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Abstract
Most of these problems were presented at the problem session of the
18th British Combinatorial Conferenat the University of Sussex, 2—6 July
2001. | have added some problems given to me after the session.
Since two of the problems concern circular chromatic number, the entire
set has a circular structure; the starting point is fixed by the sixth problem.

Problem 1 (BCC18.1) Freese—Nation numbers of poset®roposed by
D. H. Fremlin and D. B. Penman.
Correspondent: D. B. Penman
Department of Mathematics
University of Essex
Wivenhoe Park
Colchester, Essex CO4 3SQ
U.K.
dbpenman@essex.ac.uk
Let (P, <) be a poset. A functiorf : P — PP (where®P is the power set of
P) is aFreese—Nation functioii, wheneverp < g, we have

f(p)nf(a)Nfp,q #0.
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The Freese—Nation numbédtN(P) is the smallest for which there is a Freese—
Nation functionf with |f(p)| < r for all p € P. Observe thap € f(p) for all
peP.

For example,

1. if Pis an antichain, then FH¥) = 2;
2. if Pis ann-element chain, then RIR) =2+ [log,n|;

3. if P=AuUBwith |A|]=2r—5,|B|=2r—6,anda<bforallac A beB,
then FNP) =r;

4. If P is selected from the uniform distribution onelement posets, then
FN(P) = (n/8)(1+ 0o(1) with high probability.

Problem: Find
lim (FN(?m))Y™,

m—oo

wheremdenotes am-element set. (It is known that the limit exists and lies in the
interval [2/+/3,v/3] ~ [1.1547,1.4422.)

Problem 2 (BCC18.2) Matching roots of vertex-transitive graphs.Proposed
by Bojan Mohar.
Correspondent: Bojan Mohar

Department of Mathematics

University of Ljubljana

Jadranska 19

Ljubljana

1111 Slovenia

bojan.mohar@uni-lj.si

Let p(G, k) be the number of matchings of the graphvith k edges. Then the
matching polynomiabf G is

Ln/2]
MGxX) = 5 (-1 p(G kX"
k=0

It is known thaty(G, k) has only real roots.
Conjecture: For every integer there exists a connected vertex-transitive
graph whose matching polynomial has a root of multiplicity at least
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Even examples of vertex-transitive graphs with at least one non-simple root
would be of great interest, since such graphs cannot contain a Hamiltonian path

(see [L7]).
Editor’'s note: This was the proposer’s’toblem of the monttfor July 2001
seehttp://www.fmf.uni-lj.si/ ~ mohar/Problems.html

Problem 3 (BCC18.3) Strongly distance-regular graphsProposed by
M. A. Fiol.
Correspondent: M. A. Fiol
Departament de Matematica Aplicada i Telematica
Universitat Politecnica de Catalunya
08834 Barcelona
Spain
fiol@mat.upc.es
For the definition of a distance-regular graph and related concepts, we refer to
Brouweret al. [4].
A graphl” with diameterd is calledstrongly distance-regulaif T is distance-
regular and the distanaggraphlg (in which vertices are adjacent if they have
distancead in I) is strongly regular. Examples include

1. any strongly regular graph;
2. any distance-regular graph with= 3 and third-largest eigenvaluel;
3. any antipodal distance-regular graph.

Problem: Prove or disprove that these examples exhaust all possibilities.

Problem 4 (BCC18.4) Some configurations in polar space®roposed by
Harm Pralle.
Correspondent: Harm Pralle

Unterstruth 27

35418 Buseck

Germany

harm.pralle@math.uni-giessen.de

For which polar spaced of rank 3, other than the Klein quadric, does there
exist a seH of planes such that
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(i) there exists a unique plades H such that any plane @1 intersectingd in a
line belongs tdd, and

(ii) every line of 1 not contained i is covered uniquely by a plane Bif?

The only known example fdd lives in the symplectic variet®(RR) in PG(5,R);

it is a hyperplane of the dual &(R) arising from an embedding in RG3,R).
(All examples in the Klein quadric are obtained by takingo be a plane and
including also all the planes of the opposite ruling.)

Problem 5 (BCC18.5) Projective space analogues of Steiner systems.
Proposed by “Folklore” (possibly Ph. Delsarte).
Correspondent: Peter J. Cameron

School of Mathematical Sciences

Queen Mary, University of London

London E1 4NS

UK

p.j.cameron@qgmul.ac.uk

Does there exist a collecti@of planes in the projective space Bq), where
n > 2, such that any line lies in a unique membeiS3f (This would be the ana-
logue for projective spaces of a Steiner triple system.) No examples are known.
One can easily define analogues of arbitredesigns in projective spaces
(probably Delsartet] was the first to do so), but very few examples are known.
However, infinite examples exist in great profusion!

Problem 6 (BCC18.6) “Problem 6”. Proposed by Harald Gropp.
Correspondent: Harald Gropp

Muehlingstr. 19

D-69121 Heidelberg

Germany

d12@ix.urz.uni-heidelberg.de

Is there a bipartite 6-regular graph with 66 vertices having girth 6?
Equivalently, is there a 33configuration? (This is a configuration with 33
points and 33 lines, each point on 6 lines and each line containing 6 points, such

that two points lie on at most one line.)
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Problem 7 (BCC18.7) Multiplication group of a Latin square. Proposed by

AleS Drapal.

Correspondent: AkDrapal
Katedra Algebry
MFF UK
Sokolovsia 83

186 75 Praha 8
Czech Republic
drapal@karlin.mff.cuni.cz
Consider a Latin squark of ordern whose first row and column are nor-
malised to have the entries.1.,n in order. Each row and column af is a
permutation of 1,...,n}; the group generated by these permutations isrthki-
plication groupof L, denoted byM(L).
Givenk > 3 and a prime powey, does there exist a Latin squdreuch that

PSL(k,g) < M(L) < PrL(k,g)?

The proposer has shown recently §] that, if k= 2, there is only one such square
L, with M(L) = PrL(k,q) = Ss.

For the next two problems, we introduce a Markov chain method for choosing
Latin squares uniformly at random, due to Jacobson and Matthiess [
We represent a Latin square of oraeby a functionf : N3 — {0,1} (where

N = {1,...,n}) satisfying
%fMMﬁzl

Xe
for giveny,z € N, and two similar equations for the other coordinates. We allow
alsoimproper Latin squareswhich are functions satisfying these constraints but
which take the value-1 exactly once. Now to take one step in the Markov chain
starting at a functiorf, do the following:

(a) If f is proper, choose anix,y, z) with f(x,y,z) = 0; if f is improper, use the
unique triple withf (x,y,z) = —1.

(b) LetX,y,Z € N satisfy
f(X,y,2) = f(xY,2) = f(xy,Z) =1

(If f is proper, these points are unique; fifis improper, there are two
choices for each of them.)
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(c) Now increase the value dfby one on the triple$x,y, z), (x,¥,Z), (X,y,Z)
and(x,y,z), and decrease it by one on the triplgsy, 2), (x,Y,2), (X,Y,Z)
and(X,y,Z). We obtain another proper or improper Latin square, accord-
ing asf(X,y,Z)=1orO0.

Jacobson and Matthews show that the limiting distribution gives the same proba-
bility to each Latin square.

Problem 8 (BCC18.8) Choosing Latin squares uniformly at random.
Proposed by M. T. Jacobson and P. Matthews; J. Mgller; J. Besag.
Correspondent: R. A. Bailey
School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS
UK
r.a.bailey@gmul.ac.uk
Problem: How fast does the Jacobson—Matthews Markov chain converge to
the uniform distribution?

Problem 9 (BCC18.9) A Markov chain for Steiner triple systems.Proposed
by Peter J. Cameron.
Correspondent: Peter J. Cameron

School of Mathematical Sciences

Queen Mary, University of London

London E1 4NS

UK

p.j.cameron@qgmul.ac.uk

A slight modification of the method of Jacobson and Matthews should work

for Steiner triple systems. We simply replace “ordered triples” by “unordered
triples of distinct elements” in the definition; then a STS is a function from un-
ordered triples td 0,1} which satisfies

; f({xy.z}) =1
ZEXY

for all distinct pointsx,y, and an improper STS is allowed to take the vahle
exactly once. Now the moves are defined as before. However, before we know
that the limiting distribution is uniform, we have to solve the following
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Problem: Is the chain connected? That is, is it possible to get from any STS
to any other by a sequence of moves?

Problem 10 (BCC18.10) Perfect Steiner triple systemsProposed by
M. J. Grannell and T. S. Griggs.
Correspondent: T. S. Griggs

Department of Pure Mathematics

The Open University

Walton Hall

Milton Keynes MK7 6AA

U.K.

t.s.griggs@open.ac.uk

Let S= (V,B) be a Steiner triple system of orderand leta andb be any
two points, and the third point of the block containing them. Define a gr&pi
as follows: the vertex set M \ {a,b,c}, and two verticex andy are adjacent if
and only if either{a,x,y} € B or {b,x,y} € B. ClearlyGgp, is a union of disjoint
even cycles. IG5y is a single cycle foall choices ofa,b € V, thenSis said to be
perfect

Perfect STS of orders 7, 9, 25 and 33 have been known for some time. More
recently Grannell, Griggs and Murphy ] added nine new values to the list of
orders:

79,139 367,811 1531 25771 50923 61339 69991

These are all primes of the form42 7.
Problem: What number-theroretic property distinguishes these nine primes
from the other primes of this form less than 100000 (where the search terminated)?

The next two problems refer to circular chromatic number, which is defined as
follows. For a hypergraphl, and positive integerp, q with 2g < p, we define a
(p,q)-colouringto be a functiorc:V(H) — {0,1,..., p— 1} such that each edge
e of H contains two verticea andb with q < |c(X) — c(y)| < p—q. Thecircular
chromatic numbeof H, written xc(H), is the infimum of the set of valugs/q
for which there exists @p,q)-colouring ofH. (We can replace “inf’ by “min”
here.) Alternatively, it is the smallest circumference of a ci8lguch that the
vertices of the graphs can be mapped to poinSsafch that adjacent points are at
distance at least 1. The definition of circular chromatic number of a graph is just
the specialisation of this definition.
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Since everyp-colouring is a(p, 1)-colouring, we have:(H) < x(H), where
X(H) is the chromatic number ¢1.

See Zhu P for a survey, and also the paper by Mohat] presented at the
meeting.

Problem 11 (BCC18.11) Circular chromatic number of Steiner triple
systems.Proposed by Changiz Eslahchi, Arash Rafiey.
Correspondent: Changiz Eslahchi
Department of Mathematics
Shahid Beheshty University
Evin, Tehran
Iran
ch-eslahchi@cc.sbu.ac.ir
Conjecture: For every Steiner triple syste®of order at least 13, we have
Xc(S) =X(9).
Editor’'s note: The conjecture is false for order 7. | am grateful to Fred Hol-
royd for pointing out to me that the usual cyclic representation of the STS of
order 7 shows thatc(S) < 7/3, while of course(S) = 3.

Problem 12 (BCC18.12) Bounding the circular chromatic number of a
graph. Proposed by Bojan Mohar.
Correspondent: Bojan Mohar

Department of Mathematics

University of Ljubljana

Jadranska 19

Ljubljana

1111 Slovenia

bojan.mohar@uni-lj.si

Let Ps(x) be the chromatic polynomial of the graghand letk be the chro-
matic number ofG. Letcp < k be the largest real number such tRa{cy) = k!

Problem: Is it true thatxc(G) < co, wherexc(G) is the circular chromatic
number ofG?

Problem 13 (BCC18.13) Two list colouring conjectures.Proposed by
S. Akbari, V. S. Mirrokni, B. S. Sadjad.
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Correspondent: S. Akbari
Sharif University of Technology
Tehran
Iran
s_akbari@sina.sharif.ac.ir
1. A list edge-colouring conjecturé.et G be a graph withm edges and max-
imum degree\ > 2. Suppose thdt = {Lj,...,Ln} is an assignment of lists of
colours to the edges @ such thatLi| = A fori=1,...,m Show thatG is not
uniquelyL-colourable.
This is known to be true if5 is not regular, or ifG is regular and bipartite
(see f]).

2. A list vertex-colouring conjecture.Suppose thaG is a graph andf :
V(G) — N is a function, where\N is the set of natural numbers. Letbe a list
assignment to the vertices & such thatL,| = f(v) for anyv € V(G), and as-
sume thatG is uniquelyL-colourable. Suppose th& is a maximal uniquely
f-colorable graph (that is, for any list assignmehof G, if f(v) < [L{| for all
veV(G) and there exists a vertey such thatf (vo) < |L{, |, thenGis not uniquely
L’-colorable). TherG is f-choosable.

Problem 14 (BCC18.14) Colouring and degeneracy of random graphs.
Proposed by Bojan Mohar.
Correspondent: Bojan Mohar
Department of Mathematics
University of Ljubljana
Jadranska 19
Ljubljana
1111 Slovenia
bojan.mohar@uni-lj.si
Here Gn, p denotes the random graph model in which edges are selected from
the n-vertex set independently with probability(see Molloy’s paper 6] pre-
sented at the conference). A graplkidegenerate if every induced subgraph has
a vertex of degree smaller th&anClearly ak-degenerate graph kscolourable. A
k-coreof a graph is an induced subgraph with minimum degree at keast
Let p= p(n,k) be the smallest probability such that almost no graphgmip
are(klogk)-degenerate.
Conjecture: Almost all graphs inGgy , have chromatic number at ledst(In
other words, the threshold for(&logk)-core is at least that fdecolourability.)
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Problem 15 (BCC18.15) Odd holes in planar graphsProposed by Colin
McDiarmid.
Correspondent: Colin McDiarmid
Corpus Christi College
Oxford OX1 4JF
U.K.
cmcd@stats.ox.ac.uk
An odd holein a graph is an induced subgraph which is an odd circuit of length
at least 5.
Does every planar graph have 3-colouring (not necessarily proper) of the ver-
tices such that every odd hole receives all three colours?
This question is related to measuring how imperfect a planar graph can be.

Problem 16 (BCC18.16) Chord diagrams and Vassiliev invariants Proposed
by Leonid Plachta.
Correspondent: Leonid Plachta
Institute of Appl. Problems of Mech. and Math
NAS of Ukraine
79000, Naukova 3b
L'viv
Ukraine
The following combinatorial problem arises in the study of Vassiliev knot in-
variants. To formulate it let us first recall that eaekingular knot Ct-immersion
of St into R3) with exactlyn double transverse points (called singularities) can be
represented (though not uniquely) bydtsord diagram(for short, CD), in which
the preimages of each singular poinShare the endpoints of a chord in the CD.
Let X denote the set of knots IR3. Any isotopy invariant of knots: X — Q
can be extended in a natural way to theseff singular knots with a finite number
of singularities (see, for example]]]. An isotopy invariantv: L — Q is called
a Vassiliev invariantof ordern if v vanishes on anyn+ 1)-singular knot andh
is the smallest number with this property. It turns out (sdethat any Vassiliev
invariantv of ordern has equal values on all singular knots having the same CDs
with n chords.
Let D, denote the set of chord diagrams witlkshords, the CDs being consid-
ered up to the obvious equivalence relation, and let @panbe the vector space
over Q generated by, It follows any Q-valued Vassiliev invariant of order
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n determines a functiom(v):D,, — Q satisfying the axioms 1T (framing inde-
pendence) and 4T (the four term relation) described, for examplé&].ilspich a
function is called aveight systerof degreen. In other words, a weight system of
degreenis an element of the dual space of the vector space

4, = span{Dy) /spar{{4T and 1T relationy).

For anyD € Dy, let G(D) denote théntersection graplfor interplay graphin
the terminology of []) of D. Note that not every abstract intersection graph with
nvertices is realizable as an intersection graph of some chord diagram ohorder
Rosenstiehl’s theorem characrerizes the class of all realizable abstract intersection
graphs (seel]).

The Intersection Graph Conjecture, formulated by Chmetosd. [5], asserts
that a weight systenw: D, — Q has equal values on any two chord diagrams
with the same intersection graphs, so its values on CDs are determined uniquely
by their intersection graphs. They proved the conjecture in the case when the
intersection graphs of chord diagrams are trees. It follows that the conjecture is
true if the intersection graphs are forests. Recently B. Meildy$howed that the
conjecture is true for chord diagrams whose intersection graphs have exactly one
loop.

T. Q. T. Le showed however that, in general, the conjecture is false, since itim-
plies that Vassiliev knot invariants cannot detect mutation, contradicting the Mor-
ton/Cromwell examples. More precisely, Morton and Cromwel] ghowed that
there exists a framed Vassiliev invariandf degree 11 with values i#[u] which
takes different values on Kinoshita-Teresaka/Conway mutants. This implies that
there exists a (framing independefitjvalued Vassiliev invariant of order 11 dis-
tinguishing both the mutants (se&“). This example yields two singular knots
representing by CD®1 and D, of order 11, with the same intersection graphs
G(D1) andG(D2), and such thaiD1] # [D2] in 4;1.

Problem: Describe the class of all (realizable) intersection graphs for which
the Intersection Graph Conjecture is true.

Problem 17 (BCC18.17) Fragmentability of graphs of bounded degree.
Proposed by Keith Edwards, Graham Fatrr.
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Correspondent: Graham Farr
School of CSSE
Monash University
Clayton, Vic. 3168
Australia
gfarr@csse.monash.edu.au

Let C be a positive integer and a real number if0,1). A graphG onn
vertices is(C, a)-fragmentabléf there exists a seX of at mostan vertices such
that each component & — X has at mosC vertices.

Problem: Does there exist < 1 and a sequendg,;,Cy, ... of constants such
that every grapl of maximum degred is (Cp, a)-fragmentable?

It is known that such ao must be at least/P: see §].

Problem 18 (BCC18.18) Monotone paths in edge-ordered graph$roposed
by Yehuda Roditty.
Correspondent: Yehuda Roditty
Department of Computer Science
School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978
Israel
jr@math.tau.ac.il
An edge-ordered graplis an ordered paifG, f), whereG = G(V,E) is a
finite undirected simple graph ards a bijection fromE(G) to {1,2,...,|E(G)|},
called anedge-orderingof G. A monotone path of lengthik (G, f) is a simple
pathP 1 : V1, Va..., ki1 In G such that the valuel((vi,vi;+1)), fori=1,2,... k—
1, are strictly monotonic (either increasing or decreasing). All definitions and
updated results can be found irt].
Given a graplG, denote by (G) the minimum (over all edge orderings Gj
of the maximum length of a monotone path.

Problems:

1. Prove thata(K,) = (% +0(1))n. (The right-hand side is known to be an
upper bound foo (Kp).)

2. Determinena(G) for G a planar graph. (It is known that$a(G) <9, and
if Gis bipartite then &< a(G) <6).
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Problem 19 (BCC18.19) Decomposing complete multipartite graphs.
Proposed by Keith Edwards.
Correspondent: Keith Edwards

Department of Applied Computing

University of Dundee

Dundee DD1 4HN

U.K.

kedwards@computing.dundee.ac.uk

A graphH decomposea graphG if there is a sef of subgraphs o6, each
isomorphic taH, such that each edge Gfis contained in exactly one of the graphs
inS

Problem: Is it true that, for any\-partite graptH, there is an integan such
thatH decomposes the completepartite graph with all parts of sia&

The answer is “yes” foh = 2 andA = 3.

Problem 20 (BCC18.20) Graphs isomorphic to their neighbourhoods and
non-neighbourhoods.Proposed by Anthony Bonato.
Correspondent: Anthony Bonato
Department of Mathematics
Wilfrid Laurier University
Waterloo, Ontario N2L 3C5
Canada
abonato@wlu.ca
Let N(x) andN®(x) denote the sets of neighbours and non-neighbours of the
vertexx of a graphG, respectively. We say tha& hasproperty (N) if, for ev-
ery vertexx, the subgraph induced BY(x) is isomorphic toG; property(N°) is
defined similarly.
Problem Which countable simple graphs hawethproperty(N) and property
(N©)?
The only known example of such a graph is the countadrelom graph or
Rado’s graphthe unique countable existentially closed graph. However, there are
250 non-isomorphic graphs having one of these properties.
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