
Base size and separation number

Peter J. Cameron

CSG notes, April 2005

Brief history

The concept of a base for a permutation group was introduced by Sims in the
1960s in connection with computational group theory. It has proved to be of
theoretical importance as well. For example, Babai [1] used it in 1981 to give
an elementary bound for the order of a primitive but not 2-transitive permutation
group. Babai’s proof uses only combinatorial and probabilistic methods, although
stronger results can be proved using the Classification of Finite Simple Groups.

At the Slovenian Graph Theory conference in 2003, Mohar defined the rigidity
number and separation number of a graph. The rigidity number is just the base size
of the automorphism group, and the separation number is a related combinatorial
invariant. With hindsight, it is actually separation number rather than base size
which occurs in Babai’s proof. Both of these concepts can be defined for arbitrary
permutation groups. Here I say a few words about the relation between them, and
pose a couple of problems.

Definitions

Let G be a permutation group on a setX, of degreen = |X|. Theminimum base
sizeβ (G) is the smallest cardinality of a set of points whose pointwise stabiliser
is the identity. (Such a set is called abase.) Theseparation numberσ(G) is the
minimum numberk for which there exist pointsx1, . . . ,xk such that any two points
are in distinct orbits of the stabiliser of at least one ofx1, . . . ,xk. (A set with this
property is called aseparating set.)

For example, letG be the dihedral group of order 8 (the symmetry group of a
square). Two vertices on an edge of the square form both a base and a separating
set. It is clear that no smaller such sets can exist. Soβ (G) = σ(G) = 2.
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Bases are interesting to permutation group theorists because of the following
simple result:

Fact 0 2β (G) ≤ |G| ≤ nβ (G).
The upper bound holds because the images of a base under different group

elements must be different, and there are at mostnβ (G) such images. The lower
bound is true because a point which is fixed by its predecessors is ‘redundant’ and
cannot occur in a base of minimal size: so the stabiliser of the firsti points of the
base is a proper subgroup in the stabiliser of the firsti−1, and has index at least 2.

Results and problems

Fact 1 For any permutation groupG, we haveβ (G)≤ σ(G).
For a separating set is clearly a base.

Fact 2 If H ≤G, thenβ (H)≤ β (G) andσ(H)≤ σ(G).
For a base, resp. separating set forG is also a base, resp. separating set, forH.

Fact 3 If Gi acts onXi for i = 1,2, andG1×G2 acts onX1∪X2 (disjoint union),
thenβ (G1×G2) = β (G1)+ β (G2) andσ(G1×G2) = σ(G1)+ σ(G2).

For fixing points inX2 does not decrease the size of the group induced onX1 or
vice versa; so a base forG1×G2 must contain bases forG1 andG2. Similarly, no
point inX2 can separate a pair of points ofX1 in the sameG1-orbit orvice versa; so
a separating set forG must contain separating sets for bothG1 andG2. Conversely,
the union of two bases (resp. separating sets) is a base (resp. separating set) forG.

Fact 4 If G is not the trivial group, thenσ(G) = 1 if and only if β (G) = 1.
The forward implication is clear from Fact 1. If{x} is a base, then allGx-

orbits are singletons, so any two points lie in differentGx-orbits; that is,{x} is
separating.

In general,σ(G) is not bounded by any function ofβ (G), even for primitive
groups, as we will see. (Recall that a permutation groupG is primitive on X
if there is noG-invariant equivalence relation onX apart from equality and the
‘universal’ relationX×X; andG is doubly transitiveonX if it is transitive on the
set of ordered pairs of distinct elements ofX.)
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Fact 5 Let G have degreen> 2.Thenσ(G)≤ n−1, with equality if and only if
G is doubly transitive.

For all but one point ofX clearly forms a separating set. Now suppose that
σ(G) = n−1. Then for anyx1 6= x2, the setX\{x1,x2} is not separating; sox1 and
x2 lie in the sameGx3

orbit for anyx3 6= x1,x2. ThusGx3
is transitive onX \{x3}

for anyx3 ∈ X, andG is doubly transitive.

Fact 6 Let G be transitive of degreen and letGx haver orbits onX \{x}. Then

n≤ σ(G)+ rσ(G).

For G hasr orbitsO1, . . . ,Or on ordered pairs of distinct points; let

Oi(x) = {y : (x,y) ∈Oi}, O∗i (x) = {y : (y,x) ∈Oi}.

Let {x1, . . . ,xk} be a separating set withk = σ(G). Any additional pointx can be
labelled with thek-tuple (i1, . . . , ik), wherex ∈ Oi j

(x j) (that is,x j ∈ O∗i j
(x)). By

the definition of separating set, distinct points get distinct labels; son−k≤ rk.

Example Let
G = {x 7→ a2x+b : a,b∈ F,a 6= 0},

whereF is the Galois field of odd orderq. Now G is primitive with β (G) = 2.
In the notation of the preceding fact,r = 2, soσ(G) + 2σ(G) ≥ q, so σ(G) ≥
log2q−1.

Bojan Mohar has shown thatσ(G) is indeed about logq.
Note that adjoining field automorphisms (i.e. taking the full automorphism

group of the Paley graph) doesn’t change the separation number, while the base
size becomes 3 ifq is not prime.

Examples There are, on the other hand, many transitive groups withσ(G) =
β (G). Examples include:

• The dihedral group of order 2n (n≥ 3), acting on the vertices of ann-gon.
For two pointsx1,x2, there are at most two pointsy for which they lie in the
sameGy-orbit; if there are two, they are antipodal. So two non-antipodal
points form a separating set. (Such sets are precisely the minimal bases.)
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• For the symplectic group, preserving a non-degenerate alternating bilinear
form on a vector spaceV over a finite fieldF , the base size and separation
number are both equal to dim(V). For there is no smaller base: any set of
fewer than dim(V) vectors is contained by a hyperplane, and so fixed by a
transvection. But the orbits ofGv (for v 6= 0) are the sets

{w∈V : v·w = c}

for c∈ F , c 6= 0, as well as the set

{w∈V \ 〈v〉 : v·w = 0}.

and the singletons{λv} for eachλ ∈ F . Any vector is uniquely determined
by its inner products with the vectors of a basis forV; the orbits contain
more refined information, so any two points are separated by a basis.

Example If G = Sm acting on 2-element subsets of{1, . . . ,m}, for m≥ 3, we
have

σ(G) =
{

β (G), if m= 5 or if 3 dividesm;
β (G)+1, otherwise.

Here is the proof. We represent a set of 2-subsets of{1, . . . ,m} as the edge set
of a graph onn vertices. It is clear that a graph is a base if and only if it has at
most one isolated vertex and no isolated edge. If the graph contains a cycle, then
it is not a minimal base, since one edge of the cycle is fixed by the stabilisers of all
the others. So a minimal base is a forest. It is clear that the smallest such base is a
disjoint union of paths of length 2 together with some ‘end effects’ as follows: if
m= 3k, no end effect necessary; ifm= 3k+1, one isolated vertex; ifm= 3k+2,
join one of the two extra vertices to a vertex in the union of paths. Thus the
minimum base size is 2k if m= 3k or m= 3k+1, and is 2k+1 if m= 3k+2.

To finish the proof we need two facts about separating sets in this case.
(a) A forest whose components are stars on at least three vertices is a separat-

ing set. For suppose that two pairs{x,y} and{u,v} are not separated. Since the
orbits of the stabiliser of{x,y} are the singleton{{x,y}}, the pairs meeting{x,y}
in one point, and the pairs not meeting{x,y}, it must be the case that{x,y} and
{u,v} are non-edges and every edge meeting{x,y} meets{u,v} and vice versa.
So the two pairs must either be contained in the same component, or must meet
the same two components. A short case analysis shows that this is impossible.

This shows that ifm= 3k, the minimum base is a separating set (necessarily
minimal).
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(b) A forest containing an isolated vertexa and a path{b,c,d} of length 2 is
not a separating set. For the pairs{a,c} and{b,d} are not separated.

If m is not divisible by 3, andm 6= 5, then any minimum base contains an
isolated vertex and a path of length 2, so is not separating. However, assuming
that the base is a union of stars (as we may), joining the isolated vertex to the
centre of one of the stars gives a separating set, by (a). So the separation number
is one larger than the minimum base size.

For n = 5 it is easily checked directly that the minimum base
{{1,2},{1,3},{1,4}} is a separating set.

Fact 7 If G is primitive but not 2-transitive with degreen, then

σ(G)≤ 4n1/2 logn.

This is the theorem of Babai [1]. The example ofSm acting on 2-sets described
above shows that it is best possible apart from a factorclogn. Sinceβ (G)≤ σ(G)
and|G| ≤ nβ (G), we see that

|G| ≤ n4n1/2 logn.

Remark One can define the notion of irredundant separating set as is done for
irredundant bases: the points are chosen in order, and each new point strictly
decreases the meet of the orbit partitions. There are also versions of the greedy
algorithm: choose each new point so that the largest part of the meet is minimised,
or so that the number of parts is maximised. (See [4] for irredundant bases and
[2] for greedy bases.)

Remark Using the Classification of Finite Simple Groups, very strong results
have been proved about the base size of primitive groups. For example:

• EitherG is Sm or Am acting on 2-sets, withn = m(m−1)/2, or a subgroup
of SmoS2 (in the product action) containingA2

m, with n= m2, or elseβ (G)≤
cn1/3 log2n (this follows easily from the estimates for|G| in [3]);

• if G is almost simple, then eitherG is a symmetric or alternating group
acting on subsets or partitions, or a classical group acting on an orbit of
subspaces in its natural module, orβ (G) is bounded by an absolute constant
(a conjecture made in [5], proved in [6]).

It would be interesting to know whether any similar results (perhaps with an
extra logn factor) hold for the separation number. Specifically:
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Problem: Is it true thatσ(G)≤Cβ (G) logn for any primitive, not 2-transitive,
permutation groupG, for some constant C?
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