
Borcherds’ proof of the moonshine conjecture

pjc, after V. Nikulin

Abstract

These CSG notes contain a condensed account of a talk by V. Nikulin
in the London algebra Colloquium on 24 May 2001. None of the content
is original to me: it is provided simply as a service for those who missed
Nikulin’s talks.

I have relied mainly on my notes from the lectures, So any errors are the
product of the note-taking and are not to be attributed to the content of the
lectures.

1 The monster

The monster, or Fischer-Griess group,M (otherwise known as the Friendly Giant)
is the largest sporadic simple group. Its order is

808017424794512875886459904961710757005754368000000000

= 246 ·320 ·59 ·76 ·112 ·133 ·17·19·23·29·31·41·47·59·71.

It was discovered by Fischer and Griess in 1973 and constructed by Griess in
1982.

The Monster has 194 conjugacy classes (a very small number for a simple
group of this size). The smallest faithful permutation representation has degree
roughly 1030 (very large). The smallest faithful matrix representation overC has
degree 196883; the second smallest, 21296876.

Griess constructedM as the automorphism of a commutative non-associative
algebra with identity on a real vector space of dimension 196884 (on which it acts
as the sum of the trivial representation and the representation of degree 196883).
This algebra also has anM-invariant inner product, since the representation ofM

is self-dual. This algebra is known as theGriess algebra.
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2 Modular functions

Themodular groupPSL(2,Z) is the group of linear fractional transformations

τ 7→ aτ +b
cτ +d

,

for a,b,c,d ∈ Z, ad−bc= 1. It can be regarded as a group of transformations of
the upper half-planeH (including the point∞).

A modular function fis a complex function on the upper half plane which is
meromorphic(i.e. analytic except for a discrete set of poles) and satisfies

f

(
aτ +b
cτ +d

)
= f (τ)

for all transformations in PSL(2,Z).
Since the modular group contains in particular the transformationτ 7→ τ +

1, we see in particular that modular function is periodic with period 1. By the
theory of Fourier series, it can be written in terms of the variableq = e2πiτ. (More
specifically, the Laurent series forf in terms ofq is the Fourier series forf in
terms ofτ.) By abuse of notation we will sometimes writef (q) instead off (τ).

It can be shown that the modular functions form a field isomorphic to the field
of rational functions in one variable overC. A generator for this field is called a
main modular function, or Hauptmodul. As function ofq, it has a pole of order 1
at the origin, and is said to benormalisedif its Laurent series begins

f (q) = q−1 +0·q0 + · · · .

There is a unique normalised main modular function, usually denoted byj. It
has the remarkable expression

j +744=

(
1+240∑

n≥0
σ3(n)qn

)3

q∏
n>0

(1−qn)24 ,

where
σ3(n) = ∑

d|n
d3.

2



Its Fourier series begins

j(q) = q−1 +196884q+21493760q2 + · · · .

More generally, ifH is any subgroup of the modular group, a modular function
for H is a meromorphic function on the upper half-plane which is invariant under
the transformations inH. If H hasgenus zero(this means that the quotient ofH
by H is isomorphic to the Riemann sphere), then the field ofH-modular functions
again form a field isomorphic to the rational functions in one variable, and we can
define a normalised main modular function forH as before. It turns out that there
are about 370 subgroups of genus zero in the modular group; all satisfy

Γ0(N)≤ H ≤ Γ0(N)+

for someN, whereΓ0(N) consists of all the modular transformations withc≡ 0
(modN), andΓ0(N)+ is its normaliser in PSL(2,Z).

3 Moonshine

John McKay pointed out the remarkable similarity of the numbers 196883 (the
smallest non-trivial character degree ofM) and 196884 (the coefficient ofq in the
modular functionj). Looked at another way, the number 196884 occurs in both
contexts, as the dimension of the Griess algebra forM and the coefficient of the
modular function.

Moreover, the coefficient ofq2 in j(q) is

21493760= 1+196883+21296876,

the sum of the three smallest character degrees.
These observations led to the first part of themoonshine conjectureof Conway

and Norton:

Conjecture 1: There is a gradedM-module

V =
⊕

m≥−1

Vm

with dim(Vm) = c(m) for all m≥−1, where

j(q) = ∑
m≥−1

c(m)qm.
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But there were even more surprises in store. If this conjecture is true, then for
each elementg∈M, the elementg acts onVm, and has a character value

χm(g) = Trace(g |Vm).

Then we can form the so-calledThompson seriesof g,

Tg(q) = ∑
m≥−1

χm(g)qm.

Note that sinceV−1 affords the trivial character andV0 is the zero space, we have

Tg(q) = q−1 +0·q0 + · · · .

The second part of the moonshine conjecture states:

Conjecture 2: With V as in Conjecture 1, for every elementg∈M,
there is a genus-zero subgroupH of the modular group such thatTg(q)
is the normalised main modular function forH.

Note thatTg(q) = Tg−1(q) = Tgx(q) for all g,x ∈ M, so that instead of one
assertion (and one genus-zero subgroup) for each element of the monster, we only
have one for each inverse pair of conjugacy classes. There are 171 inverse pairs
of conjugacy classes. So fewer than half of the genus-zero subgroups arise in this
connection. It is not understood what distinguishes the ones which do appear from
the others.

4 Outline of Borcherds’ proof

Borcherds’ proof, “Monstrous moonshine and monstrous Lie superalgebras”,In-
vent. Math.102(1992), 405–444, proceeds in five steps:

4.1. Construct avertex operator algebra V, a graded algebra affording the moon-
shine representations ofM.

4.2. Construct a Lie algebraM from V; this M is ageneralised Kac–Moody Lie
algebra.

4.3. Construct adenominator identityfor M related to the coefficients ofj(q).

4.4. Constructtwisted denominator identitiessimilarly related to the seriesTg(q).
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4.5. Complete the proof.

Note that, although the moduleV is constructed in the first step, the properties
needed to prove the moonshine conjecture are not established until the end of the
proof.

4.1 The vertex operator algebra

Vertex operator algebras arise in physics and are connected with conformal field
theory. It was Borcherds who first wrote down axioms for them.

A vertex operator algebra consists of a real vector spaceV with a unit or “vac-
uum” 1, a conformal vector or “central charge”w with a “dimension”c∈ R, and
a binary operation denotedu m v for m∈ Z satisfying various axioms. Among
these are the fact thatV is graded, with 1∈V0 andc∈V2; a version of the Jacobi
identity; a “conformal vector” axiom stating

[Lm,Ln] = (m−n)Lm+n +
(

m+1
3

)
c
2

δm,−n

whereLm(v) = wm+1 v (so that〈Lm : m∈ Z〉 is a representation of theVirasoro
algebra), and a “conformal weight” axiom asserting thatL0(v) = w1 v = wt(v)v
(so that the grading is by eigenspaces ofL0).

How do vertex operators get into the act? They are defined by

Y(u,z) = ∑
m

um(.)z−m−1 ∈ End(V)[[z,z−1]].

They can be used to simplify the axioms, e.g. we have

• Y(1,z) = 1,

• d
dz

Y(u,z) = Y(L−1u,z).

It follows from the axioms that, foru,v∈V2,

• u∗v = u1 v∈V2 defines a commutative, non-associative algebra onV2;

• 〈u,v〉 ·1 = u3 v∈V0 defines an inner product onV2.
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Now, roughly speaking, the moonshine moduleV forM is the vertex operator
algebra “generated” by the 196884-dimensional Griess algebra, with the multi-
plication and inner product identified with those given above. However, a great
deal of ingenuity is required; it is not simply a case of applying an obvious func-
tor! There is one more, very small, complication: we have to shift the dimensions
down by 1, since the construction gives dim(V0) = 1, dim(V1) = 0.

Borcherds simply mentioned the existence of the module in a short paper “Ver-
tex algebras, Kac–Moody algebras, and the Monster”,Proc. National Academy
USA83 (1986), 3068–3071. The details are spelt out in the 520-page bookVertex
operator algebras and the Monsterby Frenkel, Lepowski and Meurman, Aca-
demic Press 1988.

4.2 The monster Lie algebra

The Lie algebraM is graded by the lattice II1,1 consisting of the setZ2 with
quadratic form given by(m,n)2 = −2mn. That is,M has componentsM(m,n) for
m,n∈ Z satisfying dim(M(m,n))< ∞ for all m,n. It satisfies

• M(0,0)
∼= II1,1⊗R= R2,

• for (m,n) 6= (0,0), M(m,n)
∼=VmnasM-module, so that dim(M(m,n)) = c(mn).

(Since we haven’t yet proved Conjecture 1,c(m) here means dim(Vm); it will turn
out to be equal to the coefficient ofqm in j(q).)

Hence the non-zero components ofM are

• M(0,0), with dimension 2;

• M(1,−1) andM(−1,1), each with dimension 1;

• M(m,n) for all integer points(m,n) strictly in the first or third quadrant, with
M(m,n)

∼= Vmn.

The corresponding vectors(m,n) 6= (0,0) are therootsof the Lie algebra. Let
∆ be the set of roots. We call a rootreal or imaginaryaccording as its square is
positive or negative (using the quadratic form(m,n)2 = −2mn). Thus, there are
two real roots and infinitely many imaginary ones. Thepositive rootsare those
with m> 0.

The Weyl group Wis generated by reflection in the line perpendicular to the
real roots; it is cyclic of order 2 generated by(m,n) 7→ (n,m). TheWeyl vectoris
ρ = (−1,0); it satisfies(ρ,α) =−α2/2 for any simple real rootα.
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The monster Lie algebraM is ageneralised Kac–Moody Lie algebra. That is
to say, it is generated by elementshα, eα, fα for simple rootsα, satisfying:

• thehα commute and generate theCartan subalgebra M(0,0);

• [hα,eα′] = (α,α′)eα′;

• [hα, fα′] =−(α,α′) fα′;

• [eα, fα′] = δαα′hα;

• ad(eα)1−2(α,α′)α2
eα′ = 0 if α2 > 0, and similarly withf in place ofe.

4.3 The denominator identity

Any generalised Kac–Moody Lie algebra has adenominator identity. This is an
identity in the integral semigroup ring of the root lattice (spanned by elementseα

for all rootsα) given by

eρ ∏
α∈∆+

(1−eα)mult(α) = ∑
w∈W

(detw)w
(

eρ ∑
r

ε(r)er
)
,

where mult(α) is the dimension of the component indexed byα, andr is a sum of
pairwise orthogonal simple imaginary roots.

In our case, writee(m,n) = pmqn, wherep = e(1,0) andq = e(0,1). Thus, the
left-hand side is simply

p−1 ∏
m>0, n

(1− pmqn)c(mn).

Note that this can be rewritten as

p−1 ∑
m,k>0, n

c(mn)pmkqnk/k.

For the right-hand side, we have a simplification since no two imaginary sim-
ple roots are orthogonal (they lie strictly in the first quadrant), and so it reduces
just to j(p)− j(q), where j(p) = ∑mc(m)pm. So we have the identity

p−1 ∏
m>0, n

(1− pmqn)c(mn) = j(p)− j(q).

Note that the usual situation in a GKM Lie algebra is that we know the right-
hand side and use the denominator identity to calculate the multiplicities of the
roots; here the procedure is reversed.
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4.4 Twisted versions

Taking the trace of an arbitrary element ofM, we come to thetwisted denominator
identities:

p−1exp

(
− ∑

m,k>0, n

cgk(mn)pmkqnk/k

)
= ∑

m
cg(m)pm−∑

n
cg(n)qn = Tg(p)−Tg(q),

wherecg(m) is the trace ofg onVm.
They are in fact denominator identities of suitable GKM Lie superalgebras.

4.5 Completion of the proof

The denominator identity can be shown to determine the numbersc(m). Indeed,
it can be shown thatc(1), c(2), c(3) and c(5) determine all the other values.
It can be checked directly by computation that these four numbers agree with
the corresponding coefficients in the modular function. So in order to make the
identification, we have to show that the coefficients ofj(q) are determined by the
same rule.

There are two techniques for doing this, both quite complicated. One uses
Hecke operators, the other usesLie algebra homologyandAdams operators. I
will not even attempt to sketch these!

Similarly the numberscg(m) occurring as coefficients in the Thompson series
are determined by the values form = 1,2,3,5, which can be read off from the
character table ofM; indeed we have

χ(V1) = χ1 + χ2,

χ(V2) = χ1 + χ2 + χ3,

χ(V3) = 2χ1 +2χ2 + χ3 + χ4,

χ(V5) = 4χ1 +5χ2 +3χ3 +2χ4 + χ5 + χ6 + χ7,

whereχ1, . . . ,χ7 are the seven smallest characters ofM.
So, once the appropriate genus-zero subgroups of the modular group have

been identified, just 171×4 numerical verifications complete the proof.
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