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A permutation grougs on an infinite sefQ is said to beoligomorphicif the
number of orbits ofc on Q" is finite for all natural numbers. (By convention,
there is one orbit o°.

Let

e F(G) = number ofG-orbits onQ", the set of alh-tuples of elements d®;

e F,(G) = number ofG-orbits on(Q),, the set ofh-tuples of distinct elements
of Q;

e fn(G) = number ofG-orbits on(*), the set oh-element subsets @.

It is easy to see (and we do so in a moment) that the finiteness of one of the three
numbers ; (G), Fn(G) and f,(G) implies the finiteness of the others.
The purpose of these notes is to point out two things:

¢ the problem of determining the sequen¢gg), (F,) or (f,) include many
familiar combinatorial enumeration problems;

e these sequences behave much better than arbitrary sequences of natural
numbers, and it would be nice to know why.

Throughout the note$; is a permutation group on an infinite et

1 Basic results

First we see why the finiteness conditions on the three sequences are all equivalent.

Proposition 1.1 Let G be a permutation group d®. If any one of F(G), F,(G)
and ,(G) isfinite, then so are the others; and moreovel G), F,y(G) and ,,(G)
are finite for all m< n.



Proof The initial segment of lengtm of an n-tuple is anm-tuple; and if two
n-tuples lie in the same orbit, so do their initial segmentsFE) < Fy(G).

EachG-orbit on n-sets gives rise to between 1 andorbits onn-tuples of
distinct elements. S,(G) < F(G) < n! fy(G).

Finally we have
n

Fi (G) = 3 S(nm)Fn(G),
whereS(n, m) is theStirling number of the second kinithe number of partitions of
ann-set withmparts. For given ang-tuple(a, . .., an), we obtain an equivalence
relation on{1,...,n} by puttingi = j if and only if o; = a; then, if there aren
equivalence classes, we gatauple of distinct elements by taking the entrigs
indexed by the smallest elements in the equivalence classes in order. This process
respects the action d& and so yields the desired equation. Thusii{G) is
finite, so isky(G); and if Fy(G) is finite for allm < n, thenF; (G) is finite. =

The proof gives us the first part of the next result. A permutation gf&igp
n-transitiveif F,(G) = 1, that is, anyn-tuple of distinct points can be mapped to
any other by some element Gt

Proposition 1.2 (a) F(G) > F,-1(G) for n > 0, with equality if and only if G
iS n-transitive.

(b) fn(G) > f_1(G) for n > 0.

Proof (a) Asinthe preceding proposition, mapping eag¢hple of distinct points
to its initial segment of siza— 1 gives a surjective function from orbits @),
to orbits on(Q),_1. If equality holds, then for everyn — 1)-tuple, all possible
extensions to an-tuple lie in the same orbit. So the stabilisemof 1 points acts
transitively on the remaining points. It is easy to see that this implieansitivity.

(b) This is much less trivial, and | remark that a characterisation of the case of
equality is not known, despite a lot of effort. Two different proofs are known. |
will deduce the result from a Ramsey-type theorem which will be stated without
proof. There is also a proof using linear algebra.

Suppose that thgr— 1)-element subsets of a $@tare coloured with colours
Ci,...,Cr. Then thecolour schemef ann-setX is (ay,...,ar), whereg is the
number of subsets of which have colour;.

Proposition 1.3 Suppose that thén — 1)-subsets of an infinite (or sufficiently
large finite) setQ are coloured with r colours, all of which are used. Then at
least r colour schemes of n-sets occui



Proof of Proposition 1.2 Associate a colour with eacB-orbit on (n‘_)l). If
there aref,_1(G) = r orbits, then we have colours, so at leastcolour schemes
of n-sets occur. Bum-sets with different colour schemes lie in different orbits; so
fi(G)>r. =

Now let§*, § andf denote the sets of all sequen¢Es(G)), (Fn(G)), (fn(G))
respectively arising from oligomorphic permutation groups. Our main problem
can now be stated:

Problem 1 Characterise the se§s, § andf.

We will see shortly that each set has cardinality,2and thaf* c 3.
| will also speak of the§-sequence of a permutation gro@to mean the
sequencéFy(G)), and similarly for the other two types.

Here are two further properties depending on results from first-order logic.

Proposition 1.4 A sequence of positive integers is realised §$&) for some
oligomorphic group G if and only if every initial subsequence of it is so realised.
Similarly for R, (G) or fr(G).

Proof We can write first-order sentences saying that we have a group acting on
a set witha, orbits onn-tuples for alln. The sequence is realisable if and only if
this set is satisfiable. Thmompactness theoreat first-order logic asserts that a
set of sentences is satisfiable if and only if every finite subset is satisfiaible.

Proposition 1.5 A sequence of positive integers is realised §$@) for some
oligomorphic group G if and only if it is realised by such a group of countable
degree.

Proof This uses the other pillar of first-order model theory, the downwaésgdnheim—
Skolem theorem, asserting that if a set of sentences in a countable language is
satisfiable, it is satisfiable in a countable structune.

2 Afew examples

The obvious first example is the symmetric grouptdiconsisting of all permu-
tations), which we denote lyin these notes. Clearly we hai#g(S) = fr(S) =1
for all n. Thus we have

F(S = 3 Snm) - B,

3



where theBell number Bn) is the number of partitions of amset.

According to our earlier terminolog¥,(G) = 1 for all n means thaG is n-
transitive for alln; we say that the grou@ is highly transitiveif this holds. Anal-
ogously, we say thds is n-set-transitivef f,(G) = 1, and ishighly set-transitive
if this holds for alln. Clearly the symmetric group has both these properties. The
next few groups are highly set-transitive but not highly transitive.

The groupA is the group of order-preserving permutations of the ordered set
Q of rational numbers. A picture shows ti@ais n-set transitive: given any two-
tuples of distinct rationals, arrange them in increasing order, map the-fugie
to the second so as to preserve the order, and extend this to a piecewise-linear
order-preserving map on the whole@f Thus f,(A) = 1. The proof shows that
Fn(A) = nl, since each ordering of amtuple corresponds to a single orbit. From
this we see thak; (A) = 311 S(n,m)m!, the number of labellegireorders(or
preferential arrangementsf n points; these are orderings where we are allowed
to be indifferent about two elements.

The grouB is the group of permutations which preserve or reverse the ordered
setQ. Again we havef,(B) = 1 for all n. Moreover,/,(B) =n!/2 forn> 2. In
particular,B is 2-transitive but not 3-transitive.

The groupC is the group of permutations which preserve the circular order on
the set of complex roots of unity. (We could take the whole circle; using the roots
of unity gives us a countable set. A circular order is a ternary relation which holds
for three points, b, ¢ if they occur in anticlockwise order on the circle.) We have
fn(C) =1 andFR,(C) = (n—1)! for n > 2. In particularC is 2-transitive but not
3-transitive.

Combining these two ideas, the grobDps the group of permutations which
preserve or reverse the circular order on the set of roots of unity. TH{én =1
andFR,(D) = (n—1)!/2 forn > 3. SoD is 3-transitive but not 4-transitive.

The next theorem characterises these groups.

Theorem 2.1 A permutation group which is highly homogeneous but not highly
transitive preserves or reverses a linear or circular order. In particular, if its
degree is countable, then it is a subgroup of one of the grouBsD described
above. =

3 Characterisations and closure properties

In this section we give two reinterpretations of the condition of oligomorphy.



The first is taken from model theory in first-order logic. A first-order theory is
said to bellp-categoricalif it has a unique countable model up to isomorphism.
An n-typeover a first-order theoryl is a set ofn-variable formulae maximal
with respect to being consistent i it is realisedin a modelM of T if there
existay,...,ay € M such that the formulae in the type hold when these points are
satisfied for their variables (we say thai,...,a,) is arealising n-tuple Now
the following theorem is due to Engeler, Ryll-Nardzewaki and Svenonius.

Theorem 3.1 The theory of a countable first-order structure Mig-categorical

if and only if the automorphism group of M is oligomorphic. Moreover, if this
holds, then every n-type of the theory is realised in M, and the realising tuples for
the types are precisely the orbitsAfit(M) on M". =

Hence the sequencéB, (G)) for oligomorphic groupss are precisely the
sequences counting types over@g-categorical theory.

Proposition 3.2 A sequence of positive integers is realised g§$&) for some
oligomorphic group G if and only if every initial subsequence of it is so realised.
Similarly for R, (G) or fn(G).

Proof We can write first-order sentences saying that we have a group acting on
a set witha, orbits onn-tuples for alln. The sequence is realisable if and only if
this set is satisfiable. Theompactness theoreat first-order logic asserts that a
set of sentences is satisfiable if and only if every finite subset is satisfiable.

The second connection is with the theory developed bysEra For conve-
nience, we consideelational structuresonly; such a structure is a set carrying
specified relations of given arities. (For example, a graph, or a partial order, is a
structure over a language with a single binary relation.)

A relational structuréM is calledhomogeneoui$ every isomorphism between
finite substructures dfl can be extended to an automorphism\bf (Here, as
throughout this section, a substructure is alwaysdncedsubstructure, that is,
we take a subset dfl and all instances of relations whose arguments lie in the
subset.)

A class% of finite relational structures has ttemalgamation propertyf,
whenevelA, By, B, € ¥ and fj : A— B; are embeddings fdr= 1,2, there exists
C € ¥ and embeddingg; : Bi — C for i = 1,2 such thatf1g; = fogo. Informally,
this just says thaB, andB, can be “glued together” along a common substructure
A (but note that the glueing might identify some points outgijle
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Theageof a relational structur®l is the class of all finite relational structures
(over the same language) which can be embeddé&ti as induced substructures.
Frais® characterised the ages of countable homogeneous structures as follows:

Theorem 3.3 A class% of finite relational structures is the age of a countable
relational structure M if and only if the following conditions hold:

(a) ¥ is closed under isomorphism;
(b) ¥ is closed under taking induced substructures;
(c) € contains only countably many members up to isomorphism;

(d) ¢ has the amalgamation property.

Moreover, if these conditions hold, then M is unique up to isomorphiam.

A class satisfying (a)—(d) is calledrRais< class and the unique countable
structureM of which it is the age is it§raiss limit.
The connection with oligomorphic groups is as follows.

Proposition 3.4 Suppose that M is the Fise limit of a Frais€ class#. Then

G = Aut(M) is oligomorphic if and only if M contains only finitely many n-element
structures up to isomorphism for each natural number n. If this holds, th) f

is equal to the number of unlabelled n-element structurés (that is, structures
up to isomorphism), while JfG) is equal to the number of labelled n-element
structures in¢’ (that is, structures on the point sgt,... n}). =

A permutation groufss is adense subgroupf a permutation groupl (on the
same sef)) if G andH have the same orbits d@" for all n. (This arises from a
natural topology on the symmetric group which we do not require here.)

Proposition 3.5 Any permutation group on a countable §kts a dense subgroup
of the automorphism group of a homogeneous relational structure K2.ornm

Thus the problems of characterising the sequeriégss)) and (F,(G) for
oligomorphic groupss are precisely those of counting unlabelled and labelled
structures in Fri@s classes, assuming that the numbers are finite.

Here is a simple example. It is very easy to see that the class of finite graphs
is a Frass class. So there is a countable homogeneous graph containing all fi-
nite graphs: this is the famowandom graph or Rado graph Its automorphism
groupG has the property thdt,(G) andF,(G) are the numbers of unlabelled and
labelledn-vertex graphs.



We also need to look at a stronger condition. A cl&ssf finite relational
structures is said to satisfy tis¢rong amalgamation property, in the definition
of the amalgamation property, no extra identifications are made in the glueing;
that is, the images d8; andBsy insideC intersect precisely in the image Af We
say that a Fri@< class isstrongif it has the strong amalgamation property, and
transfer this term also to its Asze limit M, the automorphism group A(M) of
M, and any dense subgro@of Aut(M).

Proposition 3.6 The permutation group G of is strong if and only if the sub-
group of G fixing pointwise any finite set of points does not fix any additional
points. =

Let §5, §s andfs denote the sets of all sequencessin § or f respectively
which are realised by strong oligomorphic groups. Here are some simple facts
these classes.

Proposition 3.7 (a) We haves* C §.
(b) The se* is closed under pointwise multiplication.
(c) The sefsis closed under pointwise multiplication.

(d) We haveSs C fs.

Proof We'll see the proofs of (a) and (b) shortly; here are the others. For (c), let
%1 and%>, be strong Fris< classes realising two sequenceg.ihets = €1 A2
be the class whose members consist @t &tructure and &/>-structure imposed
on the same set. Thgsequence fof is the product of those fo¥; and %>;
and it is easily seen th&t satisfies strong amalgamation. (This fails without the
strong condition, since amalgamation of thig and %> structures might require
incompatible identifications.)

For (d), let.Z be the class of finite totally ordered sets. Then unlabelled
€ N Z-structures correspond in a natural way to labetédtructures. Moreover,
£ satisfies strong amalgamations

Parts (b) and (c) raise an obvious question:

Problem 2 Is § closed under pointwise multiplication?



Here’s a possible counterexample. The sequent@y,10,26,76,... (whose
nth term is the number of solutions gf = 1 in S,) belongs ta: the group pre-
serving a partition of2 into parts of size 2 realises this sequence. This group is
not strong: the stabiliser of a point fixes the other point in the same part. Is its
pointwise square i§?

We conclude by showing that the above classes are uncountable, and that there
is no upper bound on their growth rates.

Letag,ap,... be any sequence of positive integers. Consider this&€ralass
consisting of a set carrying; unary relationsay, binary relations, and so on,
where the relations are unrestricted except for the fact that they only hold for
tuples with all members distinct. Then|K| = m, all the relations of arity greater
thanm are trivial onX, so there are only finitely many structures Xnup to
isomorphism; but clearly this number is (much) greater than Moreover, the
structures we have constructed form ais#class. Takingy, € {0,1} for all n,
it is easy to see that the sequences are distinct; so ther€@aod them.

4 Generating functions and cycle index

We can represent sequences by generating functions. As suggested by the rela-
tionship with labelled and unlabelled counting problems, we usexpenential
generating function

Fe(2) = n;)@z”, Fi(2) = nZO 5 &

for sequences if andg*, and theordinary generating function

fe(z) = Zo fn(G)Z"

for sequences if

Note that, for examplefs(z) is an analytic function in some neighbourhood
of the origin if and only if the growth of f,(G)) is no faster than exponential. We
will see that this is not usually the case!

Familiar properties of Stirling numbers show that

F&(2) = Fe(ef—1).



For some of our earlier examples, we have

G Fs(2) fe(2)

S € 1/(1-2)
A 1/(1-z 1/(1-2
C 1-log(l-2 1/(1-2

In fact there is a more general generating function from which all these can be
obtained,; this is defined as follows.

¢ If gis a permutation on a finite set, we put

2(g) = _F!Sf‘(g),
1>

wheres are indeterminates argj(g) is the number of cycles of lengthin
the cycle decomposition @f.

¢ If Gis afinite permutation group, we put

2(6) = r;ggcz@.

This is the usual cycle index @.

o If Gis afinite or oligomorphic permutation group, thmdified cycle index
of G is defined by N
Z(G) = gZ(G[A]),

whereAruns over a set of representative$brbits on finite sets, an@[A]
denotes the finite permutation group induced?doy its setwise stabiliser.

The name “modified cycle index” is used becauseGifs a finite permutation
group, then N
Z(G)=2(G;s «—s+1),

the right-hand side meaning that each variables replaced bys + 1. But for
infinite permutation groups, we get something new.



Exercise Calculate the modified cycle index for each of the gro8p4, C.

The univariate generating functions are specialisatio 6 as follows:
o fs(2) =Z(G;s — 2);
o Fo(2) =Z2(G;s; 2,5 « O fori > 1).

5 Direct products

Let G; andG; be permutation groups on sé€ds andQ, respectively.

The direct product of51 x G, of G; and G, has two natural actions as a
permutation group. Each is oligomorphiddf andG; are.

The first is the so-callethtransitive action on the disjoint union of the sets
Q; andQ,. An ordered paifg;,g2) acts agy; on Q; and ass; on Q,. Itis easy
to see that we have

n n

Fa(GixGo) =Y (| F(GFni(G2),  f(G1xG2) = fi(G1) fni(G2)-
(©1xC2)= 3 () R(CURA(C).  (GrxCa)= 5 (GG

This can be stated more concisely in terms of generating functions as

FG1XGZ<Z) = F(31<Z)F(32(Z)a fG1XG2(Z) = fGl<Z) sz(Z)-

Indeed, we have that . .
Z(Gy x Gp) = Z(G1)Z(Gy),

from which the other results follow.
So the clas$ is closed undeconvolution and the clas§ underexponential
convolution

The second natural action of the direct product isgregluct actionon Q4 x
Q», in which the factors act coordinatewise: that is,

(0, 02)(9%) = (0, 0?).

It is possible to describe the modified cycle index@fx G, in this action, but
the description is not straightforward. See [2].

We mention just one example herdy(A x A) (with the product action) is
equal to the number of “incidence matrices”, or zero-one matrices with exactly
ones and no row or column consisting entirely of zeros. See [3].
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Using the product action of the direct product, we can prove part (b) of Propo-
sition 3.7. LetG; andG; be permutation groups whogé-sequences ag ands,
respectively. TheiG; x Gy, in the product action, realises the pointwise product
of s andsy,. =

6 Wreath products

Let G; andG; be permutation groups on séds andQ, respectively.

The wreath product GWr G, of G and G, is defined as abstract group as
follows. Thebase group Bs a Cartesian product ¢®,| copies ofG; (this can be
regarded as the set of functions fr@ to G; with pointwise multiplication. The
top group Tis a copy ofG,, acting onB by permuting the factors of the Cartesian
product as it permutes the elementsf (that is, acting on the arguments of
the functions). The semidirect product®Bty T (with this action) is the wreath
product. Note that the action &; on Q; plays no role in this definition.

Like the direct product, the wreath product has two natural actions as a per-
mutation group. The first is thienprimitive action which is oligomorphic ifG1
andG, are. We take to beQ; x Qo, regarded as a set of copies@{ indexed
by Q,. Now the base group acts én a given factor of the Cartesian product acts
on the corresponding copy 6f1. The top group acts by permuting the copies of
Q1 (by acting on the index sé€5).

For the cycle index in this action, we have the substitution rule

Z(GiWrGy) = Z(Ggp;§ « Z(Gy,sj — sj) — 1).
This gives the formulae for thg andf-sequences:
e Fowre,(2) =Fe,(Fs,(2) — 1),
o fowie,(2) = Z(Gas « fe,(Z) — ).

We see thaf is closed under substitution of generating functions (after mak-
ing the constant term of the substituted function zero).

The wreath product allows us to prove part (a) of Proposition 3.7.G.bé
a permutation group whosg'-sequence is, that is, the number of orbits d
on n-tuples iss,. Now consider the grouBWr G in its imprimitive action. Each
n-tuple of points in the domain d& (that is, of blocks of imprimitivity for the
wreath product) can be lifted to amtuple of distinct points in the domain of
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SWr G; moreover, twan-tuples are in the san@-orbit if and only if their lifts are
in the sameSWr G-orbit.
This can also be seen from looking at the substitution rule. We see that

Fomrc(z) = Fe(€f— 1),

and the right-hand side [§;(z), by our observation on Stirling numbersa

We see, however, that tHesequence of a wreath product is not obtainable
from thef-sequences of its factors alone; we need the modified cycle index of the
top group.

The other action of the wreath product is h@ver actionon the set of func-
tions fromQ, to Q1, where the base group acts coordinatewise, and the top group
permutes the argument of the functions. This group is oligomorpki¢ i$ oligo-
morphic andQ; is finite. This case is more complicated and little is known other
than the formula .

Fi(G) =Z(Gzis « Fa(G1)')

(see [2]).

7 Primitive groups

One of the remarkable discoveries of Macpherson is thfgsmguence of a prim-
itive group either is constant or grows at least exponentially. His result, as refined
by Merola, is as follows:

Theorem 7.1 There is an absolute constant ¢ with the property that, if G is a
primitive oligomorphic group which is not highly set-transitive, then

(@) (Macpherson [4]) §(G) > c"/p(n) for some polynomial p;

(b) (Merola [6]) Fn(G) > c™nl/p(n) for some polynomial p. m

Macpherson proved part (a) with= v/2 = 1.149...; Merola, in addition
to proving (b), improved the constant to324.... The proofs are rather long!
Merola’s Theorem throws some light on a problem mentioned earlier. The se-
guence whoseth term is the square of the number of involutionsSigrows as
n! times a subexponential function; so if there is a gr@upealising this as the
$-sequence, the@ must be imprimitive.
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This theorem shows that, at least for primitive groups, exponential growth
is the slowest we can have, and it is important to understand the structures for
which the growth of thg-sequence is no faster than exponential. Empirically,
these structures seem to arise from two sources: ordered sets and trees; and their
asymptotic behaviour is very well-behaved. Indeed, in all cases which have been
examined, the “exponential constant” imw( fn(G))¥" exists. (This limit is in-
finite if the growth is faster than exponential.)

Problem 3 Is it true that lim,_.«( f,(G))Y/" exists for any primitive oligomorphic
group G? If so, what are the possible values of the exponential constant? In
particular, what is the smallest value greater than 1, and what is the smallest limit
point (if any)?

We continue this section with some examples.

Example A tournaments a directed graph in which each pair of distinct vertices
is joined by a directed edge in just one direction. A tournament is said to be a
local order if it does not contain a 4-point subtournament consisting of a vertex
dominating or dominated by a 3-cycle. The finite local orders form adsBra
class, whose Fiag limit T is more easily described as follows. Take a countable
dense set of points on the unit circle containing no antipodal pair of points. (If
we consider the set of all complex roots of unity, and randomly choose one out of
each pai{w,—w}, then the resulting set is dense with probability 1.) Now put
a directed edge from to y if the shorter arc fronx to y is in the anticlockwise
direction. The result is the universal homogeneous local ofdewWe see that
Aut(T) is 2-set transitive, hence primitive; arfigl Aut(T)) is equal to the number
of isomorphism types ai-vertex local order, which is asymptoticall)2/n. (In
fact, by taking the larger grou@ of permutations which preserve or reverse the
edge directions, we obtaify(G) ~ 2"2/n, the slowest known growth rate for a
primitive but not highly set-transitive group.

This can be generalised as follows. Take any positive integeR, and take
a countable dense set of points on the unit circle with the property that out of any
collection ofr equally-spaced points we take at most one. Now defibmary
relationsRy, Ry, . ..,R-—1 by the rule thatx,y) € R if and only if the angle (in the
positive sense) fromtoy lies in the rangd2inz/r,2(i+1)x/r). If r is odd, then
Rir—1)/2 is a symmetric relation, and defines an undirected graph; the others define
| (r —1)/2] converse pairs of directed graphs. This structure is homogeneous, and
the number of orbits on-sets of its automorphism group satisfigéG) ~ r"—1/n.

13



This shows that every positive integer occurs as the exponential constant in the
growth rate of( f,(G)) for some primitive grougs.

Example The next example is not primitive but it is closely related to the pre-
ceding one and we will refer to it again later. This group is the stabiliser of a point
in the preceding one.

Take the rational numbers and colour them wittolours so that every colour
class is dense. The structure consists of the total order anddbleur classes.
It is unique up to isomorphism and is homogeneous; the automorphism Group
satisfiesf,(G) =r". Indeed, each orbit d& on n-sets is parametrised by a word
of lengthn in an alphabet of symbols, where the wora} - - - a, indexes the orbit
onn-tuples whoséth element (in increasing order) has colaufori=1,...,n.

Example A boron treeis a finite tree in which every vertex has valency 1 or 3.
(Boron trees describe the analogue of hydrocarbons in a boron-based chemistry.)
On the set of leaves of a boron tree, we can define a 4-place relation as follows.
Given four pointsa, b, c,d, there is a unique partition into two sets of size 2 such
that the paths joining vertices in the same set do not intersect. R(idtéd; c,d)

if this partition isab | cd. (See Figure 1). The relational structures obtained in
this way form a Fris$ class; the boron tree is uniquely recoverable from the
quaternary relation on the set of leaves. Thus; ifs the automorphism group

of the Fras< limit, then f,(G) is equal to the number of boron trees with-22
vertices, which is asymptoticalkkn—>/2c", wherec = 2.483.... . Note in passing

that this group is 3-transitive but not 4-transitive, is 5-set transitive, andghas

f; = 2. (All these assertions can be proved by drawing diagrams like Figure 1.)

b d

Figure 1. A boron tree

There are many variations on this example, quite a few of which have expo-
nential growth of( fn(G)).
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8 A graded algebra

Further light on thg-sequences comes from the fact that there is a graded algebra
whose Hilbert series is thfeseries of any given oligomorphic group.

LetF be any field, and2 an infinite set. LeV,, denote the vector space of all
functions from(%2) to F (with pointwise addition and scalar multiplication), and

A=PWn.

n>0

We define a multiplication oA as follows. Forf € Vi, g € V,,, andX an(m+n)-
element subset d?, we set

(fX)=" 5> F(Y)gX\Y).
YCX,[Y|=m

Extend by linearity to the whole &&. This makesA into a commutative and as-
sociative graded algebra. (This is sometimes referred to asdlueed incidence
algebraof the poset of finite subsets Of)
Now letG be a permutation group dd, and letV® be the subspace @-fixed
functions inV,, and
A® =PV

n>0

A function is fixed byG if and only if it is constant on the orbits @. So, ifGis
oligomorphic, then
dim(V.®) = f,(G).

That is, the generating functiofgs(2) = 3 ,>0 fn(G)2" is theHilbert seriesof AC.
The algebraA® may contain divisors of zero. For example,

e if the characteristic oF is p > 0, thenfP = 0 for any f € V,©.

e if G has a finite orbiX on Q with, say,|X| =n, andf €V, is the character-
istic function of {X}, thenf ¢ VE andf2 = 0.

From now on we will make two blanket assumptions to exclude these cases:

e we assume that the characteristiclofs zero, and where necessary, that
F=_C,;

e we assume thdb has no finite orbits oQ.
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Conjecture 1 Under the above assumptior is an integral domain.

Let e denote the constant element\Gfwith value 1. Then of coursec VlG
for any groupG. It is known thate is not a zero-divisor. (This is essentially the
content of the linear algebra proof of the inequalify1(G) > f,(G) referred to
earlier: conversely, if we know thatis not a zero-divisor, then multiplication ley

is a monomorphism frong to V& ;, so the inequality follows.)

Conjecture 2 Under the above assumptiorss prime inA® (so thatA®/(e) is
an integral domain.

Conjecture 2 implies Conjecture 1. Forfig = 0 with f,g non-zero, we can
assume that andg are homogeneous of smallest possible degree. €dandes
fg, so (w.l.o.g.)edividesf, sayf =ef'. Thenef'g=0, sof’g= 0, contradicting
the assumed minimality.

We say thaiG is entire if A® is an integral domain anstrongly entireif e
is prime inA®. These concepts would have the following implications for the
growth of thef-sequence:

e If Gis entire, then
fnen(G) > fm(G) + fn(G) — 1
forallmn > 0;

e If Gis strongly entire, then

fmini1(G) — fmin(G) > (fmia(G) — fm(G)) + (fa12(G) — fn(G)) — 1
forallmn> 0.

In other words, ifG is entire, then thég-sequence is almost concave, anéifs
strongly entire, then its first difference sequence is almost concave. The proof
uses a little elementary dimension theory from algebraic geometry: here we do
need the field to be algebraically closed. See [1].

It is also possible to show that a supergroup or a transitive extension of a
(strongly) entire group is (strongly) entire.

Now we turn to some examples.

Highly set-transitive groups If G =S or indeed ifG is highly set-transitive,
thenA® = C|[x], the polynomial ring in one variable (generated by the elergent
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Direct products Let G; be oligomorphic orQ; for i = 1,2, and let the direct
productG; x G, have its intransitive action o2; x Q. Then

AG]_XGz (o] AGl ®(C AGZ.

In particular, ifG = 3", the direct product oh copies ofS (acting withn orbits),
thenA® = C[xy, ..., %], the polynomial ring im homogeneous generators of de-
gree 1.

Wreath products With G; and G, as above, we take the wreath prodGct

G1 Wr Gy in its imprimitive action. In general we cannot determine the structure
of A®. However, ifG; = SandG, is a finite permutation group of degre®
thenAC is isomorphic to the ring of invariants of the finite permutation gr@ip

in the polynomial ringC[xy,...,%,]. In particular, ifG = SWrS,, thenAC is a
polynomial ring inn homogeneous generators of degregs 1., n.

Fraise classes Suppose that the Fis® class¢ has a notion of “connected-
ness” satisfying a few simple properties. (The first of these properties is that
every object i’ should be uniquely expressible as a “sum” of connected ones.)
Suppose that there aag connected structures anvertices in% (up to isomor-
phism). Then it is possible to show that,Gfis the automorphism group of the
Fraiss limit of ¢, thenAC is a polynomial ring ire, homogeneous generators of
degreen for all n: the generators are indexed by the connected structuf€s in

In this situation, the sequenc¢é,(G)) and the sequenca, determine each
other. One compact way of describing the relationship is the identity

fa(2) =[] (1-2)7%.

n>1
This result has a number of special cases.

e LetG=HWrSfor some oligomorphic groud. The Fréss classt’(G) for
G consists of all disjoint unions of structures in theBga classs’(H) for
H; if we call a%(G)-structure “connected” if it is a single’(H )-structure,
the axioms are satisfied. & is a polynomial algebra witti,(H) homo-
geneous generators of degrefr all n, and is independent of the structure
of A1, The equation

fhwrs(2) = |‘L(1— 2"~ fn(H)

n>
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is a translation of the equation
fiws(2) = Z(S's < fu(Z) - 1)

e The class of all finite graphs is a Fs& class; the Fiias limit is theRado
graph, or countable random graph.RThus, if G = Aut(R), thenA® is a
polynomial algebra; the number of generators of degréeequal to the
number of connected graphs nwertices.

e Consider the second example of the previous section, wdsethe au-
tomorphism group of) partitioned intor dense subsets, and the orbits on
n-sets are indexed by words of lengtlin an alphabet of symbols. In this
caseAC is theshuffle algebrathe product of two words is equal to the sum
of all words obtained by “shuffling” the factors together. So, for example,

aab- ab = 6aaabb+ 3aabab+ abaab

It can be shown that thieyndon wordsthose which are lexicographically
smaller than all their cyclic shifts, play the role of connected structures, so
the shuffle algebra is polynomial (a result of Radford [7]).

| conclude with one puzzle. L& be the automorphism group of the random
graphR. Then, as we sawA® is a polynomial algebra, and hence an integral
domain. Now there is a transitive extensior@fdefined as follows.

A two-graph.7 on a sefQ is a collection of 3-element subsets®@fwith the
property that any 4-subset &f contains an even number of members%f Let
Q' be the vertex set dR, andQ = Q' U {»}, wherew is a new symbol. Let”
be the set of 3-subsets &f which contain an odd number of edges of the graph
consisting oRwith isolated vertexe. ThenG* = Aut(.7) is a transitive extension
of G. SinceAC is an integral domain, so &° . Is it a polynomial algebra?

The two-graph7 is homogeneous, st,(G*) is equal to the number of-
vertex two-graphs. Thus, if the algebra is polynomial, then the nuraberf
generators of degraesatisfies

Z) fr(G") 2" = |‘|1<1— 2 ~an,

Said otherwise, if there were a notion of connectedness for two-graphs with the
required properties, then the required number of generators of degreeld
be equal to the number of connected objectmorertices, and we might hope
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to construct the generators from these objects. Unfortunately, there is no such
notion.

However, Mallows and Sloane [5] showed that the number of two-graphs on
n points is equal to the number effen graphggraphs with all vertices of even
valency) onn vertices. There is an obvious notion of connectedness for these,
the connected objects being tkelerian graphs Is there a way of constructing
generators from Eulerian graphs?

There is no natural bijection between two-graphs and even graphs: the rela-
tionship between these two classes is one of “duality” rather than “isomorphism”.
So the structure oA® is unknown, despite these tantalising hints!
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