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Abstract

These notes put on record part of the contents of a conversation
the first author had with John Conway in November 1996, concerning
some remarkable properties of the Fibonacci numbers discovered by
Clark Kimberling [2] and by Conway himself. Some of these proper-
ties are special cases of much more general results, while others are
specific to the Fibonacci sequence; some are proved, while others are
merely observation (as far as we know). The first four sections are
purely expository. The last two sections on numeration systems are
the work of the second author. We am grateful to members of the
Combinatorics Study Group at QMW, especially Julian Gilbey, for
discussions and help with the details.

1 Fibonacci numbers

The Fibonacci number Fn, for positive integer n, can be defined as the number
of ways of writing n as the sum of a sequence of terms, each equal to 1 or 2.
So, for example, 4 can be expressed in any of the forms

2 + 2 = 2 + 1 + 1 = 1 + 2 + 1 = 1 + 1 + 2 = 1 + 1 + 1 + 1,

so F4 = 5.
The most important property of the Fibonacci numbers is that they sat-

isfy the recurrence relation

Fn = Fn−1 + Fn−2

for n ≥ 3. For consider all the sequences of 1s and 2s with sum n. Divide
the sequences into two classes according to whether the last term is 1 or
2. There are Fn−1 sequences in the first class, since the terms except the
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last sum to n − 1. Similarly, there are Fn−2 sequences in the second class.
Since the classes don’t overlap, and every sequence lies in one of them, the
recurrence relation follows.

This recurrence, together with the initial values F1 = 1 and F2 = 2,
determines Fn for all n.

We can extend the definition of Fn to n = 0 in a natural way: the empty
sequence is the only one with sum 0, so F0 = 1. It is possible to define Fn for
negative n so that the recurrence is satisfied, but there is no natural counting
interpretation of these numbers.

Standard arguments give the formula

Fn =
1√
5

(1 +
√

5

2

)n+1

−

(
1−

√
5

2

)n+1
 .

Since α = (1+
√

5)/2 = 1.618 . . . > 1 and β = (1−
√

5)/2 = −0.618 . . . >
−1, we see that Fn is the nearest integer to (1/

√
5)((1 +

√
5)/2)n+1. In

particular, Fn+1/Fn tends to the limit (1 +
√

5)/2 as n →∞.
Note that α−1 = −β is the golden ratio τ , the point of division of a unit

interval with the property that the ratio of the larger part to the whole is
equal to the ratio of the smaller part to the larger.

2 The Fibonacci successor function

In this section we define a function on the positive integers which has the
property that it maps each Fibonacci number to the next. It depends on the
following property of Fibonacci numbers:

Theorem 2.1 Every positive integer n has a unique expression in the form

n = Fi1 + Fi2 + · · ·+ Fik ,

where ij+1 ≥ ij + 2 for j = 1, . . . , k − 1; in other words, as the sum of a set
of Fibonacci numbers with no two consecutive.

We call the expression in the theorem the Fibonacci representation of n.
To prove this, we use a simple fact about Fibonacci numbers, easily

demonstrated by induction:
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Lemma 2.2 The sum of alternate Fibonacci numbers ending with Fk is
Fk+1 − 1.

Proof The inductive step goes from k to k + 2: if we assume the result for
k, and add Fk+2 to both sides of the equation, then on the right we obtain
Fk+3 − 1. So it is necessary to start the induction separately for odd and
even k, by observing that F1 = F2 − 1 and F2 = F3 − 1.

Now given an integer n, let Fk be the largest Fibonacci number not ex-
ceeding n. Then any representation of n as the sum of Fibonacci numbers
with no two consecutive must include Fk, since by the Lemma if we omit Fk

the greatest we can get is Fk − 1. Now, by induction, n − Fk has a unique
Fibonacci representation; and this representation cannot include Fk−1, since
n < Fk+1 = Fk + Fk−1. So we have constructed the unique Fibonacci repre-
sentation of n.

Now we define the Fibonacci successor function σ as follows: if

n = Fi1 + Fi2 + · · ·+ Fik

is the Fibonacci representation of n, then

σ(n) = Fi1+1 + Fi2+1 + · · ·+ Fik+1.

Note that σ(Fk) = Fk+1, and that m is the Fibonacci successor of some
(unique) positive integer if and only if F1 does not occur in the Fibonacci
representation of m.

Note also that n + σ(n) = σ2(n) for any n, where σ2(n) denotes σ(σ(n)).
So, in order to apply the successor function repeatedly, we only have to apply
it once and then use the Fibonacci recurrence relation.

We call the positive integer n a Fibonaacci successor if n = σ(m) for
some m. This holds if and only if the Fibonacci representation of n does not
contain F1.

We oserved in the last section that each Fibonacci number is approxi-
mately α times the preceding one, where α = (1 +

√
5)/2. The convergence

is exponentially rapid. A small amount of analysis of geometric progressions
in fact shows the following. Given a positive integer n, let ρ(n) be the integer
nearest to nα.

Theorem 2.3 For any positive integer n, either σ(n) = ρ(n), or σ(n) =
ρ(n) + 1. The first alternative holds if n is a Fibonacci successor.
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We can extend the domain of the Fibonacci successor function to include
zero, in a natural way. Since the Fibonacci representation of zero is empty,
we take σ(0) = 0.

3 The table

We consider the following table. (Ignore for the moment the two columns at
the left.)

0 1 1 2 3 5 8 13 21 34 . . .
1 3 4 7 11 18 29 47 76 123 . . .
2 4 6 10 16 26 42 68 110 178 . . .
3 6 9 15 24 39 63 102 165 267 . . .
4 8 12 20 32 52 84 136 220 356 . . .
5 9 14 23 37 60 97 157 254 411 . . .
6 11 17 28 45 73 118 191 309 500 . . .
7 12 19 31 50 81 131 212 343 555 . . .
8 14 22 36 58 94 152 246 398 644 . . .
9 16 25 41 66 107 173 280 453 733 . . .

10 17 27 44 71 115 186 301 487 788 . . .

The table is constructed as follows. The first row contains the Fibonacci
numbers. As we already saw, these are produced by starting with 1 and
applying the Fibonacci successor function repeatedly.

The first element in the next row is the smallest number which has not
been encountered previously (which happens to be 4). Then we apply the
successor function repeatedly to it to generate the row. As we also saw, we
only need to apply the successor function once:

4 = 1 + 3 = F1 + F3,

so
σ(4) = F2 + F4 = 2 + 5 = 7.

Then the remaining elements can be found from the Fibonacci recurrence
relation: next is 7 + 4 = 11, then 11 + 7 = 18, and so on.

Now we repeat this for each succeeding row: the first entry is the smallest
number not used in the table so far, and the rest of its row is obtained
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by applying the successor function repeatedly (or by applying the successor
function once and then the recurrence relation).

Clearly the first element in any row is not itself the Fibonacci successor of
anything. So the first elements in the rows are the numbers whose Fibonacci
representations include F1, arranged in order. We see that every positive
integer occurs exactly once in the table: the integer

n = Fi1 + Fi2 + · · ·+ Fik

occurs in column i1 of the row with first element

m = F1 + Fi2−i1+1 + · · ·+ Fik−i1+1.

Let Ti,j denote the entry in row i and column j of the table. (For tech-
nical reasons, we take the first row to have number 0). Various remarkable
properties hold: we now give some of these.

Theorem 3.1 Let a1 and a2 be positive integers, and define a sequence (an)
by the Fibonacci recurrence: that is, an+2 = an + an+1 for n ≥ 1. Then there
exist k, l, m such that am+n = Tk,l+n for all n ≥ 0. In other words, every
sequence generated by the Fibonacci recurrence occurs, from some point on,
in the table.

Proof It is enough to show that an+1 = σ(an) for some n: for the number an

occurs in the table (by our previous remark) and the given sequence agrees
with that row from that point on.

Now the solution to any Fibonacci recurrence is given by

an = Aαn + Bβn

for some A and B, where α and β are as in Section 1. Since |β| < 1, for
sufficiently large n we see that an+1 = ρ(an), the nearest integer to anα. So,
by Theorem 2.3, it is enough to find a sufficiently large n such that an is a
Fibonacci successor.

Suppose that an is not a Fibonacci successor, say

an = F1 + Fk + · · · ,
with k ≥ 3. Then by Theorem 2.3, we have

an+1 = ρ(an) = σ(an)− 1 = F1 + Fk+1 + · · · .
But then

an+2 = an + an+1 = F2 + Fk+2 + · · ·
is a Fibonacci suuccessor, as required.
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Remark If two sequences satisfying the Fibonacci recurrence agree from
some point on, then (by extrapolting back) they agree throughout their entire
ength. So, in Theorem 3.1, we may assume that either l or m is equal to 1.

Let rn be the number of the row containing the positive integer n. The
sequence (rn) begins

0, 0, 0, 1, 0, 2, 1, 0, 3, 2, 1, 4, 0, 5, 3, 2, 6, 1, 7, 4, 0, . . .

The lengths of the gaps between successive zeros are Fibonacci numbers
(starting with F0 = 1). The numbers in the gap of length Fk are a permuta-
tion πk of {1, 2, . . . , Fk − 1}, and the permutation πk+1 is obtained from πk

by inserting the additional numbers in appropriate gaps.

We can imagine that the table is extrapolated backwards using the re-
currence: that is, Ti,0 = Ti,2 − Ti,1 and Ti,−1 = Ti,1 − Ti,0 for all i ≥ 0.

Theorem 3.2 We have Ti,−1 = i and Ti,0 = σ(i) + 1. Moreover, Ti,1 =
σ(Ti,0)− 1.

Proof The function σ is strictly monotonic, and the entries in column 1 of
the table are (by construction) increasing. So the numbers

σ−1(σ−1(Ti,1 + 1)− 1)

are strictly increasing. So it suffices to prove that every non-negative integer
n can be expressed in the form

n = σ−1(σ−1(m + 1)− 1)

for some m which is not a Fibonacci successor, and that, conversely, if m is
not a Fibonacci successor, then it can be written in the form

m = σ(σ(n) + 1)− 1

for some n.
For the first, take any n and write its Fibonacci representation. There

are two cases. If F1 occurs (that is, n is not a Fibonacci successor), then,
say,

n = F1 + · · ·+ F2l−1 + Fk + · · · ,
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with k > 2l + 1. Then

σ(n) + 1 = F2l+1 + Fk+1 + · · · ,

whence
σ(σ(n) + 1)− 1 = F1 + · · ·+ F2l+1 + Fk+2 + · · · ,

which is not a Fibonacci successor. On the other hand, if F1 does not occur
in the representation of n, then say

n = F2 + · · ·+ F2l + Fk + · · · ,

with k ≥ 2l + 2 (and possibly l = 0). Then

σ(n) + 1 = F1 + F3 + · · ·+ F2l+1 + Fk+1 = · · · ,

and
σ(σ(n) + 1)− 1) = F1 + F4 + · · ·+ F2l+2 + Fk+2 + · · · ,

which again is not a Fibonacci successor.
For the converse, suppose that

m = F1 + F3 + · · ·+ F2l+1 + Fk = · · · ,

where k > 2l + 3. Then

m + 1 = F2l+2 + Fk + · · · ,

so that
σ−1(m + 1) = F2l+1 + Fk−1 + · · · .

Then
σ−1(m + 1)− 1 = F2 + · · ·+ F2l + Fk−1 + · · · ,

and so
σ−1(σ−1(m + 1)− 1) = F1 + · · ·+ F2l−1 + Fk = · · · .

(It is possible that the initial terms F1 + · · ·+ F2l−1 are absent, if l = 0.)

So the entries in column −1 conveniently label the rows by non-negative
integers.
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4 Phyllotaxis

Fibonacci numbers, and the golden ratio, are popularly associated with the
growth of plants. In order that the leaves of a growing plant should not shade
the leaves below them, each new leaf should grow so as to make an angle of
τ of a circle with the previous one, where τ = (

√
5− 1)/2 is the golden ratio.

See the discussion in Coxeter [1], Chapter 11.
Let us consider the leaves on such an idealised plant. Suppose that the

stem has unit circumference, and that leaf number zero grows at the reference
point 0. Then the position of leaf number n is at {nτ} = nτ − bnτc, the
fractional part of nτ . When it emerges, the circle is already divided into n
intervals by the existing leaves. Suppose that there are an intervals between
the zeroth and the nth leaf when it emerges, and bn intervals between the
nth leaf and the zeroth. (Thus an + bn = n + 1.) What can be said about
the ordered pairs (an, bn)?

It is known that the ratio of consecutive Fibonacci numbers is a close
approximation to the golden ratio. More precisely,

lim
k→∞

Fk/Fk+1 = τ,

and the ratio Fk/Fk+1 is a better approximation to τ than any rational with
smaller denominator; moreover, the ratio is alternately greater and less than
its limit. Thus, when leaf number n = Fk+1 emerges, we have either an = 1
(if k is odd) or bn = 1 (if k is even). Thus,

If n = Fk+1 then (an, bn) =

{
(1, n) if k is odd,
(n, 1) if k is even.

Moreover, the Fibonacci numbers are the only numbers with this property:
that is, if n is not a Fibonacci number then an, bn > 1.
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We find the following values:

n an bn

1 1 1
2 1 2
3 3 1
4 2 3
5 1 5
6 5 2
7 3 5
8 8 1
9 5 5

10 2 9
11 9 3
12 5 8
13 1 13
14 10 5
15 5 11
16 15 2
17 9 9
18 3 16
19 15 5
20 8 13
21 21 1
22 13 10
23 5 19
24 20 5
25 11 15

Now observe what happens as n runs along a row of our master table. We
already noted that, if n runs through the Fibonacci numbers, then one of an

and bn is equal to 1, and this number bounces from side to side. Empirically,
something similar happens for any row, except that the ‘bouncing number’
is not 1 for any other row. In fact, the values of the bouncing number t are

9



as shown in the following table:

n t
0 1
1 3
2 2
3 5
4 8
5 5
6 9
7 5
8 10
9 15

10 9

The bouncing number seems to be often but not always a Fibonacci number.
We do not know how to explain these patterns!

5 Recurrent numeration systems

This section gives a wide generalisation of the table of sequences satisfying
the Fibonacci relation.

We let N denote the natural numbers, starting at zero, and N+ = N \ {0}
the positive integers. Also, P is the set of all nonempty finite subsets of N
ordered lexicographically. We shall often identify elements of P with finite
binary words: every set X ∈ P is identified with the word εm . . . ε0 where
m = max X, and εi = 1 whenever i ∈ X. Thus the words corresponding to
elements of P always begin with 1.

By a general numeration system (NS) we mean any infinite subset S ⊆ P
together with the uniquely determined order-preserving bijection n : S →
N+.

We now give some examples.

Example 1. The most trivial example: S is the collection of all one-element
sets. Then every positive integer n is the image of the word Bn = 10 . . . 0 (n
zeros).

Example 2 The most common example: the binary system. S = P , all
non-empty finite sets. The positive integer n is the image of its own base 2
representation.
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Example 3 The example which has motivated this section: the Fibonacci
numbering system. S is the collection of all finite sets containing no two
consecutive numbers.

A numeration system (S, n) is called based if there exists a base sequence
B(S) = (b0, b1, . . .) of positive natural numbers such that

n(X) =
∑
i∈X

bi

for every X ∈ S.
In Example 1, the base sequence is just the sequence of natural numbers

1, 2, . . .. In Example 2, it is the sequence of powers of 2, while in Example 3,
it is the Fibonacci sequence (this follows from the Fibonacci representation
in Section 2).

A NS (S, n) is called tree-like if it satisfies the following three properties
(here we look at S as a set of binary words):

(T1) 1 ∈ S;

(T2) if w ∈ S then w0 ∈ S;

(T3) every nonempty initial segment of w ∈ S belongs to S.

The set S with the set of arcs (w, wε), ε ∈ {0, 1}, forms a directed tree
rooted at the vertex 1. Label every arc (w,wε) by ε. Now, if we add another
vertex 0, and an arc (0, 1) labelled by 1, we get a rooted tree T (S), and every
element of S is the sequence of labels on some path beginning at 0. Every
vertex w 6= 0 has outdegree 1 or 2, and the outgoing arcs are labelled by
0, or by 0 and 1. If we start at 0 and choose an arc with label 1 whenever
possible, we get

Lemma 5.1 Let S be a tree-like NS. There exists an infinite binary sequence
M = M(S) = m1m2m3 . . ., m1 = 1, the maximal sequence of S, such that
every its initial segment Mk = m1 . . . mk is the lexicographically maximal
k-digit word in S.

The arcs labelled by 0 determine a partition of S into infinite sequences
C0, C1, . . . numbered in the increasing order of their initial elements. Let
Ci = (vi1, vi2, . . .). Then the numbers cij = n(vij) form the table of the NS
(S, n).
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Our three examples are tree-like.
In Example 1, we have M = 1000 . . ., and (bi) = (1, 2, 3, 4, . . .). The table

is a single row (1, 2, 3, 4, . . .). In Example 2, M = 1111 . . .; and bi = 2i.
Entries of the table are cij = (2i + 1)2j−1, for i ≥ 0, j ≥ 1: that is, the rows
start with the odd numbers, and each entry is double the one to its left.

In Example 3, the base sequence (bi) = (1, 2, 3, 5, 8, . . .) is the Fibonacci
sequence: b0 = 1, b1 = 2, bn = bn−1 + bn−2. Finally, M = 101010 . . .. The
table is the one given in Section 3.

In the other direction, a numeration system can be constructed as follows.
Take any infinite binary sequence M = m1m2 . . . beginning with m1 = 1;

for i = 0, 1, . . . let Mi be its initial segment of length i, and define M ′
i = Mi−10

for those i > 0 for which mi = 1;
Let S be the set of words w which begin with 1 and can be represented

in the form w = v′1 . . . v′sv, s ≥ 0, where v′i are some words M ′
j, and v is one

of Mi (if it exists, such representation is unique). We have M = M(S) (cf.
Lemma 5.1).

The base sequence of S is defined recursively by b0 = 1 and

bn = m1bn−1 + m2bn−2 + . . . + mnb0 + 1. (1)

And now, at last, the first non-trivial result of this section.

Theorem 5.2 Every numeration system which is both tree-like and based is
constructed by the above recipe from an infinite binary sequence M .

Conversely, every set S so constructed is a tree-like based numeration
system.

Proof The theorem immediately follows from three claims:
(1) If S is a based tree-like NS (for short, BTNS) with M = M(S) as in

Lemma 5.1 then its base sequence is given by the formula (1).
(2) There exists at most one BTNS with any given base sequence.
(3) The system S defined in the theorem is a BTNS with the base sequence

given by (1).

Proof of (1) The minimal word in S is 1: this implies that b0 = 1. For every
k ≥ 1, the maximal k-letter word in S is Mk, by Lemma 5.1; and the minimal
(k + 1)-letter word is Bk = 100 . . . 0 (k zeros). We have n(Bk)− n(Mk) = 1
which is equivalent to (1).
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Proof of (2) We shall show by induction that the sets Sk of words of length
k in S are determined uniquely; this is true for k = 1 (S1 = {1}). Given
Sk, the set Sk+1 consists of all words w0 for w ∈ Sk and, possibly, some of
the words w1. Let w′ be the immediate successor of w in Sk, or w′ = Bk

when w is maximal in Sk. We see that the word w1 is in Sk+1 if and only
if n(w′0) − n(w0) = 2, and thus the set Sk+1 is uniquely determined. Note
that if n(w′0)− n(w0) is less than 1 or greater than 2 then the BTNS does
not exist.

Proof of (3) Let S be the system defined in the theorem. We shall need
three properties of S which easily follow from the definition.

(a) If w1 ∈ S for some non-empty word w then w0 ∈ S, and in the
decomposition w0 = v′1 . . . v′sv the word v is empty.

(b) For each k ≥ 1, the word Mk is the maximal word of length k in S.
(c) For w ∈ S, the decomposition w = v′1 . . . v′sv can be found in one pass

from left to right, without backtracking and/or looking ahead.
Now, take an arbitrary word x ∈ S of length ≥ 2. We shall find the word

y ∈ S immediately preceding x in the lexicographic order, and check that
n(x)− n(y) = 1 — this will suffice to prove the claim.

If x = x′1 then by (a) we have x′0 ∈ S, therefore y = x′0 and n(x)−n(y) =
1, as required.

Let x = x′10 . . . 0, with k ≥ 1 zeros at the end. If x′ is empty then (b)
implies that y = Mk, and n(x)−n(y) = 1 from the recurrence (1). Otherwise
we can apply the property (a) to the word x′1 ∈ S to obtain that the word
x′0 is in S, and that in its decomposition x′0 = v′1 . . . v′sv the tail v is empty.
Therefore, appending to x′0 any word from S results again in a word from
S, and by (c) all words from S beginning with x′0 can be obtained in this
way. So, again by (b), we have y = x′0Mk. Again the recurrence (1) implies
that n(x)− n(y) = 1. So, the claim, and the theorem, are proved.

Our three examples have two features in common: first, that the sequence
M is periodic; second, that the numbers (bi) satisfy some linear recurrence.
The following theorem shows that these two properties are equivalent.

Theorem 5.3 Let S be a BTNS. Then its base sequence B(S) satisfies some
linear recurrence if and only if its maximal sequence M(S) is periodic. If
M(S) has a period of length p after an initial segment of length l then there
exists a linear recurrence for B(S) of degree at most p + l with integer coef-
ficients.
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Proof Let B(S) = (b0, b1, . . .), M(S) = m1m2 . . .. Take any real numbers
a1, . . . , ak. For i = 1, . . . , k define

xi = bk−i −
k−i∑
j=1

ajbk−i−j. (2)

In particular, we have xk = b0 = 1. Let also

d = a1 + . . . + ak − 1. (3)

Equation (1) implies that, for any n ≥ 0,

bn+k − a1bn+k−1 − a2bn+k−2 − . . .− akbn =

= (1 +
n+k∑
i=1

mibn+k−i)−

−a1(1 +
n+k−1∑

i=1

mibn+k−1−i)− . . .− ak(1 +
n∑

i=1

mibn−i)

=
n∑

i=1

mi(bn+k−i − a1bn+k−i−1 − . . .− akbn−i) +

+mn+1x1 + . . . + mn+kxk − d.

It follows that B(S) satisfies the recurrence bn+k = a1bn+k−1 + . . . + akbn

if and only if for every subword (mn+1 . . . mn+k) of M(S) we have

mn+1x1 + . . . + mn+kxk = d. (4)

If (4) holds then mn+k is uniquely determined by mn+1, . . . ,mn+k−1. As
there are only finitely many binary words of length k−1, the sequence M(S)
is periodic.

Conversely, let M(S) be periodic with period of length p after an initial
sequence of length l. Take k = l + p. We can easily satisfy the equations
(4) by taking x1 = . . . = xl = 0, xl+1 = . . . = xl+p = 1, and d equal
to the number of ones in the period. Then from the equations (2) we can
successively determine the numbers a1, . . . , ak−1:

ak−i = bk−i − xi −
k−i−1∑
j=1

ajbk−i−j.
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Finally, from the equation (3) we can find ak. The theorem is proved.
When M(S) is purely periodic with period of length p, the recurrence for

B(S) is especially simple: we can take

a1 = m1, a2 = m2, . . . , ap−1 = mp−1, ap = mp + 1.

l + p is not necessarily the lowest possible degree of the recurrence; an
interesting question is: how long can the period of M(S) be if B(S) satisfies
a recurrence of degree k?

6 Complete tables

The most interesting property of the Fibonacci table is its completeness: it
contains all sequences satisfying Fibonacci recurrence (Theorem 3.1). In this
section we shall give another, purely combinatorial proof of this fact, and
at the same time we shall find infinitely many other recurrences having the
same nice property.

Definition 6.1 Let S be a BTNS whose base sequence B = (b0, b1, b2, . . .)
satisfies the recurrence

bn+k = a1bn+k−1 + . . . + akbn. (5)

The system S is complete if every sequence of positive integers satisfying this
recurrence occurs, from some point on, in the successor table of S.

One way to demonstrate that a certain S is complete is the following:
to prove that every sequence of natural numbers satisfying (5) is a linear
combination with positive integer coefficients of some successor sequences (for
instance, of some shifts of the base sequence); and then to prove that every
such linear combination is a successor sequence from some point on. Note
that the base sequence always coincides with the first row of the successor
table.

Let us do this for the BTNS with the maximal sequence M(S) = (11 . . . 10)∗

(k−1 ones). The system S consists of all binary words not containing k con-
secutive ones; its base sequence satisfies the recurrence

bn+k = bn+k−1 + . . . + bn (6)
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with the initial values bi = 2i for i = 0, 1, . . . , k − 1. Going backwards, we
find:

b−1 = 1, b−2 = . . . = b−k = 0, b−(k+1) = 1.

Thus, the sequences satisfying (6) and beginning with k-tuples

b(0) = (1, 0, 0, . . . , 0, 0)

b(1) = (0, 1, 1, 2, . . . , 2k−3)

. . .

b(k−3) = (0, . . . , 0, 1, 1, 2)

b(k−2) = (0, 0, . . . , 0, 1, 1)

b(k−1) = (0, 0, . . . , 0, 0, 1)

are shifts of the base sequence.
The vectors b(0), b(1), . . . , b(k−1) form a basis of the k-dimensional row

space. One easily finds that

(a0, . . . , ak−1) = a0b
(0) + a1b

(1) + (a2 − a1)b
(2) + (a3 − a2 − a1)b

(3)

+ . . . + (ak−1 − ak−2 − . . .− a1)b
(k−1).

Thus, if (xn)n≥0 is any sequence of natural numbers satisfying (6) then the
k-tuple (xk, xk+1, . . . , x2k−1) is a linear combination of b(0), . . . , b(k−1) with
integer non-negative coefficients; and we have fulfilled the first part of our
plan.

For the second part, we introduce the following game. Fix a natural
number k ≥ 2. On the doubly infinite strip of squares indexed by integers
are placed finitely many pebbles (possibly, more than one pebble in a square).
One is allowed to make moves of two kinds.

1. If there are k consecutive non-empty squares, say n, n+1, . . . , n+k−1
then one can remove one pebble from each of them, and add one pebble to
the square n + k.

2. If a square n contains two or more pebbles then one can remove from
it two pebbles, and add to the squares n− k and n + 1 one pebble each.

Lemma 6.2 The game described above always terminates; and the final po-
sition depends only on the initial position, and not on the sequence of moves.
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Proof Let (wi)i∈Z be any sequence of real numbers satisfying the recurrence
(6). Every position in the game is determined by the sequence (ai) of non-
negative integers, all but finitely many of which are equal to 0. The weight
of the position A = (ai) is defined as

w(A) =
∑

wiai.

The rules of the game are chosen so that legal moves don’t change the weight
of the position. Also, they don’t increase the number of pebbles.

Now, let α be the positive root of the equation

xk = xk−1 + xk−2 + . . . + x + 1.

We have 1 < α < 2. Let wi = αi; obviously, this sequence satisfies (6).
First we shall prove by induction on the number of pebbles that the game

eventually stops. Consider the maximal index of a pebble in the position.
It does not decrease, but it cannot increase indefinitely (the weight of the
position is bounded) — therefore, from some moment on, the pebble with
the maximal index is left untouched, and we can apply induction to the
remaining pebbles.

In any final position, there is at most one pebble in each square, and there
are no k consecutive non-empty squares. To finish the proof it suffices to show
that any two different positions with these properties have different weights.
Let X = (xi) and Y = (yi) be two such positions; n — the maximal index
for which xn 6= yn; say, xn = 1, yn = 0. Let s =

∑
i>n wixi =

∑
i>n wiyi.

Then

w(X) ≥ s + αn;

w(Y ) < s +
∑
l≥0

k−1∑
i=1

αn−kl−i = s + αn;

and w(X) > w(Y ). The lemma is proved.

Now, let an =
∑

xibn+i be any linear combination of shifts of the base
sequence with non-negative integer coefficients. Take (xi) as the initial po-
sition of the above game; let (yi) be the corresponding unique final position.
As in the proof of the lemma, we have

∑
yibn+i =

∑
xibn+i = an. Let m be

the minimal index for which ym 6= 0. We see that, starting from n = −m,
the sequence (ai) is a successor sequence.
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By a similar but more involved argument one can prove that the nu-
meration system with the maximal sequence 100100100 . . . (and with the
recurrence bn+1 = bn + bn−2) is also complete. On the other hand, this is not
so for the recurrence bn+1 = bn + bn−3.

Problem. Classify all based tree-like numeration systems with recur-
rent base sequences which are complete.

Remark. Lemma 6.2 was given as a problem at 1997 Russian Mathe-
matical Olympiad, and was voted by the participants “the best problem of
the year”.

7 Exercise

Given n, form all possible sequences of positive integers with sum n. For
each such sequence, multiply the terms together; then take the sum of all
these products. What is the result?
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