
Solutions to Exercises
Chapter 3: Subsets, partitions, permutations

1 A restaurant near Vancouver offered Dutch pancakes with ‘a thousand and
one combinations’ of toppings. What do you conclude?

Since 1001=
(14

4

)
, it is plausible that there were fourteen different toppings,

of which any four could be chosen. (In fact, 1001 simply meant a large number;
there were 25 different toppings, any subset being permitted.)

2 Using the numbering of subsets of{0,1, . . . ,n− 1} defined in Section 3.1,
prove that, ifXk ⊆ Xl , thenk≤ l (but not conversely).

Let (a0, . . . ,an−1) and(b0, . . . ,bn−1) be the characteristic functions ofXk and
Xl (the binary digits ofk and l respectively). Each ofai andbi is either zero or
one. IfXk⊆ Xl , then it is impossible thatai = 1 andbi = 0; henceai ≤ bi for all i,
and so

k = ∑ai2
i ≤∑bi2

i = l .

The converse is false: 1< 2, butX1 = {0} is not a subset ofX2 = {1}.

3 Prove that, for fixedn, the greatest binomial coefficient
(n

k

)
occurs when

k = bn/2c or dn/2e.

The ratio of successive binomial coefficients is given by
( n

k+1

)
/
(n

k

)
= (n−

k)/(k+1). Now, if k< (n−1)/2, thenn+k> k+1, and this ratio is greater than
1, so the binomial coefficients increase. Ifn is odd, then the ratio is equal to 1 for
k = (n−1)/2, so that

( n
(n−1)/2

)
=
( n

(n+1)/2

)
; after that, the ratio is less than 1 and

the coefficients decrease again. So the two middle coefficients are the largest. Ifn
is even, the ratio is never equal to 1, and so the largest binomial coefficient is the
first for which the ratio is less than 1, namely

( n
n/2

)
.
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4 Prove the following identities:

(a)

(
n
k

)(
k
l

)
=
(

n
l

)(
n− l
k− l

)
.

(b)
k

∑
i=0

(
m
i

)(
n

k− i

)
=
(

m+n
k

)
(recall the convention that

(n
k

)
= 0 if k< 0 ork> n).

(c)
k

∑
i=0

(
n+ i

i

)
=
(

n+k+1
k

)
.

(d)
n

∑
k=1

k

(
n
k

)
= n2n−1.

(e)
n

∑
k=0

(−1)k
(

n
k

)2

=
{

0 if k is odd;
(−1)m

(2m
m

)
if n = 2m.

(a) LetX be ann-set. Count pairs(Y,Z) with Z⊆Y ⊆ X and|Y|= k, |Z|= l .
There are

(n
k

)
choices forY, and then

(k
l

)
choices of anl -subsetZ of Y. Alternately,

there are
(n

l

)
choices ofZ; then we obtainY by choosingk− l points fromX \Z

to adjoin toZ, and since|X \Z|= n− l , this can be done in
(n−l

k−l

)
ways.

If k< l , then no choices are possible, and both sides are zero, as a result of our
conventions about binomial coefficients.

(b) Choose a team ofk players from a class withm girls andn boys.

(c) The result can be proved by induction, being clear whenk = 0. Assuming
it for k−1, we have

k

∑
i=0

(
n+ i

i

)
=
(

n+k
k−1

)
+
(

n+k
k

)
=
(

n+k+1
k

)
,

and the induction step is proved.

(d) Differentiating the Binomial Theorem gives∑n
k=1k

(n
k

)
tk−1 = n(1+ t)n−1

(the term withk = 0 is constant and its derivative is zero). Now putt = 1.

(e) Consider the identity(1+ t)n(1− t)n = (1− t2)n, and calculate the coef-
ficient of tn. On the left, we multiply the coefficient oftn−k in (1+ t)n (which is( n

n−k

)
=
(n

k

)
) by the coefficient oftk in (1− t)n (which is(−1)k

(n
k

)
), and sum over
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k. On the right, it is zero ifn is odd (since only even powers oft appear), and
(−1)n/2

( n
n/2

)
if n is even, as required.

5 Following the method in the text, calculate the number of subsets of ann-set
of size congruent tom (mod 3) (m= 0,1,2) for each value ofn (mod 6).

Let α = e2πi/3 andβ = e4πi/3 be the two cube roots of unity. Then 1+α+β =
0. We have

n

∑
k=0

(
n
k

)
= (1+1)n = 2n,

n

∑
k=0

(
n
k

)
αk = (1+ α)n = (−β)n,

n

∑
k=0

(
n
k

)
βk = (1+ β)n = (−α)n.

The values of(−β)n are 1,−β,α,−1,β,−α according asn≡0,1,2,3,4,5 (mod 6).
Also, 1+ αk + βk = 3 if k ≡ 0 (mod 3), and 0 otherwise. Adding the three
equations shows that the number of subsets of size divisible by 3 is equal to
(2n +(−β)n +(−α)n)/3, which is(2n +2)/3, (2n +1)/3, (2n−1)/3, (2n−2)/3,
(2n−1)/3, or(2n +1)/3, depending on the congruence ofn modulo 6.

For sets of size congruent to 1 mod 3, multiply the second equation byα2 and
the third byβ2 before adding; for 2 mod 3, use the multipliersα andβ instead.

6 Let k be a given positive integer. Show that any non-negative integerN can be
written uniquely in the form

N =
(

xk

k

)
+
(

xk−1

k−1

)
+ . . .+

(
x1

1

)
,

where 0≤ x1 < .. . < xk−1 < xk. [H INT: Let x be such that
(x

k

)
≤ N <

(x+1
k

)
.

Then any possible representation hasxk = x. Now use induction and the fact
that N−

(x
k

)
<
( x

k−1

)
(Fact 3.2.5) to show the existence and uniqueness of the

representation.]
Show that the order ofk-subsets corresponding in this way to the usual

order of the natural numbers is the same as the reverse lexicographic order gen-
erated by the algorithm in Section 3.11. [HINT: ∑i

j=0

(n− j
i− j

)
=
(n+1

i

)
.]
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Given N andk, choosex such that
(x

k

)
≤ N <

(x+1
k

)
. We must havexk ≤ x.

Moreover,
k

∑
i=1

(
xi

i

)
≤

k

∑
i=1

(
xk−k+ i

i

)
≤
(

xk +1
k

)
−1,

(the first inequality holding sincexi ≤ xk−k+ i and the second by Exercise 3(c));
soxk < x would be impossible. Thus we must havexk = x. By induction onk, the
integerN−

(x
k

)
has a unique expression in the same form withk−1 replacingk;

and, as in the hint, Fact 3.2.5 shows thatxk−1 < xk. So the result is proved.

The last part is proved by induction; the inductive step involves considering
the algorithm (3.12.3). Suppose that, in the expression forN, we havexi = n+ i
for i = 1, . . . , r−1, andxr > n+ r. Then∑r−1

i=1

(xi
i

)
=
(n+r

r

)
−1, by Exercise 3(c)

(note that the termi = 0 is missing from the sum). So, if we increasexr−1 by 1 and
setxi = i−1 for i < r−1, the corresponding sum is increased by 1, and represents
N + 1. So thek-set representingN + 1 is the same as the next one produced by
(3.12.3), that is, the next in reverse lexicographic order.

7 Use the fact that(1+ t)p≡ 1+ t p (modp) to prove by induction thatnp≡ n
(modp) for all positive integersn.

Clearly 1p≡ 1 (modp). Assuming that the result is true forn, we have

(1+n)p≡ 1+np≡ 1+n (modp),

the first congruence by the given fact and the second by the inductive hypothesis.
So the inductive step holds.

The given fact is proved on page 28.
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8 A computer is to be used to calculate values of binomial coefficients. The
largest integer which can be handled by the computer is 32767. Four possible
methods are proposed:

(1)

(
n
k

)
= n!/k!(n−k)!;

(2)

(
n
k

)
= n(n−1) . . .(n−k+1)/k!;

(3)

(
n
0

)
= 1,

(
n
k

)
=
(

n
k−1

)
· n−k+1

k
for k> 0;

(4)

(
n
0

)
=
(

n
n

)
= 1,

(
n
k

)
=
(

n−1
k−1

)
+
(

n−1
k

)
for 0< k < n (i.e., Pas-

cal’s Triangle).

For which values ofn andk can
(n

k

)
be calculated by each method? What can

you say about the relative speed of the different methods?

Method 1 will fail if n! > 32767, that is, ifn> 7; so it computes
(n

k

)
for n≤ 7.

Method 2 requires the numerator to be at most 32767; so, for givenk, it works
for n up to some valuen(k), wheren(k) = 32767, 181, 33, 15, 10, 8, 7 fork =
1, . . . ,7.

Method 3 requires
(n

k

)
(n−k+1)≤ 32767, which boundsn by a similar func-

tion m(k); we find thatm(k) = 32767, 181, 41, 22, . . . .
Method 4 reaches each binomial coefficient “from below”, so it calculates all

those
(n

k

)
which do not exceed 32767. For example, fork = 2, 3 it works up to

n = 256, 59 respectively. (In addition, it is the only method which works fork
close ton.)

Of the best two, methods 3 and 4, we see that 3 is inferior in terms of the range
of values for which it works. It is faster for computing a single binomial coeffi-
cient, requiring onlyk−1 multiplications andk−1 divisions, whereas method 4
needs roughlynkadditions. But method 4 is preferable if the entire Pascal triangle
is required, since each addition yields a new piece of data.

9 Show that there are(n−1)! cyclic permutations of a set ofn points.

A cyclic permutation, written in cycle form, consists of then points written in
some order inside a bracket. There aren! orders. However, the cycle can start at
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any point, and son orders yield the same cyclic permutation. Thus, the number of
cyclic permutations isn!/n = (n−1)!, as required.

10 Theorder of a permutationπ is the least positive integerm such thatπm is
the identity permutation. Prove that the order of a cycle onn points isn. Prove
that the order of an arbitrary permutation is the least common multiple of the
lengths of the cycles in its cycle decomposition.

If the point x lies in ann-cycle of π, then on successive applications ofπ,
x visits in turn all the points of the cycle, returning to its starting point aftern
applications. Soxπn = x andxπk 6= x for 0< k< n.

Thus, if π is a singlen-cycle, thenπk is not the identity for 0< k< n; but πn

maps every point to itself, that is,πn is the identity. So the order ofπ is n.
More generally, we see thatxπk = x if and only if k is a multiple of the length

of the cycle in whichx lies. So, for an arbitrary permutationπ, we see thatπk

is the identity if and only ifk is a multiple of the length of every cycle ofπ. So
the order ofπ, being the least positivek for which this holds, is the least common
multiple of the cycle lengths.

11 How many words can be made from the letters of the wordESTATE?

There are 24+ 24+ 12+ 4+ 1 = 65 words with no repeated letters. If E but
not T is repeated, there are 10· 6+ 6 · 6+ 3 · 3+ 1 = 106 words. (If there are
n− 2 further letters, then there are

(n
2

)
positions for the Es, and(3)n−2 choices

for the positions of the other letters, where(n)k = n(n−1) · · ·(n− k+ 1).) The
same number occur if T but not E is repeated. If both pairs are repeated, there are
15·6 ·2+ 10·3 ·2+ 6 = 246 words. (Choose the positions for the Es, then those
for the Ts, then those for the remaining letters.) In total, 523 words.

12 Givenn letters, of whichm are identical and the rest are all distinct, find a
formula for the number of words which can be made.

If we usek of them identical letters andl of the others, there are
(k+l

k

)
(n−m)l

possible words. Now sum overk andl .

13 Show that, forn = 2,3,4,5,6, the number ofunlabelledtrees onn vertices
is 1, 1, 2, 3, 6 respectively.

This is done by drawing the trees: forn = 4, the two trees are a path with three
edges, or three edges radiating from a central vertex. As a check that nothing
has been forgotten, the number of labellings of a tree is equal ton! divided by the
number of automorphisms (symmetries) of the tree. (So, for example, the 4-vertex
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path has two symmetries, the identity and reversal, and the other tree has six, since
the three edges can be permuted arbitrarily; and we have 4!/2+ 4!/6 = 44−2, in
accordance with Cayley’s Theorem.)

You can find drawings of the trees in N. J. A. Sloane and S. Plouffe,The
Encyclopedia of Integer Sequences, Academic Press, 1995, Figure M0791. The
sequence is online here.

14 The line segments from(i, logi) to (i + 1, log(i + 1)) lie below the curve
y = logx. (This is because the curve is convex, i.e., its second derivative
−1/x2 is negative.) The area under these line segments fromi = 1 to i = n
is logn! + 1

2 log(n+ 1), since it consists of the rectangles of Fig. 3.1(b) together
with triangles with width 1 and heights summing to log(n+1). Deduce that

n! ≤ e
√

n+1
(n

e

)n
.

This is mostly spelt out in the question. The area of the rectangles is∑n
i=2 logi =

logn!, while the triangles add up to half a rectangle of height log(n+1). So

logn! + 1
2 log(n+1)≤

∫ n+1
1 logxdx = (n+1) log(n+1)− (n+1)+1,

giving n! ≤
√

n+1((n+ 1)/e)n. The final result is obtained using the fact that
(n+1)n≤ enn (see Exercise 3(b) of Chapter 2).

15 Use Stirling’s Formula to prove that(
2n
n

)
∼ 22n/

√
πn.

By Stirling’s formula,(
2n
n

)
=

(2n)!
(n!)2 ∼

√
4πn(2n/e)2n

2πn(n/e)2n
=

22n
√

πn
.

(Check the definition of the relation∼ to ensure that this is valid.)
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16 (a) Let n = 2k be even, andX a set ofn elements. Define afactor to be a
partition ofX into k sets of size 2. Show that the number of factors is equal to
1 ·3 ·5· · ·(2k−1). This number is sometimes called adouble factorial, written
(2k−1)!! (with !! regarded as a single symbol, the two exclamation marks sug-
gesting the gap of two,not the factorial function iterated!)

(b) Show that a permutation ofX interchangessome k-subset with its com-

plement if and only if all its cycles have even length. Prove that the number of
such permutations is((2k−1)!!)2.

(c) Deduce that the probability that a random element ofSn interchanges

some1
2n-set with its complement isO(1/

√
n).

We get a 1-factor by writingn/2 boxes each with room for two entries, and
filling them with the elements 1, . . . ,n. These can be written in the boxes inn!
ways. However, permuting the boxes (ink! ways), or the elements within the
boxes (in 2k ways) doesn’t change the 1-factor. The product of these numbers is
2.4.6. . .(2k); dividing, we obtain 1.3.5. . .(2k−1) = (2k−1)!! for the number of
1-factors.

(b) Suppose that thek-setA is exchanged with its complementB by a permu-
tation. Then elements ofA andB alternate around each cycle, which thus has even
length. Conversely, if all cycles have even length, we may colour the elements in
each cycle alternately red and blue; the red and blue sets are then exchanged.

From a permutation with all cycles even we obtain a pair of 1-factors as fol-
lows. A 2-cycle is assigned to both 1-factors; in a longer cycle, the consecutive
pairs are assigned alternately to the two 1-factors. The process isn’t unique, since
the starting point isn’t specified; indeed, a permutation gives rise to 2d ordered
pairs of 1-factors, whered is the number of cycles of length greater than 2.

Conversely, let a pair of 1-factors be given. Their union is a graph with all
vertices of valency 2, thus a disjoint union of circuits, all of even length (since the
1-factors alternate around a circuit). We take these circuits to be the cycles of a
permutation. In fact, for a circuit of length greater than 2, there are two choices
for the direction of traversal. So the number of permutations obtained is 2d, where
d is as before.

(c) The proportion is

((2k−1)!!)2/(2k)! =
k

∏
i=1

(1−1/2i)

≤
k

∏
i=1

e−1/2i
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= e−∑k
i=1(1/2i)

= e− logk/2+O(1) = O(k−1/2).

17 How many relations on ann-set are there? How many are (a) reflexive, (b)
symmetric, (c) reflexive and symmetric, (d) reflexive and antisymmetric?

A relation is a set of ordered pairs, so the first part of the question asks for the
number of subsets of a set of sizen2 (the number of ordered pairs).

(a) For a reflexive relation, we must include all pairs(x,x), together with an
arbitrary subset of the pairs(x,y) with x 6= y; there aren(n−1) unequal pairs.

(b) There aren(n+ 1)/2 unordered selections of two elements fromn, with
repetitions allowed. A symmetric relation is determined by a subset of these, since
it must include both or neither of(x,y) and(y,x) for all x,y.

(c) We must put in all pairs(x,x), and decide about pairs(x,y) with x 6= y. So
the relation is determined by a subset of the set of unordered selections without
repetitions.

(d) Again we include all pairs(x,x). For eachx,y with x 6= y, there are three
possibilities: include(x,y), or (y,x), or neither.

18 Given a relationRonX, define

R+ = {(x,y) : (x,y) ∈ Ror x = y}.

Prove that the mapR→R+ is a bijection between the irreflexive, antisymmetric
and transitive relations onX, and the reflexive, antisymmetric and transitive rela-
tions onX. Show further that this bijection preserves the property of trichotomy.

Let R be irreflexive, antisymmetric and transitive. We claim first thatR+ is
reflexive, antisymmetric and transitive. The first two assertions are clear; we must
verify the transitive law. So suppose that(x,y),(y,z) ∈R+. If (x,y),(y,z) ∈R then
(x,z) ∈ R by the transitivity ofR; if (x,y) ∈ R andy = z then(x,z) ∈ R; and the
other two cases are similar.

Conversely, letSbe reflexive, antisymmetric and transitive, and let

S− = {(x,y) : (x,y) ∈ Sandx 6= y}.

ClearlyS− is irreflexive and antisymmetric. We show that it is transitive. Suppose
that (x,y),(y,z) ∈ S−. Then (x,y),(y,z) ∈ S, so (x,z) ∈ S, by transitivity of S.
Could we havex = z? No, since then(x,y),(y,x) ∈ S with x 6= y, contradicting
antisymmetry. So(x,z) ∈ S−.

Moreover,(R+)− = Rand(S−)+ = S, so we have a bijection as claimed.
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For the final part, we must show thatR+ satisfies trichotomy if and only ifR
does. This is clear: for trichotomy can be expressed as “ifx 6= y, then one of(x,y)
and(y,x) satisfies the relation”, and the pairs(x,y) with x 6= y are the same inR
andR+.

19 Recall that apartial preorder is a relationR on X which is reflexive and
transitive. LetRbe a partial preorder. Define a relationSby the rule that(x,y) ∈
S if and only if both(x,y) and(y,x) belong toR. Prove thatS is an equivalence
relation. Show further thatR ‘induces’ a partial orderRon the set of equivalence
classes ofS in a natural way: if(x,y) ∈ R, then(x,y) ∈ R, wherex is theS-
equivalence class containingx, etc. (You should verify that this definition is
independent of the choice of representativesx andy.)

Conversely, letX be a set carrying a partition, andR′ a partial order on the

parts of the partition. Prove that there is a unique partial preorder onX giving
rise to this partition and partial order as in the first part of the question.

Show further that the results of this question remain valid if we replace

partial preorderandpartial order by preorderandorder respectively, where a
preorderis a partial preorder satisfying trichotomy.

Let Rbe a partial preorder (a reflexive and transitive relation), and let

S= {(x,y) : (x,y) ∈ Rand(y,x) ∈ R}.

Now

• S is reflexive: for(x,x) ∈ R for all x.

• S is symmetric, by definition.

• Sis transitive: for, given(x,y),(y,z)∈S, we have(x,y),(y,z)∈Rso(x,z)∈
R, and also(y,x),(z,y) ∈ Rso(z,x) ∈ R, whence(x,z) ∈ S.

ThusS is an equivalence relation.
Let x be the equivalence class containingx. We put

R= {(x,y) : (x,y) ∈ R}.

Note that the definition is independent of the choice of representatives of the
equivalence classes. For, ifx′ ∈ xandy′ ∈ y, and(x,y)∈R, then(x′,x),(x,y),(y,y′)∈
R, so(x′,y′) ∈R. Now the verification thatR is reflexive and transitive is straight-
forward. To show thatR is antisymmetric, suppose that(x,y),(y,x) ∈ R. Then
(x,y),(y,x) ∈ R, and so(x,y) ∈ S, whencex = y.

The verification that trichotomy carries over fromRtoR is “more of the same”.
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20 List the (a) partial preorders, (b) preorders, (c) partial orders, (d) orders on
the set{1,2,3}.

The numbers are (a) 29, (b) 13, (c) 19, (d) 6. (The numbers of unlabelled
structures are 9, 4, 5, 1 respectively.)

It is not too much labour to draw all the unlabelled orders, etc., and count the
numbers of labellings of each. For partial orders on up to four points, see N. J. A.
Sloane and S. Plouffe,The Encyclopedia of Integer Sequences, Academic Press,
1995, Figure M1495, online here.

21 Prove thatBn < n! for all n> 2.

With every permutation of a set, there is associated the partition of the set
into disjoint cycles of the permutation (see page 30). Every partition arises from a
permutation in this way: take a cyclic permutation of each part of the partition, and
compose them. So the numbern! of permutations is at least as great as the number
Bn of partitions. The partition with a single part is associated with the cyclic
permutations, of which there are(n−1)! (Exercise 8); this number is greater than
1 if n≥ 3, soBn < n! for n> 2.

22 Verify, theoretically or practically, the following algorithm for generating all
partial permutations of{1, . . . ,n}:

(3.13.1) Algorithm: Partial permutations of {1, . . . ,n}

• FIRST PARTIAL PERMUTATION is the empty sequence.

• NEXT OBJECTafter(x1, . . . ,xm):

– If the lengthm of the current sequence is less thann, extend it by
adjoining the least element it doesn’t contain.

– Otherwise, proceed as in the algorithm for permutations, up to the
point wherex j andxk are interchanged; then, instead of reversing the
terms afterx j , remove them from the sequence.

Use induction onn: check by hand that the algorithm is correct for smalln.
(For example, whenn= 3, it generates in turn/0, 1, 12, 123, 13, 132, 2, 21, 213, 23,
231, 3, 31, 312, 32, 321, and then terminates.) When it reachesi, it then generates
in order all partial permutations which begin withi (since the same algorithm is
being applied to the lastn−1 positions using the symbols different fromi), and
then proceeds toi +1.
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23 Verify the following recursive procedure for generating the set of partitions
of a setX.

(3.13.2) Recursive algorithm: Partitions ofX

• If X = /0, then /0 is the only partition.

• If X 6= /0, then

– select an elementx∈ X;

– generate all subsets ofX \{x};
– for each subsetY, generate all partitions ofX \ ({x}∪Y), and adjoin

to each the additional part{x}∪Y.

This algorithm is just the constructive form of the proof of the recurrence
(3.12.1).

24 Let A = (ai j ) andB = (bi j ) be (n+ 1)× (n+ 1) matrices (with rows and
columns indexed from 0 ton) defined byai j =

( i
j

)
, bi j = (−1)i+ j

( i
j

)
(where( i

j

)
= 0 if i < j). Prove thatB = A−1.

The vector(x0, . . . ,xn) represents (with respect to the basis consisting of pow-
ers of t) the polynomial f (t) = ∑xit i . Now let f (t + 1) = ∑xi(t + 1)i = ∑yit i .
By the Binomial Theorem,y j = ∑i

( i
j

)
x j ; so the transformationf (t) 7→ f (t + 1)

is represented by the matrixA. Similarly, the transformationf (t) 7→ f (t−1) is
represented byB. But these transformations are obviously inverses of each other.

A direct proof would run as follows. We are required to show that

∑
j

(
i
j

)(
j
k

)
(−1) j−k =

{
1 if i = k
0 if i 6= k

.

Now
( i

j

)
= 0 unlessj ≤ i, and

( j
k

)
= 0 unlessk≤ j; so the sum is zero ifi > k, and

is one if i = k (since then only the termj = i = k is non-zero). Try to prove that
the sum is zero fori < k. (Your conclusion may well be that this is harder than the
conceptual proof outlined above.)

No solutions will be given for the projects. A crib for 25 is I. P. Goulden
and D. M. Jackson,Combinatorial Enumeration, John Wiley & Sons, New York,
1986. In 27, the limiting ratio was shown by A. Rényi to be

√
e: seePubl. Math.

Inst. Hungar. Acad. Sci.4 (1959), 73–85.
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