
Combinatorics of inverse semigroups

This is an exposition of some results explained to me by Abdullahi Umar,
together with some further speculations of my own and some with Nik
Ruskuc.

1 Inverse semigroups and orders

For the first part, I take a nineteenth-century view of algebra: a group will
be a permutation group, for example.

• A permutation group on X is a non-empty set of permutations of X
closed under composition and inversion. The set of all permutations is
a group, the symmetric group S(X).

• A transformation semigroup on X is a non-empty set of transformations
of X (maps from X to X), closed under composition. The set of all
transformations is a semigroup, the transformation semigroup T (X).

• An inverse semigroup of partial permutations on X is a non-empty set
of partial permutations (bijections between subsets) of X, closed under
composition and inversion. (Composition is defined wherever possible:
xfg is defined if xf = y is defined and is in the domain of g; then
xfg = yg.) The set of all partial permutations is an inverse semigroup,
the symmetric inverse semigroup P (X).

It is a truism that groups measure symmetry. But the word “symmetry”
has a local as well as a global meaning (i.e. “correspondence of parts”), and
with this meaning, inverse semigroups are more appropriate.

The first theorem gives the orders of our basic structures.

Theorem 1 Let |X| = n. Then

(a) |S(X)| = n!;

(b) |T (X)| = nn;

(c) |P (X)| =
n∑

k=0

(
n

k

)2

k!.
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Proof All straightforward except possibly (c): once the domain and range
are chosen there are k! bijections between them.

The expression for |P (X)| does not have a simple closed form, and in
particular is not equal to |T (X)|. For n = 2, |T (X)| = 4 while |P (X)| = 7.

We can define some interesting sub-semigroups of P (X) by means of
a total order on X. A partial permutation f is monotone if x < y im-
plies xf < yf if both are defined; it is decreasing if xf ≤ x for all x in
the domain of f , and strictly decreasing if xf < x for all such x. We let
Pm(X), Pd(X) and Ps(X) denote the semigroups of monotone, decreasing,
and strictly decreasing elements respectively; and Pmd(X) = Pm(X)∩Pd(X),
Pms(X) = Pm(X) ∩ Ps(X). Now we have:

Theorem 2 Let |X| = n. Then

• |Pm(X)| =

(
2n

n

)
;

• |Pd(X)| = Bn+1 and |Ps(X)| = Bn, where Bn is the nth Bell number
(the number of partitions of an n-set);

• |Pmd(X)| = Cn+1 and |Pms(X)| = Cn, where Cn is the nth Catalan
number.

Proof (a) Argue as above. Once the domain and range are chosen, there
is a unique monotonic bijection between them. So

Pm(n) =
n∑

k=0

(
n

k

)2

=

(
2n

n

)
,

by a familiar binomial identity.

(b) We show first that Pd(n) = Ps(n + 1). If f is a decreasing partial
permutation on {1, . . . , n}, then the map g given by g(x+1) = f(x) whenever
this is defined is a strictly decreasing partial permutation on {1, . . . , n + 1}.
The argument reverses. This correspondence preserves the property of being
monotonic, so also Pmd(n) = Pms(n + 1).

Now we select a decreasing bijection by first choosing its fixed points,
and then choosing a strictly decreasing bijection on the remaining points. If
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there are k fixed points, then there are Ps(n− k) ways to choose the strictly
decreasing bijection. So we have

Ps(n + 1) = Pd(n) =
n∑

k=0

(
n

k

)
Ps(n− k).

Thus, Ps(n) satisfies the same recurrence as the Bell number Bn, and we
have

Ps(n) = Bn, Pd(n) = Bn+1.

(c) The preceding proof fails for monotonic decreasing maps, since such a
map cannot jump over a fixed point. Instead, we encode a strictly decreasing
map by a Catalan object. The Catalan numbers, given by the formula Cn =

1

n + 1

(
2n

n

)
, count many different things. I will use the interpretation as

ballot numbers : Cn is the number of ways that the votes in an election where
two candidates A and B each obtain n votes, if A is never behind B at any
point during the count. For example, C2 = 2, since the count may be ABAB
or AABB.

Let f be monotonic and strictly decreasing on {1, . . . , n}. We encode f
by a sequence of length 2n in the alphabet consisting of two symbols A and
B as follows. In positions 2i− 1 and 2i, we put

AB, if i /∈ Dom(f) and i /∈ Ran(f),

AA, if i /∈ Dom(f) and i ∈ Ran(f),

BB, if i ∈ Dom(f) and i /∈ Ran(f),

BA, if i ∈ Dom(f) and i ∈ Ran(f).

It can be shown that this gives a bijective correspondence between the set of
such functions and the set of solutions to the ballot problem. (It is necessary
to show that the resulting string has equally many As and Bs, but each initial
substring has at least as many As as Bs; and that every string with these
properties can be decoded to give a strictly decreasing monotone function.
The proof that the correspondence is bijective is then straightforward.)

It follows that Pms(n) = Cn (the nth Catalan number), and from the
remark in part (c), also Pmd(n) = Cn+1.

Laradji and Umar also found occurrences of the Fibonacci, Stirling, Schröder,
Euler, Lah and Narayana numbers in counting problems about inverse semi-
groups.
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2 A linear analogue

Let q be a prime power, and let V be an n-dimensional vector space over the
Galois field GF(q) of order q. The number of k-dimensional subspaces of V
is the Gaussian coefficient[

n

k

]
q

=
(qn − 1)(qn−1 − 1) · · · (qn−k+1 − 1)

(qk − 1)(qk−1 − 1) · · · (q − 1)
.

We have linear analogues of the previous objects. Corresponding to the
symmetric group is the general linear group GL(n, q) of invertible linear maps
on V ; its order is

|GL(n, q)| = (qn − 1)(qn − q) · · · (qn − qn−1).

For temporary convenience, we let T (n, q) denote the semigroup of all linear
maps on V , and P (n, q) the inverse semigroup of linear bijections between
subspaces of V . Now something rather different happens:

Theorem 3 |S(n, q)| = |P (n, q)|.

Proof We specify an element of P (n, q) by choosing two k-dimensional
subspaces of V and an isomorphism between them; so

|P (n, q)| =
n∑

k=0

[
n

k

]2

q

|GL(k, q)|,

the q-analogue of the formula for |P (n)| given earlier.
We specify an element of S(n, q) by giving its image, a k-dimensional

subspace W of V = V (n, q), and its kernel, a (n − k)-dimensional subspace
U of V , and an isomorphism from V/U to W . So

|S(n, q)| =
n∑

k=0

[
n

k

]
q

[
n

n− k

]
q

|GL(k, q)|.

But

[
n

k

]
q

=

[
n

n− k

]
q

by duality, so these two expressions are equal.

We deduce the following identity:
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Corollary 4

n∑
k=0

[
n

k

]2

q

|GL(k, q)| = qn2

.

We obtain further semigroups by following the procedure of Laradji and
Umar. Here are some initial thoughts on this.

Let V = V (n, q), and suppose that a total order of V is given. Let Pm(V )
denote the set of monotonic isomorphisms between subspaces of V .

Theorem 5 For any ordering of V , we have

|Pm(V )| ≤
n∑

k=0

[
n

mk

]2

q

,

with equality if and only if the unique order-preserving bijection between any
two subspaces of the same dimension is linear.

The proof is obvious, so we are led to ask:

Problem Given the vector space V = V (n, q), how many orderings of V
have the property that the unique order-preserving bijection between any two
subspaces of the same dimension is linear, and how many inequivalent inverse
semigroups Pm(V ) do they define? Call such an ordering of V compatible.

Here are a couple of observations.

Theorem 6 (a) Compatible orderings always exist. Indeed, take any or-
dering of the field GF(q); then the lexicographic order of GF(q)n is
compatible.

(b) In any compatible ordering, there is an integer k with 0 ≤ k ≤ q − 1,
the zero vector is in position 1 + k(qn − 1)/(q − 1).

(c) Any ordering of V (1, q) are compatible.

(d) All compatible orderings of V = V (2, q) are found by the following
procedure: Take any ordering of GF(q); translate this to all the 1-
dimensional subspaces of V ; then extend the resulting partial order to
a total order of V in any manner (it is possible to count the number of
such orderings).
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Proof (a) We use the fact that every subspace of GF(q)n has a unique
basis in reduced echelon form. Let W be a k-dimensional subspace, and
suppose that the leading ones in the reduced echelon basis occur in positions
m1, m2, . . . ,mk. Then projection of W onto these coordinates is a vector
space isomorphism to GF(q)k. I will show that it is also an order-isomorphism
from the induced ordering on W to the lexicographic ordering on GF(q)k.

Take two vectors of W . Since their difference is in W , its first non-zero
entry is in position mi for some i; in other words, the two vectors differ first
in position mi, so to decide their order we simply need to compare the order
of their mi coordinates in the field. This is precisely the lexicographic order
on the projection onto these coordinates.

This already gives us a range of orders, since the field has q! orderings.
However, all these orderings define the same inverse semigroup: if two sub-
spaces W1 and W2 have the same dimension, then the unique order-preserving
map between them maps the reduced echelon basis of W1 to that of W2.

(b) Since all 1-dimensional subspaces are isomorphic, there is an integer k
with 0 ≤ k ≤ q−1 such that 0 is the (k+1)-st element of each 1-dimensional
subspace.

Thus, in the ordering of V , each of the (qn − 1)/(q − 1) 1-dimensional
subspaces contains exactly k elements before 0 and q − k − 1 after it. So V
contains k(qn − 1)/(q − 1) elements before 0 and (q − k − 1)(qn − 1)/(q − 1)
elements after it.

Every value of k can occur here: simply take the construction in (a),
where 0 is the (k + 1)-st element of the field.

(c) The identity map is always linear.

(d) It is clear that the ordering of elements in the same 1-dimensional
subspace must be as specified; and by the argument in (c), the ordering of
elements is entirely unrestricted.

To count these orderings, proceed as follows. First we order the field so
that 0 is in position k + 1; without loss we may assume that 1 is in the first
available position. There are (q − 2)! such orderings.

Now choose a distinguished element in each 1-dimensional subspace (in
(q − 1)q+1 ways), and transfer the ordering of the field to this subspace so
that the chosen element corresponds to 1.

Now there are (q+1)k elements less than 0, and (q+1)(q−k−1) elements
greater than 0. Order these sets respecting the orders on the 1-dimensional
subspaces. The numbers of ways are multinomial coefficients, for example,
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(
(q + 1)k

k, k, . . . , k

)
for the elements less than 0.

We conclude that the number of compatible orderings of V (2, q) is

(q − 2)! (q − 1)q+1

q−1∑
k=0

(
(q + 1)k

k, k, . . . , k

)(
(q + 1)(q − k − 1)

q − k − 1, . . . , q − k − 1

)
.

For q = 2, we see that the zero element must be first or last, and part (c)
shows that any ordering of V (2, 2) with this property is compatible. It is also
true that any ordering of V (3, 2) with zero first or last is compatible (essen-
tially because GL(2, 2) = S3, so any bijection of a 2-dimensional space fixing
the identity is linear. I do not know what happens for higher dimensions.

3 Groups

If A is any kind of algebraic structure, we can make similar definitions:

• Aut(A) is the group of automorphisms of A;

• End(A) is the semigroup of endomorphisms of A;

• PIso(A) is the inverse semigroup of isomorphisms between substruc-
tures of A.

Theorem 7 Let A be a finite abelian group. Then |End(A)| = |PIso(A)|.

Proof We follow the proof of the preceding theorem. We specify an element
of PIso(A) by choosing two isomorphic subgroups of A and an isomorphism
between them. We specify an element of End(A) by choosing a subgroup
W as image, a subgroup U as kernel with A/U ∼= W , and an isomorphism
from A/U to W . Now any finite abelian group A has a dual group A∗ =
Hom(A, C×). We have A∗ ∼= A. For any subgroup B of A, let B† = {f ∈
A∗ : (∀b ∈ B)bf = 1}; then A∗/B† ∼= B. So the number of subgroups of A
isomorphic to B is equal to the number of subgroups C with A/C ∼= B, and
the two numbers in the theorem are equal.
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Problem Is it true that, if a finite group G satisfies |End(G)| = |PIso(G)|,
then G is abelian?

Nik Ruskuc and I computed a few examples and found no counterexam-
ple to this assertion. We can prove something under stronger assumptions.
If X and A are structures, we define sA(X) and qA(X) to be the numbers of
substructures and quotient structures, respectively, of X which are isomor-
phic to A. We say that X satisfies SQ-duality if sA(X) = qA(X) for every
substructure A of X; in other words, for any structure A, either sA(X) = 0
or sA(X) = qA(X). Clearly the argument above shows that, if X satisfies
SQ-duality, then |End(X)| = |PIso(X)|.

Theorem 8 A finite group satisfying SQ-duality is abelian.

Proof Let G be any finite group. In this proof, summations are always
over the isomorphism types of groups A embeddable in G, that is, for which
sA(G) 6= 0.

Now
∑

sA(G) is the number of subgroups of G, while
∑

qA(G) is the
number of normal subgroups with quotient embeddable in G. So equality
of these two sums implies that every subgroup of G is normal and every
quotient of G is embeddable in G.

If G satisfies SQ-duality, then sA(G) = qA(G) for any group A embeddable
in G, so indeed the two sums of the previous paragraph are equal. This
implies in particular that G is Hamiltonian, that is, every subgroup of G
is normal. A Hamiltonian group which is not abelian has the form G =
Q8×(C2)

r×B, where C2 and Q8 are the cyclic group of order 2 and quaternion
group of order 8 respectively, and B is an abelian group of odd order. But
this group has a quotient (C2)

r+2 which is not a subgroup, so does not satisfy
SQ-duality. The result is proved.
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