Solutions to Exercises
Chapter 5: The Principle of Inclusion and Exclusion

1 An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respec-
tively. Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12%

would be content with any of the three. What do you conclude?

By PIE, the percentage of voters who reject all candidates is
100—65—57—58+28+30+27—12= -7,

so there must be a mistake.

2 Make tables of the two kinds of Stirling numbers for small values ahdk.

1 1

-1 1 11

2 -3 1 1 31
-6 11 -6 1 1 7 6 1

(The easiest way is to use the recurrence relations of (5.3.2).)

3 Prove directly tha§(n, 1) = 1,S(n,2) =2"1—1, andS(n,n— 1) = (3). Find
a formula forS(n,n— 2).

An n-set has only one partition into one part. It hds-2 subsets other than
the empty set and the entire set; these fall ifto'2- 1 complementary pairs,
forming all the partitions into two parts.

A partition withn— 1 parts has one part of size 2 (which can be chosgh)in
ways), and all the others of size 1.

There are two types of partition with— 2 parts: either one part of size 3 and
the rest of size 1, or two of size 2 and the rest of size 1. So

Snn—2) = (2) + (2) (”;2>/2: n(n—1)(n—2)(3n—5) /24,

4 Prove thats(n,1)| = (n— 1)! using the recurrence relation, and show directly
that the number of cyclic permutations of mset is(n— 1)!.




We havels(n+1,1) =n|s(n,1)| 4 |s(n,0)| = n|s(n,1)|. Since|s(1,1)| =1, the
result follows by induction.

A cyclic permutation is specified by writing tlreelements of the sdtl, ... n}
inside a bracket in order (in! possible ways). However, the representation as a
cycle can start at any point, so each permutatiomhrapresentations. Thus there
aren! /n= (n— 1)! cyclic permutations.

5 This exercise outlines a proof thi#lt= S |_; S(n, k) (t)«.

(a) Lett be a positive integefl, = {1,...,t},andN = {1,...,n}. The numbe
of functionsf : N — T is t". Given such a functiorf, define an equivalenge
relation= onN by the rule

-~

i=j ifandonlyif f(i)=f(j).

The classes of this equivalence relation can be numb@red. ,Cy (say), or-
dered by the smallest points in the classes. @Goontains 1C, contains the
smallest number not i@1; and so on.) Then the valud$C,),..., f(Cy) arek
distinct elements of, and so can be chosen (t)x ways; the partition can be
chosen inS(n, k) ways. Summing ovek proves the identityor the particular
value of t

(b) Prove that if a polynomial equatidn(t) = G(t) is valid for all positive
integer values of the argumenthen it is the polynomials andG are equal.

1%

(a) Follow the outline. The relatios is easily seen to be an equivalence rela-
tion, andf induces an injection from the set of its equivalence classgk to. ,t}.
There are thu§(n,k)(t)k functions with justk values. (For example, with= 3,
there aret functions with f(1) = f(2) = f(3); t(t — 1) functions with f(1) =
f(2) # f(3), and similarly for the other two cases where two values are equal;
andt(t — 1)(t — 2) functions with all values distinct.) S8 = 5 _; S(n,k)(t)k for
this value oft.

(b) letH(t) = F(t) — G(t). If H is not identically zero, and its degreers
then it can have at mostroots. So, ifH(t) = O for every natural number then
H(t) is the zero polynomial.

Now apply this withF (t) =t" andG(t) = S¢_; S(n, k) (t)k.



6 For this exercise, recall the Bernoulli numbB¥s) from Exercise 19 of Chap
ter 4, especially the fact that their e.g.ftjgexp(t) — 1). Derive the formula

N (—1)*KIS(n,k)
Zl (k+1)

for the nt" Bernoulli number.
We have

B t < B(nt"
SO o1

On the other hand, we have

log(1+t) 1+t rltn

P

F(t) =

SinceG(t) = F(exp(t) — 1), (5.4.2) gives

& S(nk)(—1)kk!
=3 e

7 Let(fn) and(gn) be sequences, with e.g.Fgt) andG(t) respectively. Shov
the equivalence of the following assertions:

@0 = 3r_o () fi
(b) G(t) = F(t) exp(t).

<

Assuming (b), we have

nf, 1 N /n
= | —_——
Gn =1 L K (n—K)! k; (k) fi

The converse is proved by reversing the argument.

8 Show that a permutation which is a cycle of lengthcan be written as |a
product ofm— 1 transpositions. Deduce that it is an even permutation iff and
only if its length is odd. Hence show that an arbitrary permutation is even if and

only if it has an even number of cycles of even length (with no restriction on
cycles of odd length).




(a1a2 ... am) = (a1 a&)(a1 a3) ... (a1 am),

as can be seen by considering the effect of both sides on any point. (On the right,
a1 is mapped tay by the first factor and fixed by the others; fokli < m, g is
mapped tay by the(i — 1)st factor and then te;; 1 by theith, being unchanged
by all other factors; andy, is fixed by all factors but the last, which maps itap
This is exactly the specification of the cycle on the left.)

The parity of the number of transpositions is thus opposite to that of the cycle
length.

A permutation has even parity if and only if it contains an even number of
cycles of odd parity (even length), with the number of cycle of even parity (odd
length) being irrelevant.

9 This exercise outlines the way in which the sign of permutations is normally
treated by algebraists. Lg{, ..., X, be indeterminates, and consider the polyno-
mial
F(X1,-. %) = [](X —xi).
i<]

Note that every pair of indeterminates occur together once in a brackeis #
permutation, therr (X1r, ..., Xnr) iS also the product of all possible differences
(but some have had their signs changed). So

F(Xam, - - -, Xnm) = SIQN(TOF (X1, ..., Xn),

where sigifrt) = +1 is the number of pair$i, j} whose order is reversed by
Prove that

¢ sign is a homomorphism;

e if Tis atransposition, then sign = —1.

For brevity, letF™ denoteF (Xyy, . . ., Xarr). Then the sign function is defined in
this exercise by sigm) = F™/F.

(a) Lettt, 0 be permutations. Let = xxfori=1,...,n. ThenF™=F (y,...,Yn)
andF™ =F(yig,...,Yno)- Thus

F™/F™ = sign(o).



Multiplying both sides by 1t/F = sign(tt), we have

sign(ro) = sign(m)sign(o),

so that sign is a homomorphism, as required.

(b) Lett be the transpositiofi j) for i < j. Which factors change sign i'?
The factor(x; — x;) changes. Any factor involving neith&r nor x; is unaffected.
The factors(xx — xi) and (xc — Xj) are interchanged fok > j, and the factors
(xi —xx) and(x; — x¢) are interchanged fdt < i. If i <k < j, then(xc — %) maps
to the negative ofx; — x«), andvice versathese sign changes cancel. So the net
sign change is odd, and we have gign= —1.

It follows that sigr{r) = (—1)™if Ttis a product omtranspositions. Moreover,
the kernel of sign, the set of permutations with sigh, is a normal subgroup of
the symmetric group with index 2, and hence onde2, forn > 2.

10 Recall from Section 3.8 that@reorderis a reflexive and transitive relation
which satisfies trichotomy. Prove that the exponential generating function for
the number of preorders on arset is 1/ (2 —exp(t)).

There aren! orders on a set of siz& so the e.g.f. for the number of orders is
Snsonit"/nl =1/(1-t).

According to Chapter 3, Exercise 19, a preorde{@n..,n} is specified by
a partition on this set (intl parts, say), and an order on the set of parts. So the
number of preorders is given ps = S¢_; S(n,k)k!.

By (5.4.2), we have

Pnt" _ 1 — 1
3.5 - e

11 (a) Show that the smallest number of transpositiong f..,n} whose
product is am-cycle isn— 1.

(b) Prove that any-cycle can be expressedifi—2 different ways as a prod-
uct of n— 1 transpositions.

By (5.5.2), the number of cycles @it exceeds that oft by at most 1, ift is
a transposition. Iftis ann-cycle and is a product oh transpositiong1, ..., T,
thentty. .. 11 is the identity, withn cycles of length 1; ssmm > n—1.

We use the fact that a graph withvertices anch — 1 edges is connected if
and only if it is a tree (see Section 11.2). To each transpositipin there is a
corresponding edgf, j } on the vertex sefl,...,n}. We claim that the product

5



of n— 1 transpositions is an-cycle if and only if the corresponding edges form
a tree. One way round, if the graph is not a tree, then there are two points which
cannot be connected by a path, and no permutation composed of the transpositions
can carry one to the other.

For the converse, lat, ..., 1,_1 correspond to the edges,...,e,_1 of a tree.
We show by induction om that the graphGy, with edge sef{ey,...,en} has
n—m+ 1 connected components, each of which is a treetandty, is a product
of n—m+ 1 distinct cycles, one on each componentGyf. This is clear for
m=0 (or 1). Assume that it holds fan. Theney1 joins vertices in different
components o5, SO composing with, 1 stitches two of the cycles af - - - Ty,
together, completing the inductive step.

By Cayley’s Theorem, there an8—2 trees on{1,...,n}; each has — 1 edges,
which can be ordered arbitrarily, so there afe?(n— 1)! products ofn transpo-
sitions which form a single cycle. By symmetry, each of the- 1)! cycles (see
Exercise 4) occurs equally often, necessarfly? times.



