Solutions to Exercises
Chapter 3: Subsets, partitions, permutations

1 A restaurant near Vancouver offered Dutch pancakes with ‘a thousand and
one combinations’ of toppings. What do you conclude?

Since 100 (144), it is plausible that there were fourteen different toppings,
of which any four could be chosen. (In fact, 1001 simply meant a large number;
there were 25 different toppings, any subset being permitted.)

2 Using the numbering of subsets €9,1,...,n— 1} defined in Section 3.]
prove that, itXy C X, thenk <1 (but not conversely).

-

Let (ap,...,an—1) and(by,...,bh_1) be the characteristic functions ¥ and
X (the binary digits ofk andl respectively). Each ody andb; is either zero or
one. If Xy C X, then it is impossible that; = 1 andb; = 0; henceg; < b; for all i,
and so _ _
k= Zaz' < Zbiz' =1.
The converse is false: & 2, butX; = {0} is not a subset ok, = {1}.

3 Prove that, for fixech, the greatest binomial coefficierff) occurs when
k=[n/2] or [n/2].

The ratio of successive binomial coefficients is given(p},)/(y) = (n—
k)/(k+1). Now, ifk < (n—1)/2, thenn+k > k+ 1, and this ratio is greater than
1, so the binomial coefficients increasenlis odd, then the ratio is equal to 1 for
k=(n—1)/2,so that(,, 3, ») = ((n11)/2)" after that, the ratio is less than 1 and
the coefficients decrease again. So the two middle coefficients are the largest. If
is even, the ratio is never equal to 1, and so the largest binomial coefficient is the
first for which the ratio is less than 1, namﬂ}?z).
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(@) LetX be ann-set. Count pairgY,Z) withZCY C X and|Y| =k, |Z| =1.
There arg(})) choices foiY, and ther(¥) choices of ah-subseZ of Y. Alternately,
there are(|) choices ofZ; then we obtairy by choosingk — | points fromX\ Z
to adjoin toZ, and sinceX \ Z| = n—1, this can be done iff}|) ways.

If k < I, then no choices are possible, and both sides are zero, as a result of our
conventions about binomial coefficients.

(b) Choose a team dfplayers from a class with girls andn boys.

(c) The result can be proved by induction, being clear wken0. Assuming
it for k— 1, we have
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and the induction step is proved.

(d) Differentiating the Binomial Theorem givesy_, k(p)t<t = n(1+t)"1
(the term withk = O is constant and its derivative is zero). Now pui 1.

(e) Consider the identityl +t)"(1—t)" = (1—t2)", and calculate the coef-
ficient of t". On the left, we multiply the coefficient afK in (1+t)" (which is
(") = (1)) by the coefficient of® in (1—1t)" (which is(—1)%(})), and sum over
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k. On the right, it is zero ih is odd (since only even powers pfppear), and
(=1"2(,},) if nis even, as required.

5 Following the method in the text, calculate the number of subsets nfsat
of size congruenttan (mod 3 (m= 0,1, 2) for each value ofi (mod 6.

Leta = €?/3 andp = &*/3 be the two cube roots of unity. Thentlo + 8 =
0. We have

kio() = (1+1"=2"

The values of—p)"are 1 —B,a,—1,3,—a accordingas=0,1,2,3,4,5 (mod 6).
Also, 1+ 0oX+BX=3if k=0 (mod 3, and 0 otherwise. Adding the three
equations shows that the number of subsets of size divisible by 3 is equal to
2"+ (—B)"+ (—a)")/3, which is(2"+2)/3, (2"+1) /3, (2"—-1)/3, (2" - 2)/3,
(2"—1)/3, or(2"+1)/3, depending on the congruencenahodulo 6.

For sets of size congruent to 1 mod 3, multiply the second equatior byd
the third byp? before adding; for 2 mod 3, use the multiplierandp instead.

6 Letk be a given positive integer. Show that any non-negative infdgem be
written uniquely in the form

- Xk Xk_1 X1
= (o) () ()
where 0< x; < ... < X1 < X% [HINT: Letx be such tha(}) <N < (*I*1).
Then any pOSSIb|e representation kxgs= x. Now use induction and the fact
thatN — (}) < (.%;) (Fact 3.2.5) to show the existence and uniqueness of the

representation.]
Show that the order df-subsets corresponding in this way to the usual

order of the natural numbers is the same as the reverse lexicographic order gen-
erated by the algorithm in Section 3.11.1f: 3 _, (?:]J) = (")




GivenN andk, choosex such that(y) < N < (Xil). We must have < x.

Moreover,
i(>g> - i(w—_kﬂ) . (xk+1> o

G\ & [ k
(the first inequality holding sincg < xx — k-+1i and the second by Exercise 3(c));
soXx < xwould be impossible. Thus we must hage= x. By induction ork, the
integerN — (i) has a unique expression in the same form wWith1 replacingk;
and, as in the hint, Fact 3.2.5 shows that; < xx. So the result is proved.

The last part is proved by induction; the inductive step involves considering
the algorithm (3.12.3). Suppose that, in the expressioiNfare havex; = n+1i
fori=1,....,r—1,andx >n+r. Theny!_; (¥) = ("I") — 1, by Exercise 3(c)
(note that the term= 0 is missing from the sum). So, if we increage; by 1 and
setx, =i—1fori <r—1, the corresponding sum is increased by 1, and represents
N+ 1. So thek-set representintyl + 1 is the same as the next one produced by
(3.12.3), that is, the next in reverse lexicographic order.

7 Use the factthatl+t)P =1+tP (modp) to prove by induction thatP = n
(mod p) for all positive integers..

Clearly ’ =1 (modp). Assuming that the result is true foy we have
(14+nP=1+nP=1+n (modp),

the first congruence by the given fact and the second by the inductive hypothesis.
So the inductive step holds.
The given fact is proved on page 28.



8 A computer is to be used to calculate values of binomial coefficients.| The
largest integer which can be handled by the computer is 32767. Four possible
methods are proposed:

) (E) — nl /K (n—K)!;

@ (i)
n n n n—k+1 _

©)) (O) =1, (k) = (k—l) e fork > 0;
n n n n-1 n—1 .

4) (O) = (n) =1, (k) = (k—l) +< K ) for 0 <k < n (i.e., Past

cal’s Triangle).

nin—1)...(n—k+1)/k!;

For which values ofi andk can () be calculated by each method? What can
you say about the relative speed of the different methods?

Method 1 will fail if n! > 32767, that s, ifi > 7; so it computegy) forn < 7.
Method 2 requires the numerator to be at most 32767; so, for givieworks
for n up to some valua(k), wheren(k) = 32767, 181, 33, 15, 10, 8, 7 far=
1,....7.
Method 3 requiregy) (n—k+ 1) < 32767, which bounds by a similar func-
tion m(k); we find thatm(k) = 32767, 181, 41, 22, ... .
Method 4 reaches each binomial coefficient “from below”, so it calculates all
those(}}) which do not exceed 32767. For example, kot 2, 3 it works up to
n = 256, 59 respectively. (In addition, it is the only method which workskfor
close ton.)

Of the best two, methods 3 and 4, we see that 3 is inferior in terms of the range
of values for which it works. It is faster for computing a single binomial coeffi-
cient, requiring onlyk — 1 multiplications anck — 1 divisions, whereas method 4
needs roughlyk additions. But method 4 is preferable if the entire Pascal triangle
is required, since each addition yields a new piece of data.

9.

9 Show that there argn— 1)! cyclic permutations of a set af points.

A cyclic permutation, written in cycle form, consists of th@oints written in
some order inside a bracket. There ar@rders. However, the cycle can start at



any point, and sa orders yield the same cyclic permutation. Thus, the number of
cyclic permutations is! /n= (n—1)!, as required.

10 Theorder of a permutationtis the least positive integen such that™ is
the identity permutation. Prove that the order of a cycle@oints isn. Prove
that the order of an arbitrary permutation is the least common multiple of the
lengths of the cycles in its cycle decomposition.

If the pointx lies in ann-cycle of 11, then on successive applications mof
x visits in turn all the points of the cycle, returning to its starting point after
applications. Soqt" = x andxt # xfor 0 < k < n.

Thus, ifTtis a singlen-cycle, thenr® is not the identity for 0< k < n; but Tt"
maps every point to itself, that i is the identity. So the order afis n.

More generally, we see thai® = x if and only if k is a multiple of the length
of the cycle in whichx lies. So, for an arbitrary permutatian we see thaf
is the identity if and only ifk is a multiple of the length of every cycle of So
the order offt, being the least positiMefor which this holds, is the least common
multiple of the cycle lengths.

11 How many words can be made from the letters of the VEBTATE?

There are 24- 24+ 12+ 4+ 1 = 65 words with no repeated letters. If E but
not T is repeated, there are 1®+6-6+3-3+ 1 = 106 words. (If there are
n— 2 further letters, then there af§) positions for the Es, an¢B),_» choices
for the positions of the other letters, whe®y =n(n—1)---(n—k+1).) The
same number occur if T but not E is repeated. If both pairs are repeated, there are
15-6-2+10-3-2+ 6 = 246 words. (Choose the positions for the Es, then those
for the Ts, then those for the remaining letters.) In total, 523 words.

12 Givenn letters, of whichm are identical and the rest are all distinct, find a
formula for the number of words which can be made.

If we usek of themidentical letters andof the others, there ar(éﬁ') (n—m),
possible words. Now sum ovkrandl.

13 Show that, fom = 2,3,4,5, 6, the number otinlabelledtrees om vertices
is1,1, 2,3, 6respectively.

This is done by drawing the trees: foe= 4, the two trees are a path with three
edges, or three edges radiating from a central vertex. As a check that nothing
has been forgotten, the number of labellings of a tree is equrildivided by the
number of automorphisms (symmetries) of the tree. (So, for example, the 4-vertex



path has two symmetries, the identity and reversal, and the other tree has six, since
the three edges can be permuted arbitrarily; and we hag\&44!/6 = 442, in
accordance with Cayley’s Theorem.)

You can find drawings of the trees in N. J. A. Sloane and S. Plouife,
Encyclopedia of Integer Sequencésademic Press, 1995, Figure M0791. The
sequence is online here.

14 The line segments fron,logi) to (i + 1,log(i + 1)) lie below the curve
y = logx. (This is because the curve is convex, i.e., its second derivative
—1/%? is negative.) The area under these line segments frenl toi = n
is logn! + % log(n+ 1), since it consists of the rectangles of Fig. 3.1(b) together
with triangles with width 1 and heights summing to (ag- 1). Deduce that

veomii(l)’

This is mostly spelt out in the question. The area of the rectangjgs jdogi =
logn!, while the triangles add up to half a rectangle of heigh{iog1). So

logn! + % log(n+1) < flr‘*llogxdx =(n+1)log(n+1)—(n+1)+1,

giving n! <+/n+1((n+1)/e)". The final result is obtained using the fact that
(n+1)" < en" (see Exercise 3(b) of Chapter 2).

15 Use Stirling’s Formula to prove that

(Znn) PN

By Stirling’s formula,

<2n) (2n)!  V4Am(2n/e) 2%

n

~ (27 2mn/en  ym’

(Check the definition of the relation to ensure that this is valid.)
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16 (a) Letn = 2k be even, anX a set ofn elements. Define factor to be a
partition of X into k sets of size 2. Show that the number of factors is equal to
1-3-5---(2k—1). This number is sometimes callediauble factoria] written
(2k—1)!! (with !! regarded as a single symbol, the two exclamation marks|sug-
gesting the gap of twayotthe factorial function iterated!)

(b) Show that a permutation of interchangesome ksubset with its com

plement if and only if all its cycles have even length. Prove that the number of
such permutations ig2k — 1)!1)2.

(c) Deduce that the probability that a random elemeng§pfnterchange
somejn-set with its complement i©(1//n).

[

We get a 1-factor by writingn/2 boxes each with room for two entries, and
filling them with the elements,1..,n. These can be written in the boxesrh
ways. However, permuting the boxes khways), or the elements within the
boxes (in ¥ ways) doesn’t change the 1-factor. The product of these numbers is
2.4.6...(2Kk); dividing, we obtain 13.5... (2k— 1) = (2k— 1)!! for the number of
1-factors.

(b) Suppose that thiesetA is exchanged with its complemeBtby a permu-
tation. Then elements éfandB alternate around each cycle, which thus has even
length. Conversely, if all cycles have even length, we may colour the elements in
each cycle alternately red and blue; the red and blue sets are then exchanged.

From a permutation with all cycles even we obtain a pair of 1-factors as fol-
lows. A 2-cycle is assigned to both 1-factors; in a longer cycle, the consecutive
pairs are assigned alternately to the two 1-factors. The process isn’t unique, since
the starting point isn't specified; indeed, a permutation gives risé tr@ered
pairs of 1-factors, wherd is the number of cycles of length greater than 2.

Conversely, let a pair of 1-factors be given. Their union is a graph with all
vertices of valency 2, thus a disjoint union of circuits, all of even length (since the
1-factors alternate around a circuit). We take these circuits to be the cycles of a
permutation. In fact, for a circuit of length greater than 2, there are two choices
for the direction of traversal. So the number of permutations obtainét vgtzre
d is as before.

(c) The proportion is

k

((2k—1)M)2/(2k)! = rl(l— 1/2i)

K .
< iI:le 1/2i
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= e Sia(1/21)
e logk/2+0(1) _ O(kfl/Z).

17 How many relations on an-set are there? How many are (a) reflexive, (b)
symmetric, (c) reflexive and symmetric, (d) reflexive and antisymmetric?

A relation is a set of ordered pairs, so the first part of the question asks for the
number of subsets of a set of size(the number of ordered pairs).

(a) For a reflexive relation, we must include all pajxsx), together with an
arbitrary subset of the paifg,y) with x # y; there aren(n— 1) unequal pairs.

(b) There aren(n+ 1)/2 unordered selections of two elements fraymwith
repetitions allowed. A symmetric relation is determined by a subset of these, since
it must include both or neither @¢k,y) and(y, x) for all x,y.

(c) We must put in all pairgx, x), and decide about pai(g,y) with x #y. So
the relation is determined by a subset of the set of unordered selections without
repetitions.

(d) Again we include all pairgx, x). For eachx,y with x #y, there are three
possibilities: includ€x,y), or (y,x), or neither.

18 Given arelatiorR on X, define

Rt ={(xy):(x,y) € Rorx=y}.

Prove that the maR — R" is a bijection between the irreflexive, antisymmetric
and transitive relations ax, and the reflexive, antisymmetric and transitive rela-
tions onX. Show further that this bijection preserves the property of trichotpmy.

Let R be irreflexive, antisymmetric and transitive. We claim first tRatis
reflexive, antisymmetric and transitive. The first two assertions are clear; we must
verify the transitive law. So suppose tiaty), (y,z) € RT. If (x,y), (Y,2) € Rthen
(X,2) € R by the transitivity ofR; if (x,y) € Randy = zthen(x,z) € R, and the
other two cases are similar.

Conversely, leSbe reflexive, antisymmetric and transitive, and let

S ={(xY):(x,y) € Sandx #y}.

ClearlyS™ is irreflexive and antisymmetric. We show that it is transitive. Suppose
that (x,y),(y,z2) € S°. Then(x,y),(y,2) € S so(Xx,z) € S, by transitivity of S,
Could we havex = 2?2 No, since therix,y), (y,x) € Swith x # y, contradicting
antisymmetry. S@x,z) € S .

Moreover,(R")” = Rand(S")" = S so we have a bijection as claimed.
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For the final part, we must show that satisfies trichotomy if and only R
does. This is clear: for trichotomy can be expressed as#ify, then one ofx,y)
and (y,x) satisfies the relation”, and the paipsy) with x # y are the same iR
andR™.

19 Recall that gpartial preorderis a relationR on X which is reflexive and
transitive. LetR be a partial preorder. Define a relatiShy the rule thatx,y) €
Sif and only if both(x,y) and(y,x) belong toR. Prove thaSis an equivalenc
relation. Show further tha ‘induces’ a partial ordeR on the set of equivalence
classes ofSin a natural way: if(x,y) € R, then(X,y) € R, wherex is the S
equivalence class containing etc. (You should verify that this definition |is
independent of the choice of representativesdy.)

Conversely, leX be a set carrying a partition, aftfia partial order on the

parts of the partition. Prove that there is a unique partial preordéf grning
rise to this partition and partial order as in the first part of the question.
Show further that the results of this question remain valid if we replace

partial preorderandpartial order by preorderandorder respectively, where ja
preorderis a partial preorder satisfying trichotomy.

D

Let Rbe a partial preorder (a reflexive and transitive relation), and let
S={(x,y): (x,y) € Rand(y,x) € R}.
Now
e Sis reflexive: for(x,x) € Rfor all x.

e Sis symmetric, by definition.

e Sis transitive: for, giver(x,y), (y,z) € S we have(x,y), (y,z) € Rso(x,z) €
R, and alsqy, ), (z,y) € Rso(zX) € R, whence(x,z) € S
ThusSis an equivalence relation.
Let X be the equivalence class containig/Ne put

R={(Xy):(xy) eR}.
Note that the definition is independent of the choice of representatives of the
equivalence classes. Forxife xandy' €y, and(x,y) € R, then(X,x), (x,y), (y,Y) €
R, so(X,y) € R Now the verification thaR is reflexive and transitive is straight-
forward. To show thaR is antisymmetric, suppose th& y),(y,X) € R. Then
(X,Y), (¥,X) € R, and so(x,y) € S, whencex =.
The verification that trichotomy carries over frd®to Ris “more of the same”.
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20 List the (a) partial preorders, (b) preorders, (c) partial orders, (d) orders on
the set{1,2,3}.

The numbers are (a) 29, (b) 13, (c) 19, (d) 6. (The numbers of unlabelled
structures are 9, 4, 5, 1 respectively.)

It is not too much labour to draw all the unlabelled orders, etc., and count the
numbers of labellings of each. For partial orders on up to four points, see N. J. A.
Sloane and S. Plouff@he Encyclopedia of Integer Sequenocksademic Press,
1995, Figure M1495, online here.

21 Prove thaB, < n! for all n > 2.

With every permutation of a set, there is associated the partition of the set
into disjoint cycles of the permutation (see page 30). Every partition arises from a
permutation in this way: take a cyclic permutation of each part of the partition, and
compose them. So the numbriof permutations is at least as great as the number
B, of partitions. The partition with a single part is associated with the cyclic
permutations, of which there afe— 1)! (Exercise 8); this number is greater than
1ifn> 3, soBy < n!forn> 2.

22 Verify, theoretically or practically, the following algorithm for generating all
partial permutations of1,...,n}:

(3.13.1) Algorithm: Partial permutations of {1,...,n}

e FIRST PARTIAL PERMUTATIONIS the empty sequence.
e NEXT OBJECTafter(xy,...,Xm):
— If the lengthm of the current sequence is less tharextend it by

adjoining the least element it doesn’t contain.

— Otherwise, proceed as in the algorithm for permutations, up to the
point wherex; andx, are interchanged; then, instead of reversing the
terms aftexj, remove them from the sequence.

Use induction om: check by hand that the algorithm is correct for snmall
(For example, when= 3, itgeneratesintur®, 1,12, 123, 13,132, 2, 21, 213, 23,
231, 3, 31, 312, 32, 321, and then terminates.) When it reachéisen generates
in order all partial permutations which begin witlfsince the same algorithm is
being applied to the last— 1 positions using the symbols different frajn and
then proceeds to+ 1.
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23 Verify the following recursive procedure for generating the set of partitions
of a setX.

(3.13.2) Recursive algorithm: Partitions ofX

e If X =0, then0 is the only partition.
o If X #£0, then

— select an elemente X;
— generate all subsets ®f\ {x};

— for each subset, generate all partitions of \ ({x} UY), and adjoin
to each the additional pafk} UY.

This algorithm is just the constructive form of the proof of the recurrence
(3.12.1).
24 Let A= (g;j) andB = (bjj) be (n+ 1) x (n+ 1) matrices (with rows an
columns indexed from 0 to) defined byajj = (j), bij = (~1)""1(j) (where
() =0ifi < j). Prove thaB =A%,

The vector(Xo, . .., %) represents (with respect to the basis consisting of pow-
ers oft) the polynomialf(t) = 3 xt'. Now let f(t+1) = yx(t+1)' = yyt".
By the Binomial Theoremy; = 3; (j)j; so the transformatior(t) — f(t + 1)
is represented by the matrix Similarly, the transformatiori (t) — f(t —1) is
represented bB. But these transformations are obviously inverses of each other.

A direct proof would run as follows. We are required to show that

SC) Q{3 bk

Now () =0 unlessj <i, and(y) = 0 unlesk < j; so the sumiis zero if> k, and

is one ifi = k (since then only the term=i = k is non-zero). Try to prove that
the sum is zero for < k. (Your conclusion may well be that this is harder than the
conceptual proof outlined above.)

No solutions will be given for the projects. A crib for 25 is I. P. Goulden
and D. M. JacksorCombinatorial EnumerationJohn Wiley & Sons, New York,
1986. In 27, the limiting ratio was shown by A&Ryi to be,/e: seePubl. Math.
Inst. Hungar. Acad. Sc# (1959), 73-85.
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