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1 Hadamard matrices
Let H be an n×n matrix, all of whose entries are at most 1 in modulus. How large
can det(H) be?

This question was asked by Hadamard. It has some relevance to optimal de-
sign theory in statistics where minimising the determinant of the ‘information ma-
trix’ gives the most accurate estimates of unkown parameters (in a certain sense);
the information matrix is the inverse of a matrix obtained from the design, whose
determinant thus has to be maximised.

Now det(H) is equal to the volume of the n-dimensional parallelepiped spanned
by the rows of H. By assumption, each row has Euclidean length at most n1/2, so
that det(H)≤ nn/2; equality holds if and only if

• every entry of H is ±1;

• the rows of H are orthogonal, that is, HH> = nI.

A matrix attaining the bound is a Hadamard matrix
Notes:

• HH> = nI ⇒H−1 = n−1H>⇒H>H = nI, so a Hadamard matrix also has
orthogonal columns.

• Changing signs of rows or columns, permuting rows or columns, or trans-
posing preserve the Hadamard property.
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Examples of Hadamard matrices include

(+) ,
(

+ +
+ −

)
,


+ + + +
+ + − −
+ − + −
+ − − +

 .

Theorem 1 The order of a Hadamard matrix is 1, 2 or a multiple of 4.

We can ensure that the first row consists of all +s by column sign changes.
Then (assuming at least three rows) we can bring the first three rows into the
following shape by column permutations:

a︷ ︸︸ ︷
+ . . . +

b︷ ︸︸ ︷
+ . . . +

c︷ ︸︸ ︷
+ . . . +

d︷ ︸︸ ︷
+ . . . +

+ . . . + + . . . + − . . .− − . . .−
+ . . . + − . . .− + . . . + − . . .−


Now orthogonality of rows gives

a+b = c+d = a+ c = b+d = a+d = b+ c = n/2,

so a = b = c = d = n/4.

The Hadamard conjecture asserts that a Hadamard matrix exists of every order
divisible by 4. The smallest multiple of 4 for which no such matrix is currently
known is 668, the value 428 having been settled only in 2005.

2 Conference matrices
A conference matrix of order n is an n× n matrix C with diagonal entries 0 and
off-diagonal entries ±1 which satisfies CC> = (n−1)I.

We begin with some simple observations.

1. The defining equation shows that any two rows of C are orthogonal. The
contributions to the inner product of the ith and jth rows coming from the
ith and jth positions are zero; each further position contributes +1 or −1;
there must be equally many (namely (n−2)/2) contributions of each sign.
So n is even.
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2. The defining equation gives C−1 = (1/(n−1))C>, whence C>C = (n−1)I.
So the columns are also pairwise orthogonal.

3. The property of being a conference matrix is unchanged under changing the
sign of any row or column, or simultaneously applying the same permuta-
tion to rows and columns.

Using the third property above, we can assume that all entries in the first row
and column (apart from their intersection) are +1; then any row other than the
first has n/2 entries +1 (including the first entry) and (n−2)/2 entries −1. Let C
be such a matrix, and let S be the matrix obtained from C by deleting the first row
and column.

Theorem 2 If n ≡ 2 (mod 4) then S is symmetric; if n ≡ 0 (mod 4) then S is
skew-symmetric.

Proof Suppose first that S is not symmetric. Without loss of generality, we can
assume that S12 = +1 while S21 = −1. Each row of S has m entries +1 and m
entries −1, where n = 2m+2; and the inner product of two rows is −1. Suppose
that the first two rows look as follows:

0 + + · · ·+ + · · ·+ −·· ·− −·· ·−
− 0 + · · ·+︸ ︷︷ ︸

a

−·· ·−︸ ︷︷ ︸
b

+ · · ·+︸ ︷︷ ︸
c

−·· ·−︸ ︷︷ ︸
d

Now row 1 gives
a+b = m−1, c+d = m;

row 2 gives
a+ c = m, b+d = m−1;

and the inner product gives

a+d = m−1, b+ c = m.

From these we obtain

a = 1
2((a+b)+(a+ c)− (b+ c)) = (m−1)/2,

so m is odd, and n≡ 0 (mod 4).
The other case is similar.
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By slight abuse of language, we call a normalised conference matrix C sym-
metric or skew according as S is symmetric or skew (that is, according to the
congruence on n (mod 4)). A “symmetric” conference matrix really is symmet-
ric, while a skew conference matrix becomes skew if we change the sign of the
first column.

3 Symmetric conference matrices
Let C be a symmetric conference matrix. Let A be obtained from S by replacing
+1 by 0 and −1 by 1.Then A is the incidence matrix of a strongly regular graph
of Paley type: that is, a graph with n−1 vertices in which every vertex has degree
(n− 2)/2, two adjacent vertices have (n− 6)/4 common neighbours, and two
non-adjacent vertices have (n−2)/4 common neighbours. The matrix S is called
the Seidel adjacency matrix of the graph.

The complementary graph has the same properties.
Symmetric conference matrices are associated with other combinatorial ob-

jects, among them regular two-graphs, sets of equiangular lines in Euclidean
space, switching classes of graphs. Note that the same conference matrix can
give rise to many different strongly regular graphs by choosing a different row
and column for the normalisation.

A theorem of van Lint and Seidel asserts that, if a symmetric conference ma-
trix of order n exists, then n−1 is the sum of two squares. Thus there is no such
matrix of order 22 or 34. They exist for all other orders up to 42 which are con-
gruent to 2 (mod 4), and a complete classification of these is known up to order
30.

The simplest construction is that by Paley, in the case where n− 1 is a prime
power: the matrix S has rows and columns indexed by the finite field of order
n−1, and the (i, j) entry is +1 if j− i is a non-zero square in the field, −1 if it is
a non-square, and 0 if i = j.

Symmetric conference matrices first arose in the field of conference telephony.
In this connection, the following parameter is considered. Let C be a symmetric
matrix with 0 on the diagonal and ±1 elsewhere. Then the largest eigenvalue of
C2 is n−1, with equality if and only if C is a symmetric conference matrix. The
minimum largest eigenvalue of C2 (over all possible C) has been considered by
Goethals, who showed that it is n, n+1 or n+2 if there is a symmetric conference
matrix of order n + 1, n + 2, or n + 3 respectively; the minimum is attained only
by deleting 1, 2 or 3 rows and columns from such a conference matrix.
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4 Skew conference matrices
Let C be a “skew conference matrix”. By changing the sign of the first column,
we can ensure that C really is skew: that is, C> =−C. Now (C+ I)(C>+ I) = nI,
so H = C + I is a Hadamard matrix. By similar abuse of language, it is called a
skew-Hadamard matrix: apart from the diagonal, it is skew. Conversely, if H is a
skew-Hadamard matrix, then H− I is a skew conference matrix.

It is conjectured that skew-Hadamard matrices exist for every order divisible
by 4. Many examples are known. The simplest are the Paley matrices, defined
as in the symmetric case, but skew-symmetric because −1 is a non-square in the
field of order q in this case.

If C is a skew conference matrix, then S is the adjacency matrix of a strongly
regular tournament (also called a doubly regular tournament: this is a directed
graph on n− 1 vertices in which every vertex has in-degree and out-degree (n−
2)/2 and every pair of vertices have (n− 4)/4 common in-neighbours (and the
same number of out-neighbours). Again this is equivalent to the existence of a
skew conference matrix.

5 Dennis Lin’s problem
Dennis Lin is, for reasons of which I am unaware, interested in skew-symmetric
matrices C with diagonal entries 0 (as they must be) and off-diagonal entries ±1,
and also in matrices of the form H = C + I with C as described. He is interested
in the largest possible determinant of such matrices of given size. Of course, it
is natural to use the letters C and H for such matrices, but they are not necessar-
ily conference or Hadamard matrices. So I will call them cold matrices and hot
matrices respectiely.

Of course, if n is a multiple of 4, the maximum determinant for C is realised by
a skew conference matrix (if one exists, as is conjectured to be always the case),
and the maximum determinant for H is realised by a skew-Hadamard matrix. In
other words, the maximum-determinant cold and hot matrices C and H are related
by H = C + I.

In view of the conjecture, I will not consider multiples of 4 for which a skew
conference matrix fails to exist. A skew-symmetric matrix of odd order has deter-
minant zero; so there is nothing interesting to say in this case. So the remaining
case is that in which n is congruent to 2 (mod 4). Lin made the first half of the
following conjecture, and the second half seems as well supported:
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For orders congruent to 2 (mod 4), if C is a cold matrix with maximum
determinant, then C + I is a hot matrix with maximum determinant;
and, if H is a hot matrix with maximum determinant, then H− I is a
cold matrix with maximum determinant.

Of course, he is also interested in the related questions:

• What is the maximum determinant?

• How do you construct matrices achieveing this maximum (or at least com-
ing close)?

The eigenalues of a skew-symmetric real matrix are purely imaginary, and
come in complex conjugate pairs ±ia for real positive a. Then we see that

∑a2 = Trace(CC>) = n(n−1),

and we have
det(C) = ∏a2, det(H) = ∏(a2 +1).

We would not expect that det(H) is a monotonic function (or even a well-defined
function) of det(C) in general. But if det(C) is very large, then the values of a2

will be close together (the maximum product of n/2 real numbers with given sum
occurs when they are all equal), and so it is more likely that det(H) will also be
large.

The determinant of a hot matrix is bounded above by the maximum determi-
nant of an arbitrary ±1 matrix, given by a theorem of Ehlich [3] and Wojtas [7]:

Theorem 3 For n ≡ 2 (mod 4), the determinant of an n× n matrix with entries
±1 is at most 2(n−1)(n−2)(n−2)/2.

Exhaustive search in the 6× 6 case easily finds the maximal determinants of
hot and cold matrices, which are 81 and 160 respectively; Lin’s correspondence
is confirmed. Note that the Ehlich–Wojtas bound is met. The 10× 10 case is
rather large for exhaustive search, but I did a random search; the best determinants
I found were 33489 and 64000 respectively, and again Lin’s correspondence is
confirmed.

I was able to make the following small contribution to a lower bound:

Theorem 4 Let A be a skew conference matrix of order n+2, where n is congru-
ent to 2 (mod 4). Let C be the matrix obtained by deleting two rows of A and the
corresponding two columns. Then det(C) = (n+1)(n−2)/2.
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Proof A has eigenvalues ±
√

n+1, each with multiplicity (n + 2)/2. So the
numbers ±

√
n+1 are also eigenalues of C, with multiplicity at least (n− 2)/2,

and there is only one further pair of conjugate eigenalues, say ±
√

x. Then

(n−2)(n+1)+2x = n(n−1).

We deduce that x2 = 1, and so det(C) = (n+1)(n−2)/2, as claimed.

The analogous result for a hot matrix is obiously 2(n+2)(n−2)/2.

6 Comments from Will Orrick
After I publicised this problem, I had some comments from Will Orrick. He
pointed out that the bound of Ehlich and Wojtas is attained in some cases by hot

matrices of the form
(

A B
B> C

)
, where A,B,C are circulants and A and C are hot.

This enormously reduces the size of the search space. Examples exist for n = 6,
n = 14, n = 26, and n = 42.

He showed that a hot matrix of order n can achieve the Ehlich–Wojtas bound
only if 2n−3 is a perfect square. Here is the argument in his words:

Let H be a hot matrix attaining the bound. By suitable permu-
tations and negations of rows, H may be transformed into a matrix
such that the Gram matrix, HH>, has the standard optimal form, (n−
2)I +2I2⊗Jn/2. Here I2 is the 2×2 identity, Jn/2 is the (n/2)× (n/2)
all ones matrix, and ⊗ represents the Kronecker product. Performing
the same permutations and negations on columns that we performed
on rows preserves hotness, and therefore H>H has the same form.

Writing H =
(

A B
C D

)
, where A,B,C,D are (n/2)×(n/2) matri-

ces, Ehlich showed that the row/column sums of the four submatrices,
which we denote a,b,c,d, satisfy a = d, b = −c, a2 + b2 = 2n− 2.
Since A must be hot, we have a = 1 as before, and therefore b2 =
2n−3.

Orrick conjectured that the maximum determinant of a hot matrix of order n
is at least cnn/2 for some constant c. (Note that deleting two rows and columns of
a skew-Hadamard matrix of order n+2 falls short by a factor of about c/n.)

Finally, he is a bit sceptical about the truth of Lin’s correspondence in general.
He has found pairs of hot matrices with determinants around 0.45nn/2 where the
determinants of the corresponding cold matrices are ordered in the opposite way.
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