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Abstract

Following the talk on graph homomorphisms given by Peter last
week, we continue to discuss some examples of graph homomorphisms.
More precisely, the graph parameters which can be represented by
counting the graph homomorphisms. The main reference is Section 2
in [2].

1 Introduction

In this note, we will study some of explicit examples about graph homo-
morphism, which provides a useful language and motivation to continue our
study about[2]. The basic setting is as follows: G = (V (G), E(G)) is a simple
graph unless stated otherwise, φ : G→ H is a homomorphism from G to H
and hom(G,H) is the number of homomorphisms from G to H.

In fact, we should consider the homomorphisms both “from” G and “to”
G. The basic scheme in the paper [2] is:

F → G→ H.

Given a (large, simple) graph G, we can study its local structure by counting
of various “small” graphs F into G; and its global structure by counting its
homomorphisms into various small graph H. Roughly speaking, we can get
some information about G via “probing from the left with F”, which is re-
lated to property testing. On the other hand, we can “probing from the right
with H, which is related to statistical physics. Informally, H is also called
the template (Model) of G. One useful observation is that any φ : G → H
gives a partition on V (G) via the fibres of φ.
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2 Weighted and unweighted

A weighted graphH is a graph with a positive real weight αH(i) associated
with each node i and a real weight βH(i, j) associated with each edge ij.

An edge with weight 0 will play the same as role as no edge between those
nodes, so we could assume that we only consider weighted complete graphs
with loops at all nodes. An unweighted graph is a weighted graph where all
the nodeweights and edgeweights are 1.

Let G and H be two weighted graphs. To every map φ : V (G) → V (H),
we assign the weight:

homφ(G,H) =
∏

uv∈E(G)

[βφ(u)φ(v)(H)]βuv(G) (1)

here (00 = 1). We then define

hom(G,H) =
∑

φ:V (G)→V (H)

αφhomφ(G,H) (2)

where
αφ =

∏

u∈V (G)

[αφ(u)(H)]αu(G). (3)

We’ll use this definition most often in the case when G is a simple un-
weighted graph, so that:

αφ =
∏

u∈V (G)

[αφ(u)(H)].

and
homφ(G,H) =

∏

uv∈E(G)

[βφ(u)φ(v)(H)]

3 Example

In this section we will present some examples about hom(F,G) (hom(G,H)),
where F (H) is a single graph or a subfamily of finite graphs.

3.1 Left & unweighted

Example 1. Let F be a point, then hom(F,G) = |V (G)|.
Let F be K2, then hom(F,G) = 2|E(G)|.
Let F be K3, then hom(F,G) = 6 ×# of triangles.(note: here G is assume
to be simple.)
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Example 2. Let F be a t-path Pk, then hom(F,G)=# of walks with length
t. Here (i, j, k) and (k, j, i) should be treated as two different walks of length
3.

1 2 k−1 k

Figure 1: the path on k nodes

Example 3. Let Sk be the star on k nodes, then hom(Sk, G) =
∑n

i=1 d
k−1
i

where di is the degree of i ∈ V (G). Hence hom(Sk, G)1/(k−1) tends to the
maximum degree of G as k →∞.

Proof. Denote the vertices set of Sk by {1, 2, · · · , k}. Pick any v ∈ V (G),
and study the number of homomorphisms of φ : Sk → G s.t φ(1) = v. For
each vertex of Sk other than 1, there are dv different choices in V (G) as its
image where dv is the degree of dv. Therefore we have totally dk−1

v such
homomorphisms. On the other hand, the image of 1 can run through all
vertices of G, therefore the number of homomorphisms between Sk and G is∑n

i=1 d
k−1
i .

1

2

k−1

k

3

Figure 2: the star on k nodes

Example 4. Let Ck be the cycles on k nodes, then hom(F,G) =
∑n

i=1 λ
k
i

where λi is the eigenvalue of G.

Proof. In this example, G is not necessarily to be simple. Firstly we claim
the number of loops in G is equal to the sum of its eigenvalues. That is
because this sum is the trace of AG, the adjacent matrix of G, and we know
the trace of AG counts the number of loops in G. Secondly we note that
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∑n
i=1 λ

k
i is the trace of AGk where V (Gk) = V (G) and (i, j) ∈ E(Gk) iff there

is exactly one path of length k from i to j in the graph G. More precisely,
AGk = A(G)× A(G) · · · × A(G)︸ ︷︷ ︸

k

. On the other hand, the number of loops in

Gk is the same as hom(Ck, G), which complete the proof.

k−1

k

3

2

1

Figure 3: the cycles on k nodes

Example 5. (Random graphs) Let G(n, p) be a random graph with n
nodes and edgedensity p. Then for every simple graph F with k nodes,

E(hom(F,G)) = (1 + o(1))nkp|E(F )| (n→∞).

Proof. Given any map φ from F to G, denote the probability that φ is a
homomorphism by ρ. Then we know ρ = p|E(F )| when φ is 1-1 and p|E(F )| ≤
ρ ≤ 1 otherwise. On the other hand, the number of the 1-1 map from F to
G is n(n − 1) · · · (n − k + 1) while the total number of the maps is nk. Put
all these together, we have:

E(hom(F,G)) = n(n−1) · · · (n−k+1)p|E(F )|+(nk−n(n−1) · · · (n−k+1))t

where p|E(F )| ≤ t ≤ 1. Let δ = t− p|E(F )|. Then 0 ≤ δ ≤ 1 and we have:

E(hom(F,G)) = nkp|E(F )| + (nk − n(n− 1) · · · (n− k + 1))δ

= (1 + o(1))nkp|E(F )| (n→∞)

since

lim
n→∞

(nk − n(n− 1) · · · (n− k + 1))δ

nkp|E(F )| = 0

for fixed p, k, E(F ) and 0 ≤ δ ≤ 1.
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3.2 Right & unweighted

Example 6. Let H be a point, then hom(G,H) 6= 0 iff G has no edge.
Let H be K2, then hom(G,H) 6= 0 iff G is bipartite.
Let H be K3, then hom(G,H) 6= 0 iff G is 3-colorable.

Example 7. (Independent Set) Let H be the graph on two nodes, with
an edge connecting the two nodes and a loop at one of the nodes. Then
hom(G,H) is the number of independent sets of nodes in G.

Proof. The independent set is 1-1 corresponding to φ−1(2). More precisely,
given any independent set A, there is a unique φ : G → H such that A =
φ−1(2). On the other hand, φ−1(2) is an independent set for any given
homomorphism φ : G→ H.

Note: If H has only two nodes {1, 2}, any φ : G→ H is uniquely decided
by any fibre of φ. (φ−1(1) or φ−1(2)) Or we can say such φ given a partition
on G. In this sense we can there exists a 1-1 corresponding between the
partitions and the homomorphisms where (V1, V2) and (V2, V1) are two dif-
ferent partitions. In the above example, the part of partition corresponding
to φ−1(2) is exactly the independent set, which is implied by the fact that
point 2 is loopless.

2

1

Figure 4: the target for Independent Set

Example 8. (Colorings) Let H be Kt, then hom(G,H) = # of the color-
ings of the graph G with t colors.

Note:We can consider the homomorphisms into a fixed graph H as gener-
alized colorings, called the H colorings. There are also other generalization,
such as circular colorings.
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3.3 Weighted examples

Example 9. (Maximum cut) Let H denote the looped complete graph on
two nodes, weighted as follows: the non-loop edge has eight 2; all other edges
and nodes have weight 1. Then for every simple graph G with n nodes,

log2 hom(G,H)− n ≤ MaxCut(G) ≤ log2 hom(G,H).

where MaxCut(G) denotes the size of the maximum cut in G. So unless G
is very sparse, log2 hom(G,H) is a good approximation of the maximum cut
in G.

a

b

2

1

1

1

1

Figure 5: the target for Maximum Cut

Proof. If {V1, V2} is a partition of V (G), the set E(V1, V2) of all edges of
G crossing this partition is called a cut, whose size is denoted by t{V1,V2}.
From the discussion in Example 7, we known there is 1 − 1 corresponding
between the partitions and the homomorphisms. On the other hand, the
corresponding between partitions and cuts is many to one.

Choose a cut of maximal size, denote by tmax, and a homomorphism φmax
(not unique) corresponding to this cut.

From the weight on H, we know:

hom(G,H) =
∑

φ:G→H

homφ(G,H) =
∑

φ:G→H

2tφ

where tφ is the cut size corresponding to the partition given by φ.
Then we have

2tmax = homφmax(G,H) ≤ hom(G,H),
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which means
MaxCut(G) ≤ log2 hom(G,H).

On the other hand,

hom(G,H) ≤ 2nhomφmax(G,H) = 2n+tmax

as there are total 2n homomorphisms from G to H, which implies:

log2 hom(G,H)− n ≤ MaxCut(G).

Example 10. (Partition functions of the Ising model) Let G be any
simple graph, and let T > 0, h ≥ 0, and J be three real parameters. Let H
be the looped complete graph on two nodes, denoted by + and −, weighted
as follows: α+ = eh/T , α− = e−h/T , β++ = β−−, and β++/β+− = e2J/T . Then
hom(G,H) is the paritition function of the Ising model on the graph G at
temperature T with coupling J in external magnetic field h.

Proof. The proof will be left as an exercise to the reader. (Hint: the config-
urations is 1-1 corresponding to the homomorphims via its fibres.)

+

1

−

exp{2J/T}

exp{h/T}

exp{−h/T}

exp{2J/T}

Figure 6: the target for partition function

3.4 As a language

• Chromatic Number:

χ(G) = min
k
{k | hom(G,Kn) 6= 0}
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• Clique Number:

ω(G) = max
n
{k | hom(Kn, G) 6= 0}

• Odd girth:

og(G) = min
l
{2l + 1 | hom(C2l+1, G) 6= 0}

4 A nontrivial example

4.1 Nowhere-zero flows

Let Γ be a finite abelian group and let S be a subset of Γ s.t S is closed
under inversion.

For any graph G, fix an orientation of the edges. An S-flow is an assign-
ment of an element of S to each edge s.t for each node v, the sum of elements
assigned to edges entering v is the same as the sum of elements assigned to
edges leaving v.

Let f(G) be the number of S-flows. This number is independent of the
orientation.

Let S = Γ \ {0}. Then such an S-flow is called nowhere-zero flows.
A Eulerian tour is an S-flow when Γ = Z2 and S = Z2 \ {0}.

4.2 The representation of flows number

Let H be the complete directed graph (with all loops) on Γ̂. Let αχ , a
|Γ|

for each χ ∈ Γ, and let

βχ,χ′ ,
∑
s∈S

χ−1(s)χ′(s),

for χ, χ′ ∈ Γ̂. Then f(G) can be described as a homomorphism function [1].

Theorem 4.1. f(G) = hom(G,H).

The proof of this theorem is rather technical and will be put in the ap-
pendix. Instead, we will present two examples: the first one is the H for the
Eulerian characteristic function and the second is the H for the Nowhere-zero
4 flows.
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Figure 7: The H for Eule-
rian
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Figure 8: the H for
Nowhere-zero 4 flow

5 Some elementary properties

If F is the disjoint union of two graphs F1 and F2, then

hom(F,G) = hom(F1, G)hom(F2, G).

If F is connected and G is the disjoint union of two graphs G1 and G2,
then

hom(F,G) = hom(F,G1) + hom(F,G2).

Thus in a sense it’s enough to study homomorphisms between connected
graphs.

For two simple graphs G1, G2, their categorial product G1×G2 is defined
to be a graph with vertices set V (G1)×V (G2), in which (i1, j1) is connected
to (i1, j2) iff (i1, i2) ∈ E(G1) and (j1, j2) ∈ E(G2). For this product, we have:

hom(F,G1 ×G2) = hom(F,G1) · hom(F,G2)

6 Conclusion

Today we are focused on some examples of graph parameters which can
be represented by counting the graph homomorphisms. A natural question
would be: what are the parameters that are unable to have such repre-
sentation? Surprisingly, the authors of [2] obtain some exact conditions to
character such parameters, which would likely to be the topic of the next
talk of this series. Or the reader can consult Section 3 in [2].
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7 Appendix

7.1 The Ising model

Let G = (V,E) be a finite graph, and call Ω = {−1,+1}V the state space,
with elements σ = {σx}x∈V . The varaiable σx ∈ {−1,+1} is called the spin
at vertex x. This is a spin system.

There is an energy function defined on Ω. For the Ising model this func-
tion is defined as:

H(σ) = −J
∑

(x,y)∈E
σxσy −

∑
x∈V

hσx.

where J is a real constant, the interaction strength, and h ∈ R, decided
by an external magnetic field.

Now we introduce the inverse temperature parameter β v 1
T
,and consider

the following probability measure on Ω:

µ(σ) =
e−βH(σ)

Zβ
, Zβ =

∑
σ∈Ω

e−βH(σ). (4)

This Zβ is called the partition function, and, as usually generating fuctions
do, contains basically all information about the systems.

7.2 Group characters

A character χ of Γ is a homomorphism Γ → S1 where S1 is the multi-
plicative group of complex numbers of modulus 1. The unit character χ0 is
the character which assigns 1 to every element in Γ.

We list a few facts about characters:

• A function χ : Γ → C is a character iff it satisfies χ(a + b) = χ(a) +
χ(b), a, b ∈ Γ since Γ is finite.

• The set of all characters of Γ form a group Γ̂, called the dual group of
Γ.

• Γ̂ ∼= Γ.

Proposition 7.1. ∑

χ∈Γ̂

χ(a) =

{
n if a = 0
0 otherwise
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7.3 The proof of Theorem 4.1

Proof. Let n = |V (G)| and m = |Γ|.
For any coloring ψ : E(G) → S and node v ∈ V (G), let

∂ψ(v) =
∑

u∈V (G) uv∈E(G)

ψ(uv)−
∑

u∈V (G) vu∈E(G)

ψ(vu).

So ψ is an S-flow iff ∂ψ = 0.

Consider the expression

A =
∑

ψ:E(G)→S

∏

v∈V (G)

∑

χ∈Γ̂

χ(∂ψ(v)). (5)

Form Proposition 7.1, the summation over χ is 0 unless ∂ψ(v) = 0, in
which case it is m. So the product over v ∈ V (G) is 0 unless ψ is an S-flow,
in which case is it is mn. Therefore A ·m−n counts S-flows.

On the other hand, we can expand the product over v ∈ V (G); this step
looks like:

(χ0(∂ψ(v1)) + χ1(∂ψ(v1)) + · · ·+ χm−1(∂ψ(v1))) ×
(χ0(∂ψ(v2)) + χ1(∂ψ(v2)) + · · ·+ χm−1(∂ψ(v2))) ×

· · · ×
(χ0(∂ψ(vn)) + χ1(∂ψ(vn)) + · · ·+ χm−1(∂ψ(vn)))

=
∑

φ(χφ(v1)(∂ψ(v1)))(χφ(v2)(∂ψ(v2))) · · · (χφ(vn)(∂ψ(vn)))

Each term in the sum is corresponding to a choice of a character χφv for each
v. Denote χφv by φv and so we get

A =
∑

ψ:E(G)→S

∑

φ:V (G)→Γ̂

∏

v∈V (G)

φv(∂ψ(v)).

Here(using that φv is a character)

φv(∂ψ(v)) =
∏

u∈V (G) uv∈E(G)

φv(ψ(uv))
∏

u∈V (G) vu∈E(G)

φv(ψ(vu))−1

So we get that

A =
∑

ψ:E(G)→S

∑

φ:V (G)→Γ̂

∏

uv∈E(G)

φv(ψ(uv)) φu(ψ(uv))−1.
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Interchanging the summation, we have:

A =
∑

φ:V (G)→Γ̂

∑

ψ:E(G)→S

∏

uv∈E(G)

φv(ψ(uv)) φu(ψ(uv))−1

=
∑

φ:V (G)→Γ̂

∏

uv∈E(G)

∑
s∈S

φv(s)φu(s)
−1

=
∑

φ:V (G)→Γ̂

∏

uv∈E(G)

βφ(u),φ(v)

=
∑

φ:V (G)→Γ̂

mnhomφ(G,H)

= mnhom(G,H).

where in the last two steps we use the following fact:

hom(G,H) =
∑

φ:V (G)→V (H)

(αφ)(homφ(G,H))

=
∑

φ:V (G)→V (H)

(
∏

u∈V (G)

[αφ(u)(H)])(
∏

uv∈E(G)

[βφ(u)φ(v)(H)])

=
∑

φ:V (G)→V (H)

(
1

mn
)(

∏

uv∈E(G)

[βφ(u)φ(v)(H)]).

=
∑

φ:V (G)→V (H)

(
1

mn
)homφ(G,H).

Therefore, we have:

f(G) = m−nA = hom(G,H)

which completes our proof.
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