satisfy

Mo(N) <H <To(N)*

for someN, wherelo(N) consists of all the modular transformations witk= 0
(modN), andlo(N)* is its normaliser in PS(2,Z).

3 Moonshine

John McKay pointed out the remarkable similarity of the numbers 196883 (the
smallest non-trivial character degreeldj and 196 884 (the coefficient gfin the
modular functionj). Looked at another way, the number 196 884 occurs in both
contexts, as the dimension of the Griess algebrdffand the coefficient of the
modular function.

Moreover, the coefficient ad? in j(q) is

21493760= 141968831 21296876

the sum of the three smallest character degrees.
These observations led to the first part of th@onshine conjectuie Conway
and Norton:

Conjecture 1: There is a gradeNl-module

V= Vn

m>—-1

with dim(Vim) = ¢(m) for all m> —1, where



But there were even more surprises in store. If this conjecture is true, then for
each elemerg € M, the elemeng acts onvy,, and has a character value

Xm(9) = Trac€d | Vim).

Then we can form the so-call@thompson seriesf g,

m

Tg@= > xm(@)a™

m>—1

Note that sinc&/_; affords the trivial character ang is the zero space, we have
To() =0 1 +0-¢"+- .

The second part of the moonshine conjecture states:

Conjecture 2: With V as in Conjecture 1, for every elemant M,

there is a genus-zero subgradwf the modular group such th&§(q)

is the normalised main modular function fidr

Note thatTy(q) = Ty-1(q) = Tg«(q) for all g,x € M, so that instead of one

assertion (and one genus-zero subgroup) for each element of the monster, we only
have one for each inverse pair of conjugacy classes. There are 171 inverse pairs
of conjugacy classes. So fewer than half of the genus-zero subgroups arise in this
connection. Itis not understood what distinguishes the ones which do appear from
the others.

4 Qutline of Borcherds’ proof

Borcherds’ proof, “Monstrous moonshine and monstrous Lie superalgekmas”,
vent. Math.102(1992), 405—-444, proceeds in five steps:

4.1. Construct &ertex operator algebra Va graded algebra affording the moon-
shine representations bi.

4.2. Construct a Lie algebid from V; thisM is ageneralised Kac—Moody Lie
algebra

4.3. Construct @enominator identityor M related to the coefficients gfq).

4.4. Constructwisted denominator identitiesmilarly related to the seriéig(q).
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4.5. Complete the proof.

Note that, although the modulé is constructed in the first step, the properties
needed to prove the moonshine conjecture are not established until the end of the
proof.

4.1 The vertex operator algebra

Vertex operator algebras arise in physics and are connected with conformal field
theory. It was Borcherds who first wrote down axioms for them.

A vertex operator algebra consists of a real vector spaeéh a unit or “vac-
uum” 1, a conformal vector or “central charge”with a “dimension”c € R, and
a binary operation denotad,,v for m € Z satisfying various axioms. Among
these are the fact thdtis graded, with X Vp andc € V»; a version of the Jacobi
identity; a “conformal vector” axiom stating

m+1\c
[Lm,Ln] = (M—n)Lmn+ < 3 >§5m,n

whereLm(V) = Wmy1 Vv (so that(lm : me Z) is a representation of thérasoro
algebrg, and a “conformal weight” axiom asserting thaf(v) = w1 v = wt(v)v
(so that the grading is by eigenspace& )t

How do vertex operators get into the act? They are defined by

Y(u,2) =5 um()z ™ € EndV)[z,Z 1]).

They can be used to simplify the axioms, e.g. we have

e Y(1,2 =1,

d
—Y(U,z) =Y(L_1u,2).
® dz ( ) ) ( 14, )
It follows from the axioms that, fou,v € V>,
e UxV=U1VE Vs defines a commutative, non-associative algebrexon

e (u,v)-1=u3Vve\Vydefines aninner product df.



Now, roughly speaking, the moonshine moddlér M is the vertex operator
algebra “generated” by the 196 884-dimensional Griess algebra, with the multi-
plication and inner product identified with those given above. However, a great
deal of ingenuity is required; it is not simply a case of applying an obvious func-
tor! There is one more, very small, complication: we have to shift the dimensions
down by 1, since the construction gives dify) = 1, dim(Vy) = 0.

Borcherds simply mentioned the existence of the module in a short paper “Ver-
tex algebras, Kac—Moody algebras, and the Monsterdc. National Academy
USA83(1986), 3068—-3071. The details are spelt out in the 520-page \dertdx
operator algebras and the Monstély Frenkel, Lepowski and Meurman, Aca-
demic Press 1988.

4.2 The monster Lie algebra

The Lie algebraM is graded by the lattice {h consisting of the se¥? with
quadratic form given bym,n)?> = —2mn That is,M has components!y, , for
m, n € Z satisfying dinfMy, ,)) < o for all m,n. It satisfies

e Mo = ll11®R=R?
e for (m,n) # (0,0), M(mn) = VmnasM-module, so that diftM y, ,)) = c(mn).

(Since we haven't yet proved Conjecturecim) here means di(Vyy); it will turn
out to be equal to the coefficient ' in j(q).)
Hence the non-zero componentd\biare

e M), With dimension 2;
e M(1 1) andM_y ), each with dimension 1;

e M(mp for all integer pointgm, n) strictly in the first or third quadrant, with

M(m,n) = Vinn.

The corresponding vectofm, n) # (0,0) are therootsof the Lie algebra. Let
A be the set of roots. We call a roegal or imaginaryaccording as its square is
positive or negative (using the quadratic fofm,n)? = —2mn). Thus, there are
two real roots and infinitely many imaginary ones. Tgesitive rootsare those
with m > 0.

The Weyl group Wis generated by reflection in the line perpendicular to the
real roots; it is cyclic of order 2 generated oy, n) — (n,m). TheWeyl vectotis
p = (—1,0); it satisfies(p,a) = —a?/2 for any simple real roat.
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The monster Lie algebrdl is ageneralised Kac—Moody Lie algebrdhat is
to say, it is generated by elemehits ey, fy for simple rootsu, satisfying:

e thehy commute and generate tiartan subalgebra M q);
o [Ny, ] = (o, 0')ey;

o [hy, for] = —(a,a’) fyr;

o [e, for] = Soarha;

o adey)l-2@a)%e, — 0 if a2 > 0, and similarly withf in place ofe.

4.3 The denominator identity

Any generalised Kac—Moody Lie algebra hadenominator identity This is an
identity in the integral semigroup ring of the root lattice (spanned by elene€nts
for all rootsa) given by

e [ (1—e)m™ = %(detw)w(e"is(r)e'),

achAy

where mulfa) is the dimension of the component indexedohyandr is a sum of
pairwise orthogonal simple imaginary roots.

In our case, write(™" = pMg", wherep = €19 andq = €%V, Thus, the
left-hand side is simply

-1 me~nyc(mn)
P (1—-p"g")=".
m[ln

Note that this can be rewritten as
pt Y c(mnp™gMk
mk>0, n

For the right-hand side, we have a simplification since no two imaginary sim-
ple roots are orthogonal (they lie strictly in the first quadrant), and so it reduces
justtoj(p) — j(a), wherej(p) = 3 mc(m)p™. So we have the identity

pt |'O| (1—pMgMm™ = j(p) — j(q).

Note that the usual situation in a GKM Lie algebra is that we know the right-
hand side and use the denominator identity to calculate the multiplicities of the
roots; here the procedure is reversed.
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4.4 Twisted versions

Taking the trace of an arbitrary elemenf\f we come to théwisted denominator
identities

p‘lexp<— k% cgk(mn)pm"q”"/k> zcg )p —ch )q"=Tg(p) —Ty(a),

wherecg(m) is the trace ofy onVp.
They are in fact denominator identities of suitable GKM Lie superalgebras.

4.5 Completion of the proof

The denominator identity can be shown to determine the nunafers Indeed,
it can be shown that(1), c(2), c(3) andc(5) determine all the other values.
It can be checked directly by computation that these four numbers agree with
the corresponding coefficients in the modular function. So in order to make the
identification, we have to show that the coefficientg (@f) are determined by the
same rule.

There are two techniques for doing this, both quite complicated. One uses
Hecke operatorsthe other usekie algebra homologynd Adams operators|
will not even attempt to sketch these!

Similarly the numbersg(m) occurring as coefficients in the Thompson series
are determined by the values for= 1,2,3,5, which can be read off from the
character table d¥1; indeed we have

X(V1) = X1+X2,

X(V2) = Xi1+X2+Xs,

X(V3) = 2X1+2X2+ X3+ Xa,

X(V5) = 4X1+5X2+3X3+ 2Xa+ X5+ X6+ X7

whereys, ..., X7 are the seven smallest character®/f
So, once the appropriate genus-zero subgroups of the modular group have
been identified, just 17& 4 numerical verifications complete the proof.



