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A permutation groupG on an infinite setΩ is said to beoligomorphicif the
number of orbits ofG on Ωn is finite for all natural numbersn. (By convention,
there is one orbit onΩ0.

Let

• F∗n (G) = number ofG-orbits onΩn, the set of alln-tuples of elements ofΩ;

• Fn(G) = number ofG-orbits on(Ω)n, the set ofn-tuples of distinct elements
of Ω;

• fn(G) = number ofG-orbits on
(Ω

n

)
, the set ofn-element subsets ofΩ.

It is easy to see (and we do so in a moment) that the finiteness of one of the three
numbersF∗n (G), Fn(G) and fn(G) implies the finiteness of the others.

The purpose of these notes is to point out two things:

• the problem of determining the sequences(F∗n ), (Fn) or ( fn) include many
familiar combinatorial enumeration problems;

• these sequences behave much better than arbitrary sequences of natural
numbers, and it would be nice to know why.

Throughout the notes,G is a permutation group on an infinite setΩ.

1 Basic results

First we see why the finiteness conditions on the three sequences are all equivalent.

Proposition 1.1 Let G be a permutation group onΩ. If any one of F∗n (G), Fn(G)
and fn(G) is finite, then so are the others; and moreover, F∗m(G), Fm(G) and fm(G)
are finite for all m≤ n.
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Proof The initial segment of lengthm of an n-tuple is anm-tuple; and if two
n-tuples lie in the same orbit, so do their initial segments. SoFm(G)≤ Fn(G).

EachG-orbit on n-sets gives rise to between 1 andn! orbits onn-tuples of
distinct elements. Sofn(G)≤ Fn(G)≤ n! fn(G).

Finally we have

F∗n (G) =
n

∑
k=1

S(n,m)Fm(G),

whereS(n,m) is theStirling number of the second kind, the number of partitions of
ann-set withmparts. For given anyn-tuple(α1, . . . ,αn), we obtain an equivalence
relation on{1, . . . ,n} by puttingi ≡ j if and only if αi = α j ; then, if there arem
equivalence classes, we get am-tuple of distinct elements by taking the entriesαi

indexed by the smallest elements in the equivalence classes in order. This process
respects the action ofG and so yields the desired equation. Thus, ifF∗n (G) is
finite, so isFn(G); and ifFm(G) is finite for allm≤ n, thenF∗n (G) is finite.

The proof gives us the first part of the next result. A permutation groupG is
n-transitiveif Fn(G) = 1, that is, anyn-tuple of distinct points can be mapped to
any other by some element ofG.

Proposition 1.2 (a) Fn(G)≥ Fn−1(G) for n > 0, with equality if and only if G
is n-transitive.

(b) fn(G)≥ fn−1(G) for n > 0.

Proof (a) As in the preceding proposition, mapping eachn-tuple of distinct points
to its initial segment of sizen−1 gives a surjective function from orbits on(Ω)n

to orbits on(Ω)n−1. If equality holds, then for every(n−1)-tuple, all possible
extensions to ann-tuple lie in the same orbit. So the stabiliser ofn−1 points acts
transitively on the remaining points. It is easy to see that this impliesn-transitivity.

(b) This is much less trivial, and I remark that a characterisation of the case of
equality is not known, despite a lot of effort. Two different proofs are known. I
will deduce the result from a Ramsey-type theorem which will be stated without
proof. There is also a proof using linear algebra.

Suppose that the(n−1)-element subsets of a setΩ are coloured withr colours
c1, . . . ,cr . Then thecolour schemeof an n-setX is (a1, . . . ,ar), whereai is the
number of subsets ofX which have colourci .

Proposition 1.3 Suppose that the(n− 1)-subsets of an infinite (or sufficiently
large finite) setΩ are coloured with r colours, all of which are used. Then at
least r colour schemes of n-sets occur.
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Proof of Proposition 1.2 Associate a colour with eachG-orbit on
( Ω

n−1

)
. If

there arefn−1(G) = r orbits, then we haver colours, so at leastr colour schemes
of n-sets occur. Butn-sets with different colour schemes lie in different orbits; so
fn(G)≥ r.

Now letF∗, F andf denote the sets of all sequences(F∗n (G)), (Fn(G)), ( fn(G))
respectively arising from oligomorphic permutation groups. Our main problem
can now be stated:

Problem 1 Characterise the setsF∗, F andf.

We will see shortly that each set has cardinality 2ℵ0, and thatF∗ ⊂ F.
I will also speak of theF-sequence of a permutation groupG to mean the

sequence(Fn(G)), and similarly for the other two types.

Here are two further properties depending on results from first-order logic.

Proposition 1.4 A sequence of positive integers is realised as F∗
n (G) for some

oligomorphic group G if and only if every initial subsequence of it is so realised.
Similarly for Fn(G) or fn(G).

Proof We can write first-order sentences saying that we have a group acting on
a set withan orbits onn-tuples for alln. The sequence is realisable if and only if
this set is satisfiable. Thecompactness theoremof first-order logic asserts that a
set of sentences is satisfiable if and only if every finite subset is satisfiable.

Proposition 1.5 A sequence of positive integers is realised as F∗
n (G) for some

oligomorphic group G if and only if it is realised by such a group of countable
degree.

Proof This uses the other pillar of first-order model theory, the downward Löwenheim–
Skolem theorem, asserting that if a set of sentences in a countable language is
satisfiable, it is satisfiable in a countable structure.

2 A few examples

The obvious first example is the symmetric group onΩ (consisting of all permu-
tations), which we denote byS in these notes. Clearly we haveFn(S) = fn(S) = 1
for all n. Thus we have

F∗(n)(S) =
n

∑
m=1

S(n,m) = B(n),
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where theBell number B(n) is the number of partitions of ann-set.
According to our earlier terminology,Fn(G) = 1 for all n means thatG is n-

transitive for alln; we say that the groupG is highly transitiveif this holds. Anal-
ogously, we say thatG is n-set-transitiveif fn(G) = 1, and ishighly set-transitive
if this holds for alln. Clearly the symmetric group has both these properties. The
next few groups are highly set-transitive but not highly transitive.

The groupA is the group of order-preserving permutations of the ordered set
Q of rational numbers. A picture shows thatG is n-set transitive: given any twon-
tuples of distinct rationals, arrange them in increasing order, map the firstn-tuple
to the second so as to preserve the order, and extend this to a piecewise-linear
order-preserving map on the whole ofQ. Thus fn(A) = 1. The proof shows that
Fn(A) = n!, since each ordering of ann-tuple corresponds to a single orbit. From
this we see thatF∗n (A) = ∑n

m=1S(n,m)m!, the number of labelledpreorders(or
preferential arrangementsof n points; these are orderings where we are allowed
to be indifferent about two elements.

The groupB is the group of permutations which preserve or reverse the ordered
setQ. Again we havefn(B) = 1 for all n. Moreover,Fn(B) = n!/2 for n≥ 2. In
particular,B is 2-transitive but not 3-transitive.

The groupC is the group of permutations which preserve the circular order on
the set of complex roots of unity. (We could take the whole circle; using the roots
of unity gives us a countable set. A circular order is a ternary relation which holds
for three pointsa,b,c if they occur in anticlockwise order on the circle.) We have
fn(C) = 1 andFn(C) = (n−1)! for n≥ 2. In particular,C is 2-transitive but not
3-transitive.

Combining these two ideas, the groupD is the group of permutations which
preserve or reverse the circular order on the set of roots of unity. Thenfn(D) = 1
andFn(D) = (n−1)!/2 for n≥ 3. SoD is 3-transitive but not 4-transitive.

The next theorem characterises these groups.

Theorem 2.1 A permutation group which is highly homogeneous but not highly
transitive preserves or reverses a linear or circular order. In particular, if its
degree is countable, then it is a subgroup of one of the groups A,B,C,D described
above.

3 Characterisations and closure properties

In this section we give two reinterpretations of the condition of oligomorphy.
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The first is taken from model theory in first-order logic. A first-order theory is
said to beℵ0-categoricalif it has a unique countable model up to isomorphism.
An n-typeover a first-order theoryT is a set ofn-variable formulae maximal
with respect to being consistent inT; it is realised in a modelM of T if there
exista1, . . . ,an ∈M such that the formulae in the type hold when these points are
satisfied for their variables (we say that(a1, . . . ,an) is a realising n-tuple. Now
the following theorem is due to Engeler, Ryll-Nardzewaki and Svenonius.

Theorem 3.1 The theory of a countable first-order structure M isℵ0-categorical
if and only if the automorphism group of M is oligomorphic. Moreover, if this
holds, then every n-type of the theory is realised in M, and the realising tuples for
the types are precisely the orbits ofAut(M) on Mn.

Hence the sequences(F∗n (G)) for oligomorphic groupsG are precisely the
sequences counting types over anℵ0-categorical theory.

Proposition 3.2 A sequence of positive integers is realised as F∗
n (G) for some

oligomorphic group G if and only if every initial subsequence of it is so realised.
Similarly for Fn(G) or fn(G).

Proof We can write first-order sentences saying that we have a group acting on
a set withan orbits onn-tuples for alln. The sequence is realisable if and only if
this set is satisfiable. Thecompactness theoremof first-order logic asserts that a
set of sentences is satisfiable if and only if every finite subset is satisfiable.

The second connection is with the theory developed by Fraı̈sśe. For conve-
nience, we considerrelational structuresonly; such a structure is a set carrying
specified relations of given arities. (For example, a graph, or a partial order, is a
structure over a language with a single binary relation.)

A relational structureM is calledhomogeneousif every isomorphism between
finite substructures ofM can be extended to an automorphism ofM. (Here, as
throughout this section, a substructure is always aninducedsubstructure, that is,
we take a subset ofM and all instances of relations whose arguments lie in the
subset.)

A classC of finite relational structures has theamalgamation propertyif,
wheneverA,B1,B2 ∈ C and fi : A→ Bi are embeddings fori = 1,2, there exists
C∈ C and embeddingsgi : Bi →C for i = 1,2 such thatf1g1 = f2g2. Informally,
this just says thatB1 andB2 can be “glued together” along a common substructure
A (but note that the glueing might identify some points outsideA).
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Theageof a relational structureM is the class of all finite relational structures
(over the same language) which can be embedded inM as induced substructures.
Fräısśe characterised the ages of countable homogeneous structures as follows:

Theorem 3.3 A classC of finite relational structures is the age of a countable
relational structure M if and only if the following conditions hold:

(a) C is closed under isomorphism;

(b) C is closed under taking induced substructures;

(c) C contains only countably many members up to isomorphism;

(d) C has the amalgamation property.

Moreover, if these conditions hold, then M is unique up to isomorphism.

A class satisfying (a)–(d) is called aFraı̈sśe class, and the unique countable
structureM of which it is the age is itsFraı̈sśe limit.

The connection with oligomorphic groups is as follows.

Proposition 3.4 Suppose that M is the Fraı̈sśe limit of a Fräısśe classC . Then
G= Aut(M) is oligomorphic if and only if M contains only finitely many n-element
structures up to isomorphism for each natural number n. If this holds, then fn(G)
is equal to the number of unlabelled n-element structures inC (that is, structures
up to isomorphism), while Fn(G) is equal to the number of labelled n-element
structures inC (that is, structures on the point set{1, . . . ,n}).

A permutation groupG is adense subgroupof a permutation groupH (on the
same setΩ) if G andH have the same orbits onΩn for all n. (This arises from a
natural topology on the symmetric group which we do not require here.)

Proposition 3.5 Any permutation group on a countable setΩ is a dense subgroup
of the automorphism group of a homogeneous relational structure M onΩ.

Thus the problems of characterising the sequences( fn(G)) and (Fn(G) for
oligomorphic groupsG are precisely those of counting unlabelled and labelled
structures in Fräısśe classes, assuming that the numbers are finite.

Here is a simple example. It is very easy to see that the class of finite graphs
is a Fräısśe class. So there is a countable homogeneous graph containing all fi-
nite graphs: this is the famousrandom graph, or Rado graph. Its automorphism
groupG has the property thatfn(G) andFn(G) are the numbers of unlabelled and
labelledn-vertex graphs.
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We also need to look at a stronger condition. A classC of finite relational
structures is said to satisfy thestrong amalgamation propertyif, in the definition
of the amalgamation property, no extra identifications are made in the glueing;
that is, the images ofB1 andB2 insideC intersect precisely in the image ofA. We
say that a Fräısśe class isstrong if it has the strong amalgamation property, and
transfer this term also to its Fraı̈sśe limit M, the automorphism group Aut(M) of
M, and any dense subgroupG of Aut(M).

Proposition 3.6 The permutation group G onΩ is strong if and only if the sub-
group of G fixing pointwise any finite set of points does not fix any additional
points.

Let F∗s, Fs and fs denote the sets of all sequences inF∗, F or f respectively
which are realised by strong oligomorphic groups. Here are some simple facts
these classes.

Proposition 3.7 (a) We haveF∗ ⊂ F.

(b) The setF∗ is closed under pointwise multiplication.

(c) The setFs is closed under pointwise multiplication.

(d) We haveFs⊂ fs.

Proof We’ll see the proofs of (a) and (b) shortly; here are the others. For (c), let
C1 andC2 be strong Fräısśe classes realising two sequences inF. LetC = C1∧C2

be the class whose members consist of aC1 structure and aC2-structure imposed
on the same set. TheF-sequence forC is the product of those forC1 andC2;
and it is easily seen thatC satisfies strong amalgamation. (This fails without the
strong condition, since amalgamation of theC1 andC2 structures might require
incompatible identifications.)

For (d), letL be the class of finite totally ordered sets. Then unlabelled
C ∧L -structures correspond in a natural way to labelledC -structures. Moreover,
L satisfies strong amalgamation.

Parts (b) and (c) raise an obvious question:

Problem 2 Is F closed under pointwise multiplication?
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Here’s a possible counterexample. The sequence 1,1,2,4,10,26,76, . . . (whose
nth term is the number of solutions ofg2 = 1 in Sn) belongs toF: the group pre-
serving a partition ofΩ into parts of size 2 realises this sequence. This group is
not strong: the stabiliser of a point fixes the other point in the same part. Is its
pointwise square inF?

We conclude by showing that the above classes are uncountable, and that there
is no upper bound on their growth rates.

Let a1,a2, . . . be any sequence of positive integers. Consider the Fraı̈sśe class
consisting of a set carryinga1 unary relations,a2 binary relations, and so on,
where the relations are unrestricted except for the fact that they only hold for
tuples with all members distinct. Then if|X|= m, all the relations of arity greater
than m are trivial onX, so there are only finitely many structures onX up to
isomorphism; but clearly this number is (much) greater thanam. Moreover, the
structures we have constructed form a Fraı̈sśe class. Takingan ∈ {0,1} for all n,
it is easy to see that the sequences are distinct; so there are 2ℵ0 of them.

4 Generating functions and cycle index

We can represent sequences by generating functions. As suggested by the rela-
tionship with labelled and unlabelled counting problems, we use theexponential
generating function

FG(z) = ∑
n≥0

Fn(G)
n!

zn, F∗G(z) = ∑
n≥0

F∗n (G)
n!

zn

for sequences inF andF∗, and theordinary generating function

fG(z) = ∑
n≥0

fn(G)zn

for sequences inf.
Note that, for example,fG(z) is an analytic function in some neighbourhood

of the origin if and only if the growth of( fn(G)) is no faster than exponential. We
will see that this is not usually the case!

Familiar properties of Stirling numbers show that

F∗G(z) = FG(ez−1).
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For some of our earlier examples, we have

G FG(z) fG(z)
S ez 1/(1−z)
A 1/(1−z) 1/(1−z)
C 1− log(1−z) 1/(1−z)

In fact there is a more general generating function from which all these can be
obtained; this is defined as follows.

• If g is a permutation on a finite set, we put

z(g) = ∏
i≥1

sci(g)
i ,

wheresi are indeterminates andci(g) is the number of cycles of lengthi in
the cycle decomposition ofg.

• If G is a finite permutation group, we put

Z(G) =
1
|G| ∑g∈G

z(g).

This is the usual cycle index ofG.

• If G is a finite or oligomorphic permutation group, themodified cycle index
of G is defined by

Z̃(G) = ∑
A

Z(G[A]),

whereA runs over a set of representatives ofG-orbits on finite sets, andG[A]
denotes the finite permutation group induced onA by its setwise stabiliser.

The name “modified cycle index” is used because, ifG is a finite permutation
group, then

Z̃(G) = Z(G;si ← si +1),

the right-hand side meaning that each variablesi is replaced bysi + 1. But for
infinite permutation groups, we get something new.

9



Exercise Calculate the modified cycle index for each of the groupsS, A, C.

The univariate generating functions are specialisations ofZ̃(G) as follows:

• fG(z) = Z̃(G;si ← zi);

• FG(z) = Z̃(G;s1← z,si ← 0 for i > 1).

5 Direct products

Let G1 andG2 be permutation groups on setsΩ1 andΩ2 respectively.
The direct product ofG1×G2 of G1 and G2 has two natural actions as a

permutation group. Each is oligomorphic ifG1 andG2 are.
The first is the so-calledintransitive action, on the disjoint union of the sets

Ω1 andΩ2. An ordered pair(g1,g2) acts asg1 on Ω1 and asG2 on Ω2. It is easy
to see that we have

Fn(G1×G2)=
n

∑
k=0

(
n
k

)
Fk(G1)Fn−k(G2), fn(G1×G2)=

n

∑
k=0

fk(G1) fn−k(G2).

This can be stated more concisely in terms of generating functions as

FG1×G2(z) = FG1(z)FG2(z), fG1×G2(z) = fG1(z) fG2(z).

Indeed, we have that
Z̃(G1×G2) = Z̃(G1)Z̃(G2),

from which the other results follow.
So the classf is closed underconvolution, and the classF underexponential

convolution.

The second natural action of the direct product is theproduct actionon Ω1×
Ω2, in which the factors act coordinatewise: that is,

(α1,α2)(g1,g2) = (αg1
1 ,αg2

2 ).

It is possible to describe the modified cycle index ofG1×G2 in this action, but
the description is not straightforward. See [2].

We mention just one example here.fn(A×A) (with the product action) is
equal to the number of “incidence matrices”, or zero-one matrices with exactlyn
ones and no row or column consisting entirely of zeros. See [3].
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Using the product action of the direct product, we can prove part (b) of Propo-
sition 3.7. LetG1 andG2 be permutation groups whoseF∗-sequences ares1 ands2

respectively. ThenG1×G2, in the product action, realises the pointwise product
of s1 ands2.

6 Wreath products

Let G1 andG2 be permutation groups on setsΩ1 andΩ2 respectively.
The wreath product G1 Wr G2 of G1 andG2 is defined as abstract group as

follows. Thebase group Bis a Cartesian product of|Ω2| copies ofG1 (this can be
regarded as the set of functions fromΩ2 to G1 with pointwise multiplication. The
top group Tis a copy ofG2, acting onB by permuting the factors of the Cartesian
product as it permutes the elements ofΩ2 (that is, acting on the arguments of
the functions). The semidirect product ofB by T (with this action) is the wreath
product. Note that the action ofG1 on Ω1 plays no role in this definition.

Like the direct product, the wreath product has two natural actions as a per-
mutation group. The first is theimprimitive action, which is oligomorphic ifG1

andG2 are. We takeΩ to beΩ1×Ω2, regarded as a set of copies ofΩ1 indexed
by Ω2. Now the base group acts onΩ: a given factor of the Cartesian product acts
on the corresponding copy ofΩ1. The top group acts by permuting the copies of
Ω1 (by acting on the index setΩ2).

For the cycle index in this action, we have the substitution rule

Z̃(G1 Wr G2) = Z̃(G2;si ← Z̃(G1,sj ← si j )−1).

This gives the formulae for theF- andf-sequences:

• FG1WrG2(z) = FG2(FG1(z)−1),

• fG1WrG2(z) = Z̃(G2;si ← fG1(z
i)−1).

We see thatF is closed under substitution of generating functions (after mak-
ing the constant term of the substituted function zero).

The wreath product allows us to prove part (a) of Proposition 3.7. LetG be
a permutation group whoseF∗-sequence iss; that is, the number of orbits ofG
on n-tuples issn. Now consider the groupSWr G in its imprimitive action. Each
n-tuple of points in the domain ofG (that is, of blocks of imprimitivity for the
wreath product) can be lifted to ann-tuple of distinct points in the domain of
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SWrG; moreover, twon-tuples are in the sameG-orbit if and only if their lifts are
in the sameSWr G-orbit.

This can also be seen from looking at the substitution rule. We see that

FSWrG(z) = FG(ez−1),

and the right-hand side isF∗G(z), by our observation on Stirling numbers.
We see, however, that thef-sequence of a wreath product is not obtainable

from thef-sequences of its factors alone; we need the modified cycle index of the
top group.

The other action of the wreath product is thepower actionon the set of func-
tions fromΩ2 to Ω1, where the base group acts coordinatewise, and the top group
permutes the argument of the functions. This group is oligomorphic ifG1 is oligo-
morphic andΩ2 is finite. This case is more complicated and little is known other
than the formula

F∗n (G) = Z(G2;si ← Fn(G1)i)

(see [2]).

7 Primitive groups

One of the remarkable discoveries of Macpherson is that anf-sequence of a prim-
itive group either is constant or grows at least exponentially. His result, as refined
by Merola, is as follows:

Theorem 7.1 There is an absolute constant c with the property that, if G is a
primitive oligomorphic group which is not highly set-transitive, then

(a) (Macpherson [4]) fn(G)≥ cn/p(n) for some polynomial p;

(b) (Merola [6]) Fn(G)≥ cnn!/p(n) for some polynomial p.

Macpherson proved part (a) withc = 5
√

2 = 1.149. . .; Merola, in addition
to proving (b), improved the constant to 1.324. . .. The proofs are rather long!
Merola’s Theorem throws some light on a problem mentioned earlier. The se-
quence whosenth term is the square of the number of involutions inSn grows as
n! times a subexponential function; so if there is a groupG realising this as the
F-sequence, thenG must be imprimitive.
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This theorem shows that, at least for primitive groups, exponential growth
is the slowest we can have, and it is important to understand the structures for
which the growth of thef-sequence is no faster than exponential. Empirically,
these structures seem to arise from two sources: ordered sets and trees; and their
asymptotic behaviour is very well-behaved. Indeed, in all cases which have been
examined, the “exponential constant” limn→∞( fn(G))1/n exists. (This limit is in-
finite if the growth is faster than exponential.)

Problem 3 Is it true that limn→∞( fn(G))1/n exists for any primitive oligomorphic
group G? If so, what are the possible values of the exponential constant? In
particular, what is the smallest value greater than 1, and what is the smallest limit
point (if any)?

We continue this section with some examples.

Example A tournamentis a directed graph in which each pair of distinct vertices
is joined by a directed edge in just one direction. A tournament is said to be a
local order if it does not contain a 4-point subtournament consisting of a vertex
dominating or dominated by a 3-cycle. The finite local orders form a Fraı̈sśe
class, whose Fraı̈sśe limit T is more easily described as follows. Take a countable
dense set of points on the unit circle containing no antipodal pair of points. (If
we consider the set of all complex roots of unity, and randomly choose one out of
each pair{ω,−ω}, then the resulting set is dense with probability 1.) Now put
a directed edge fromx to y if the shorter arc fromx to y is in the anticlockwise
direction. The result is the universal homogeneous local orderT. We see that
Aut(T) is 2-set transitive, hence primitive; andfn(Aut(T)) is equal to the number
of isomorphism types ofn-vertex local order, which is asymptotically 2n−1/n. (In
fact, by taking the larger groupG of permutations which preserve or reverse the
edge directions, we obtainfn(G) ∼ 2n−2/n, the slowest known growth rate for a
primitive but not highly set-transitive group.

This can be generalised as follows. Take any positive integerr ≥ 2, and take
a countable dense set of points on the unit circle with the property that out of any
collection ofr equally-spaced points we take at most one. Now definer binary
relationsR0,R1, . . . ,Rr−1 by the rule that(x,y) ∈Ri if and only if the angle (in the
positive sense) fromx to y lies in the range(2iπ/r,2(i +1)π/r). If r is odd, then
R(r−1)/2 is a symmetric relation, and defines an undirected graph; the others define
b(r−1)/2c converse pairs of directed graphs. This structure is homogeneous, and
the number of orbits onn-sets of its automorphism group satisfiesfn(G)∼ rn−1/n.
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This shows that every positive integer occurs as the exponential constant in the
growth rate of( fn(G)) for some primitive groupG.

Example The next example is not primitive but it is closely related to the pre-
ceding one and we will refer to it again later. This group is the stabiliser of a point
in the preceding one.

Take the rational numbers and colour them withr colours so that every colour
class is dense. The structure consists of the total order and ther colour classes.
It is unique up to isomorphism and is homogeneous; the automorphism groupG
satisfiesfn(G) = rn. Indeed, each orbit ofG on n-sets is parametrised by a word
of lengthn in an alphabet ofr symbols, where the worda1 · · ·an indexes the orbit
onn-tuples whoseith element (in increasing order) has colourai for i = 1, . . . ,n.

Example A boron treeis a finite tree in which every vertex has valency 1 or 3.
(Boron trees describe the analogue of hydrocarbons in a boron-based chemistry.)
On the set of leaves of a boron tree, we can define a 4-place relation as follows.
Given four pointsa,b,c,d, there is a unique partition into two sets of size 2 such
that the paths joining vertices in the same set do not intersect. WriteR(a,b;c,d)
if this partition isab | cd. (See Figure 1). The relational structures obtained in
this way form a Fräısśe class; the boron tree is uniquely recoverable from the
quaternary relation on the set of leaves. Thus, ifG is the automorphism group
of the Fräısśe limit, then fn(G) is equal to the number of boron trees with 2n−2
vertices, which is asymptoticallyAn−5/2cn, wherec = 2.483. . . . Note in passing
that this group is 3-transitive but not 4-transitive, is 5-set transitive, and hasf6 =
f7 = 2. (All these assertions can be proved by drawing diagrams like Figure 1.)
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Figure 1: A boron tree

There are many variations on this example, quite a few of which have expo-
nential growth of( fn(G)).
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8 A graded algebra

Further light on thef-sequences comes from the fact that there is a graded algebra
whose Hilbert series is thef-series of any given oligomorphic group.

Let F be any field, andΩ an infinite set. LetVn denote the vector space of all
functions from

(Ω
n

)
to F (with pointwise addition and scalar multiplication), and

A =
⊕
n≥0

Vn.

We define a multiplication onA as follows. Forf ∈Vm, g∈Vn, andX an(m+n)-
element subset ofΩ, we set

( f g)(X) = ∑
Y⊆X,|Y|=m

f (Y)g(X \Y).

Extend by linearity to the whole ofA. This makesA into a commutative and as-
sociative graded algebra. (This is sometimes referred to as thereduced incidence
algebraof the poset of finite subsets ofΩ.)

Now letG be a permutation group onΩ, and letVG
n be the subspace ofG-fixed

functions inVn, and
AG =

⊕
n≥0

VG
n .

A function is fixed byG if and only if it is constant on the orbits ofG. So, if G is
oligomorphic, then

dim(VG
n ) = fn(G).

That is, the generating functionfG(z) = ∑n≥0 fn(G)zn is theHilbert seriesof AG.
The algebraAG may contain divisors of zero. For example,

• if the characteristic ofF is p > 0, then f p = 0 for any f ∈VG
n .

• if G has a finite orbitX onΩ with, say,|X|= n, and f ∈Vn is the character-
istic function of{X}, then f ∈VG

n and f 2 = 0.

From now on we will make two blanket assumptions to exclude these cases:

• we assume that the characteristic ofF is zero, and where necessary, that
F = C;

• we assume thatG has no finite orbits onΩ.
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Conjecture 1 Under the above assumptions,AG is an integral domain.

Let e denote the constant element ofV1 with value 1. Then of coursee∈VG
1

for any groupG. It is known thate is not a zero-divisor. (This is essentially the
content of the linear algebra proof of the inequalityfn+1(G) ≥ fn(G) referred to
earlier: conversely, if we know thate is not a zero-divisor, then multiplication bye
is a monomorphism fromVG

n to VG
n+1, so the inequality follows.)

Conjecture 2 Under the above assumptions,e is prime inAG (so thatAG/〈e〉 is
an integral domain.

Conjecture 2 implies Conjecture 1. For iff g = 0 with f ,g non-zero, we can
assume thatf andg are homogeneous of smallest possible degree. Thenedivides
f g, so (w.l.o.g.)edivides f , say f = e f′. Thene f′g= 0, so f ′g= 0, contradicting
the assumed minimality.

We say thatG is entire if AG is an integral domain andstrongly entireif e
is prime in AG. These concepts would have the following implications for the
growth of thef-sequence:

• If G is entire, then

fm+n(G)≥ fm(G)+ fn(G)−1

for all m,n≥ 0;

• If G is strongly entire, then

fm+n+1(G)− fm+n(G)≥ ( fm+1(G)− fm(G))+( fn+1(G)− fn(G))−1

for all m,n≥ 0.

In other words, ifG is entire, then thef-sequence is almost concave, and ifG is
strongly entire, then its first difference sequence is almost concave. The proof
uses a little elementary dimension theory from algebraic geometry: here we do
need the field to be algebraically closed. See [1].

It is also possible to show that a supergroup or a transitive extension of a
(strongly) entire group is (strongly) entire.

Now we turn to some examples.

Highly set-transitive groups If G = S, or indeed ifG is highly set-transitive,
thenAG∼= C[x], the polynomial ring in one variable (generated by the elemente).
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Direct products Let Gi be oligomorphic onΩi for i = 1,2, and let the direct
productG1×G2 have its intransitive action onΩ1×Ω2. Then

AG1×G2 ∼= AG1⊗C AG2.

In particular, ifG = Sn, the direct product ofn copies ofS (acting withn orbits),
thenAG∼= C[x1, . . . ,xn], the polynomial ring inn homogeneous generators of de-
gree 1.

Wreath products With G1 andG2 as above, we take the wreath productG =
G1 Wr G2 in its imprimitive action. In general we cannot determine the structure
of AG. However, if G1 = S and G2 is a finite permutation group of degreen,
thenAG is isomorphic to the ring of invariants of the finite permutation groupG2

in the polynomial ringC[x1, . . . ,xn]. In particular, ifG = SWr Sn, thenAG is a
polynomial ring inn homogeneous generators of degrees 1,2, . . . ,n.

Fraı̈sśe classes Suppose that the Fraı̈sśe classC has a notion of “connected-
ness” satisfying a few simple properties. (The first of these properties is that
every object inC should be uniquely expressible as a “sum” of connected ones.)
Suppose that there arean connected structures onn vertices inC (up to isomor-
phism). Then it is possible to show that, ifG is the automorphism group of the
Fräısśe limit of C , thenAG is a polynomial ring inan homogeneous generators of
degreen for all n: the generators are indexed by the connected structures inC .

In this situation, the sequence( fn(G)) and the sequencean determine each
other. One compact way of describing the relationship is the identity

fG(z) = ∏
n≥1

(1−zi)−ai .

This result has a number of special cases.

• LetG= H WrSfor some oligomorphic groupH. The Fräısśe classC (G) for
G consists of all disjoint unions of structures in the Fraı̈sśe classC (H) for
H; if we call aC (G)-structure “connected” if it is a singleC (H)-structure,
the axioms are satisfied. SoAG is a polynomial algebra withfn(H) homo-
geneous generators of degreen for all n, and is independent of the structure
of AH . The equation

fHWrS(z) = ∏
n≥0

(1−zn)− fn(H)
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is a translation of the equation

fHWrS(z) = Z̃(S;si ← fH(zi)−1).

• The class of all finite graphs is a Fraı̈sśe class; the Fraı̈sśe limit is theRado
graph, or countable random graph R. Thus, if G = Aut(R), thenAG is a
polynomial algebra; the number of generators of degreen is equal to the
number of connected graphs onn vertices.

• Consider the second example of the previous section, whereG is the au-
tomorphism group ofQ partitioned intor dense subsets, and the orbits on
n-sets are indexed by words of lengthn in an alphabet ofr symbols. In this
case,AG is theshuffle algebra: the product of two words is equal to the sum
of all words obtained by “shuffling” the factors together. So, for example,

aab·ab= 6aaabb+3aabab+abaab.

It can be shown that theLyndon words, those which are lexicographically
smaller than all their cyclic shifts, play the role of connected structures, so
the shuffle algebra is polynomial (a result of Radford [7]).

I conclude with one puzzle. LetG be the automorphism group of the random
graphR. Then, as we saw,AG is a polynomial algebra, and hence an integral
domain. Now there is a transitive extension ofG, defined as follows.

A two-graphT on a setΩ is a collection of 3-element subsets ofΩ with the
property that any 4-subset ofΩ contains an even number of members ofT . Let
Ω′ be the vertex set ofR, andΩ = Ω′ ∪{∞}, where∞ is a new symbol. LetT
be the set of 3-subsets ofΩ which contain an odd number of edges of the graph
consisting ofRwith isolated vertex∞. ThenG∗= Aut(T ) is a transitive extension
of G. SinceAG is an integral domain, so isAG∗. Is it a polynomial algebra?

The two-graphT is homogeneous, sofn(G∗) is equal to the number ofn-
vertex two-graphs. Thus, if the algebra is polynomial, then the numberan of
generators of degreen satisfies

∑
n≥0

fn(G∗)zn = ∏
n≥1

(1−zn)−an.

Said otherwise, if there were a notion of connectedness for two-graphs with the
required properties, then the required number of generators of degreen would
be equal to the number of connected objects onn vertices, and we might hope
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to construct the generators from these objects. Unfortunately, there is no such
notion.

However, Mallows and Sloane [5] showed that the number of two-graphs on
n points is equal to the number ofeven graphs(graphs with all vertices of even
valency) onn vertices. There is an obvious notion of connectedness for these,
the connected objects being theEulerian graphs. Is there a way of constructing
generators from Eulerian graphs?

There is no natural bijection between two-graphs and even graphs: the rela-
tionship between these two classes is one of “duality” rather than “isomorphism”.
So the structure ofAG∗ is unknown, despite these tantalising hints!
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