
Solutions to Exercises
Chapter 5: The Principle of Inclusion and Exclusion

1 An opinion poll reports that the percentage of voters who would be satisfied
with each of three candidates A, B, C for President is 65%, 57%, 58% respec-
tively. Further, 28% would accept A or B, 30% A or C, 27% B or C, and 12%
would be content with any of the three. What do you conclude?

By PIE, the percentage of voters who reject all candidates is

100−65−57−58+28+30+27−12=−7,

so there must be a mistake.

2 Make tables of the two kinds of Stirling numbers for small values ofn andk.

1
−1 1
2 −3 1
−6 11 −6 1

1
1 1
1 3 1
1 7 6 1

(The easiest way is to use the recurrence relations of (5.3.2).)

3 Prove directly thatS(n,1) = 1, S(n,2) = 2n−1−1, andS(n,n−1) =
(n

2

)
. Find

a formula forS(n,n−2).

An n-set has only one partition into one part. It has 2n−2 subsets other than
the empty set and the entire set; these fall into 2n−1− 1 complementary pairs,
forming all the partitions into two parts.

A partition withn−1 parts has one part of size 2 (which can be chosen in
(n

2

)
ways), and all the others of size 1.

There are two types of partition withn−2 parts: either one part of size 3 and
the rest of size 1, or two of size 2 and the rest of size 1. So

S(n,n−2) =
(

n
3

)
+
(

n
2

)(
n−2

2

)
/2 = n(n−1)(n−2)(3n−5)/24.

4 Prove that|s(n,1)|= (n−1)! using the recurrence relation, and show directly
that the number of cyclic permutations of ann-set is(n−1)!.
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We have|s(n+1,1) = n|s(n,1)|+ |s(n,0)|= n|s(n,1)|. Since|s(1,1)|= 1, the
result follows by induction.

A cyclic permutation is specified by writing then elements of the set{1, . . . ,n}
inside a bracket in order (inn! possible ways). However, the representation as a
cycle can start at any point, so each permutation hasn representations. Thus there
aren!/n = (n−1)! cyclic permutations.

5 This exercise outlines a proof thattn = ∑n
k=1S(n,k)(t)k.

(a) Lett be a positive integer,T = {1, . . . , t}, andN = {1, . . . ,n}. The number
of functions f : N→ T is tn. Given such a functionf , define an equivalence
relation≡ onN by the rule

i ≡ j if and only if f (i) = f ( j).

The classes of this equivalence relation can be numberedC1, . . . ,Ck (say), or-
dered by the smallest points in the classes. (SoC1 contains 1;C2 contains the
smallest number not inC1; and so on.) Then the valuesf (C1), . . . , f (Ck) arek
distinct elements ofT, and so can be chosen in(t)k ways; the partition can be
chosen inS(n,k) ways. Summing overk proves the identityfor the particular
value of t.

(b) Prove that if a polynomial equationF(t) = G(t) is valid for all positive
integer values of the argumentt, then it is the polynomialsF andG are equal.

(a) Follow the outline. The relation≡ is easily seen to be an equivalence rela-
tion, andf induces an injection from the set of its equivalence classes to{1, . . . , t}.
There are thusS(n,k)(t)k functions with justk values. (For example, witht = 3,
there aret functions with f (1) = f (2) = f (3); t(t − 1) functions with f (1) =
f (2) 6= f (3), and similarly for the other two cases where two values are equal;
andt(t−1)(t−2) functions with all values distinct.) Sotn = ∑n

k=1S(n,k)(t)k for
this value oft.

(b) let H(t) = F(t)−G(t). If H is not identically zero, and its degree ism,
then it can have at mostm roots. So, ifH(t) = 0 for every natural numbert, then
H(t) is the zero polynomial.

Now apply this withF(t) = tn andG(t) = ∑n
k=1S(n,k)(t)k.
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6 For this exercise, recall the Bernoulli numbersB(n) from Exercise 19 of Chap-
ter 4, especially the fact that their e.g.f. ist/(exp(t)−1). Derive the formula

B(n) =
n

∑
k=1

(−1)kk!S(n,k)
(k+1)

for thenth Bernoulli number.

We have

G(t) =
t

exp(t)−1
= ∑

n≥0

B(n)tn

n!
.

On the other hand, we have

F(t) =
log(1+ t)

t
= ∑

n≥0

(−1)ntn

n+1
.

SinceG(t) = F(exp(t)−1), (5.4.2) gives

B(n) =
n

∑
k=1

S(n,k)(−1)kk!
k+1

.

7 Let ( fn) and(gn) be sequences, with e.g.f.sF(t) andG(t) respectively. Show
the equivalence of the following assertions:

(a)gn = ∑n
k=0

(n
k

)
fk;

(b) G(t) = F(t)exp(t).

Assuming (b), we have

gn = n!
n

∑
k=0

fk
k!

1
(n−k)!

=
n

∑
k=0

(
n
k

)
fk.

The converse is proved by reversing the argument.

8 Show that a permutation which is a cycle of lengthm can be written as a
product ofm− 1 transpositions. Deduce that it is an even permutation if and
only if its length is odd. Hence show that an arbitrary permutation is even if and
only if it has an even number of cycles of even length (with no restriction on
cycles of odd length).
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(a1 a2 . . . am) = (a1 a2)(a1 a3) . . .(a1 am),

as can be seen by considering the effect of both sides on any point. (On the right,
a1 is mapped toa2 by the first factor and fixed by the others; for 1< i < m, ai is
mapped toa1 by the(i−1)st factor and then toai+1 by theith, being unchanged
by all other factors; andam is fixed by all factors but the last, which maps it toa1.
This is exactly the specification of the cycle on the left.)

The parity of the number of transpositions is thus opposite to that of the cycle
length.

A permutation has even parity if and only if it contains an even number of
cycles of odd parity (even length), with the number of cycle of even parity (odd
length) being irrelevant.

9 This exercise outlines the way in which the sign of permutations is normally
treated by algebraists. Letx1, . . . ,xn be indeterminates, and consider the polyno-
mial

F(x1, . . . ,xn) = ∏
i< j

(x j −xi).

Note that every pair of indeterminates occur together once in a bracket. Ifπ is a
permutation, thenF(x1π, . . . ,xnπ) is also the product of all possible differences
(but some have had their signs changed). So

F(x1π, . . . ,xnπ) = sign(π)F(x1, . . . ,xn),

where sign(π) = ±1 is the number of pairs{i, j} whose order is reversed byπ.
Prove that

• sign is a homomorphism;

• if τ is a transposition, then sign(τ) =−1.

For brevity, letFπ denoteF(x1π, . . . ,xnπ). Then the sign function is defined in
this exercise by sign(π) = Fπ/F .

(a) Letπ, σ be permutations. Letyi = xiπ for i = 1, . . . ,n. ThenFπ = F(y1, . . . ,yn)
andFπσ = F(y1σ, . . . ,ynσ). Thus

Fπσ/Fπ = sign(σ).
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Multiplying both sides byFπ/F = sign(π), we have

sign(πσ) = sign(π)sign(σ),

so that sign is a homomorphism, as required.
(b) Let τ be the transposition(i j ) for i < j. Which factors change sign inFτ?

The factor(x j −xi) changes. Any factor involving neitherxi nor x j is unaffected.
The factors(xk− xi) and (xk− x j) are interchanged fork > j, and the factors
(xi−xk) and(x j −xk) are interchanged fork< i. If i < k< j, then(xk−xi) maps
to the negative of(x j −xk), andvice versa; these sign changes cancel. So the net
sign change is odd, and we have sign(τ) =−1.

It follows that sign(π) = (−1)m if π is a product ofmtranspositions. Moreover,
the kernel of sign, the set of permutations with sign+1, is a normal subgroup of
the symmetric group with index 2, and hence ordern!/2, for n≥ 2.

10 Recall from Section 3.8 that apreorderis a reflexive and transitive relation
which satisfies trichotomy. Prove that the exponential generating function for
the number of preorders on ann-set is 1/(2−exp(t)).

There aren! orders on a set of sizen; so the e.g.f. for the number of orders is
∑n≥0n!tn/n! = 1/(1− t).

According to Chapter 3, Exercise 19, a preorder on{1, . . . ,n} is specified by
a partition on this set (intok parts, say), and an order on the set of parts. So the
number of preorders is given bypn = ∑n

k=1S(n,k)k!.
By (5.4.2), we have

∑
n≥0

pntn

n!
=

1
1− (exp(t)−1)

=
1

2−exp(t)
.

11 (a) Show that the smallest number of transpositions of{1, . . . ,n} whose
product is ann-cycle isn−1.

(b) Prove that anyn-cycle can be expressed innn−2 different ways as a prod-
uct ofn−1 transpositions.

By (5.5.2), the number of cycles ofπτ exceeds that ofπ by at most 1, ifτ is
a transposition. Ifπ is ann-cycle and is a product ofm transpositionsτ1, . . . ,τm,
thenπτm. . .τ1 is the identity, withn cycles of length 1; som≥ n−1.

We use the fact that a graph withn vertices andn−1 edges is connected if
and only if it is a tree (see Section 11.2). To each transposition(i j ) there is a
corresponding edge{i, j} on the vertex set{1, . . . ,n}. We claim that the product
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of n−1 transpositions is ann-cycle if and only if the corresponding edges form
a tree. One way round, if the graph is not a tree, then there are two points which
cannot be connected by a path, and no permutation composed of the transpositions
can carry one to the other.

For the converse, letτ1, . . . ,τn−1 correspond to the edgese1, . . . ,en−1 of a tree.
We show by induction onm that the graphGm with edge set{e1, . . . ,em} has
n−m+1 connected components, each of which is a tree, andτ1 · · ·τm is a product
of n−m+ 1 distinct cycles, one on each component ofGm. This is clear for
m = 0 (or 1). Assume that it holds form. Thenem+1 joins vertices in different
components ofGm, so composing withτm+1 stitches two of the cycles ofτ1 · · ·τm

together, completing the inductive step.

By Cayley’s Theorem, there arenn−2 trees on{1, . . . ,n}; each hasn−1 edges,
which can be ordered arbitrarily, so there arenn−2(n−1)! products ofn transpo-
sitions which form a single cycle. By symmetry, each of the(n−1)! cycles (see
Exercise 4) occurs equally often, necessarilynn−2 times.
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