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Abstract

Most of these problems were presented at the problem session of the
18th British Combinatorial Conferenceat the University of Sussex, 2–6 July
2001. I have added some problems given to me after the session.

Since two of the problems concern circular chromatic number, the entire
set has a circular structure; the starting point is fixed by the sixth problem.

Problem 1 (BCC18.1) Freese–Nation numbers of posets.Proposed by
D. H. Fremlin and D. B. Penman.
Correspondent: D. B. Penman

Department of Mathematics
University of Essex
Wivenhoe Park
Colchester, Essex CO4 3SQ
U.K.
dbpenman@essex.ac.uk

Let (P,�) be a poset. A functionf : P 7→ PP (wherePP is the power set of
P) is aFreese–Nation functionif, wheneverp� q, we have

f (p)∩ f (q)∩ [p,q] 6= /0.
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TheFreese–Nation numberFN(P) is the smallestr for which there is a Freese–
Nation function f with | f (p)| < r for all p ∈ P. Observe thatp ∈ f (p) for all
p∈ P.

For example,

1. if P is an antichain, then FN(P) = 2;

2. if P is ann-element chain, then FN(P) = 2+ blog2nc;

3. if P = A∪B with |A|= 2r−5, |B|= 2r−6, anda� b for all a∈ A, b∈ B,
then FN(P) = r;

4. If P is selected from the uniform distribution onn-element posets, then
FN(P) = (n/8)(1+o(1) with high probability.

Problem: Find
lim

m→∞
(FN(Pm))1/m,

wheremdenotes anm-element set. (It is known that the limit exists and lies in the
interval[2/

√
3, 3
√

3]≈ [1.1547,1.4422].)

Problem 2 (BCC18.2) Matching roots of vertex-transitive graphs.Proposed
by Bojan Mohar.
Correspondent: Bojan Mohar

Department of Mathematics
University of Ljubljana
Jadranska 19
Ljubljana
1111 Slovenia
bojan.mohar@uni-lj.si

Let p(G,k) be the number of matchings of the graphG with k edges. Then the
matching polynomialof G is

µ(G,x) =
bn/2c

∑
k=0

(−1)kp(G,k)xn−2k.

It is known thatµ(G,k) has only real roots.
Conjecture: For every integerr there exists a connected vertex-transitive

graph whose matching polynomial has a root of multiplicity at leastr.
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Even examples of vertex-transitive graphs with at least one non-simple root
would be of great interest, since such graphs cannot contain a Hamiltonian path
(see [12]).

Editor’s note: This was the proposer’s “Problem of the month” for July 2001:
seehttp://www.fmf.uni-lj.si/ ˜ mohar/Problems.html

Problem 3 (BCC18.3) Strongly distance-regular graphs.Proposed by
M. A. Fiol.
Correspondent: M. A. Fiol

Departament de Matematica Aplicada i Telematica
Universitat Politecnica de Catalunya
08834 Barcelona
Spain
fiol@mat.upc.es

For the definition of a distance-regular graph and related concepts, we refer to
Brouweret al. [4].

A graphΓ with diameterd is calledstrongly distance-regularif Γ is distance-
regular and the distance-d graphΓd (in which vertices are adjacent if they have
distanced in Γ) is strongly regular. Examples include

1. any strongly regular graph;

2. any distance-regular graph withd = 3 and third-largest eigenvalue−1;

3. any antipodal distance-regular graph.

Problem: Prove or disprove that these examples exhaust all possibilities.

Problem 4 (BCC18.4) Some configurations in polar spaces.Proposed by
Harm Pralle.
Correspondent: Harm Pralle

Unterstruth 27
35418 Buseck
Germany
harm.pralle@math.uni-giessen.de

For which polar spacesΠ of rank 3, other than the Klein quadric, does there
exist a setH of planes such that
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(i) there exists a unique planeδ ∈ H such that any plane ofΠ intersectingδ in a
line belongs toH, and

(ii) every line ofΠ not contained inδ is covered uniquely by a plane ofH?

The only known example forH lives in the symplectic varietyS5(R) in PG(5,R);
it is a hyperplane of the dual ofS5(R) arising from an embedding in PG(13,R).
(All examples in the Klein quadric are obtained by takingδ to be a plane and
including also all the planes of the opposite ruling.)

Problem 5 (BCC18.5) Projective space analogues of Steiner systems.
Proposed by “Folklore” (possibly Ph. Delsarte).
Correspondent: Peter J. Cameron

School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS
UK
p.j.cameron@qmul.ac.uk

Does there exist a collectionSof planes in the projective space PG(n,q), where
n> 2, such that any line lies in a unique member ofS? (This would be the ana-
logue for projective spaces of a Steiner triple system.) No examples are known.

One can easily define analogues of arbitraryt-designs in projective spaces
(probably Delsarte [6] was the first to do so), but very few examples are known.
However, infinite examples exist in great profusion!

Problem 6 (BCC18.6) “Problem 6”. Proposed by Harald Gropp.
Correspondent: Harald Gropp

Muehlingstr. 19
D-69121 Heidelberg
Germany
d12@ix.urz.uni-heidelberg.de

Is there a bipartite 6-regular graph with 66 vertices having girth 6?
Equivalently, is there a 336 configuration? (This is a configuration with 33

points and 33 lines, each point on 6 lines and each line containing 6 points, such
that two points lie on at most one line.)
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Problem 7 (BCC18.7) Multiplication group of a Latin square. Proposed by
Aleš Dŕapal.
Correspondent: Alěs Dŕapal

Katedra Algebry
MFF UK
Sokolovsḱa 83
186 75 Praha 8
Czech Republic
drapal@karlin.mff.cuni.cz

Consider a Latin squareL of order n whose first row and column are nor-
malised to have the entries 1, . . . ,n in order. Each row and column ofL is a
permutation of{1, . . . ,n}; the group generated by these permutations is themulti-
plication groupof L, denoted byM(L).

Givenk≥ 3 and a prime powerq, does there exist a Latin squareL such that

PSL(k,q)≤M(L)≤ PΓL(k,q)?

The proposer has shown recently [7, 8] that, if k = 2, there is only one such square
L, with M(L) = PΓL(k,q) = S5.

For the next two problems, we introduce a Markov chain method for choosing
Latin squares uniformly at random, due to Jacobson and Matthews [13].

We represent a Latin square of ordern by a function f : N3→ {0,1} (where
N = {1, . . . ,n}) satisfying

∑
x∈N

f (x,y,z) = 1

for giveny,z∈ N, and two similar equations for the other coordinates. We allow
alsoimproper Latin squares, which are functions satisfying these constraints but
which take the value−1 exactly once. Now to take one step in the Markov chain
starting at a functionf , do the following:

(a) If f is proper, choose any(x,y,z) with f (x,y,z) = 0; if f is improper, use the
unique triple withf (x,y,z) =−1.

(b) Letx′,y′,z′ ∈ N satisfy

f (x′,y,z) = f (x,y′,z) = f (x,y,z′) = 1.

(If f is proper, these points are unique; iff is improper, there are two
choices for each of them.)
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(c) Now increase the value off by one on the triples(x,y,z), (x,y′,z′), (x′,y,z′)
and(x′,y′,z), and decrease it by one on the triples(x′,y,z), (x,y′,z), (x,y,z′)
and(x′,y′,z′). We obtain another proper or improper Latin square, accord-
ing as f (x′,y′,z′) = 1 or 0.

Jacobson and Matthews show that the limiting distribution gives the same proba-
bility to each Latin square.

Problem 8 (BCC18.8) Choosing Latin squares uniformly at random.
Proposed by M. T. Jacobson and P. Matthews; J. Møller; J. Besag.
Correspondent: R. A. Bailey

School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS
UK
r.a.bailey@qmul.ac.uk

Problem: How fast does the Jacobson–Matthews Markov chain converge to
the uniform distribution?

Problem 9 (BCC18.9) A Markov chain for Steiner triple systems.Proposed
by Peter J. Cameron.
Correspondent: Peter J. Cameron

School of Mathematical Sciences
Queen Mary, University of London
London E1 4NS
UK
p.j.cameron@qmul.ac.uk

A slight modification of the method of Jacobson and Matthews should work
for Steiner triple systems. We simply replace “ordered triples” by “unordered
triples of distinct elements” in the definition; then a STS is a function from un-
ordered triples to{0,1} which satisfies

∑
z6=x,y

f ({x,y,z}) = 1

for all distinct pointsx,y, and an improper STS is allowed to take the value−1
exactly once. Now the moves are defined as before. However, before we know
that the limiting distribution is uniform, we have to solve the following
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Problem: Is the chain connected? That is, is it possible to get from any STS
to any other by a sequence of moves?

Problem 10 (BCC18.10) Perfect Steiner triple systems.Proposed by
M. J. Grannell and T. S. Griggs.
Correspondent: T. S. Griggs

Department of Pure Mathematics
The Open University
Walton Hall
Milton Keynes MK7 6AA
U.K.
t.s.griggs@open.ac.uk

Let S= (V,B) be a Steiner triple system of orderv, and leta andb be any
two points, andc the third point of the block containing them. Define a graphGab

as follows: the vertex set isV \ {a,b,c}, and two verticesx andy are adjacent if
and only if either{a,x,y} ∈ B or {b,x,y} ∈ B. ClearlyGab is a union of disjoint
even cycles. IfGab is a single cycle forall choices ofa,b∈V, thenS is said to be
perfect.

Perfect STS of orders 7, 9, 25 and 33 have been known for some time. More
recently Grannell, Griggs and Murphy [11] added nine new values to the list of
orders:

79, 139, 367, 811, 1531, 25771, 50923, 61339, 69991.

These are all primes of the form 12s+7.
Problem: What number-theroretic property distinguishes these nine primes

from the other primes of this form less than 100000 (where the search terminated)?

The next two problems refer to circular chromatic number, which is defined as
follows. For a hypergraphH, and positive integersp,q with 2q≤ p, we define a
(p,q)-colouringto be a functionc : V(H)→{0,1, . . . , p−1} such that each edge
e of H contains two verticesa andb with q≤ |c(x)−c(y)| ≤ p−q. Thecircular
chromatic numberof H, written χc(H), is the infimum of the set of valuesp/q
for which there exists a(p,q)-colouring ofH. (We can replace “inf” by “min”
here.) Alternatively, it is the smallest circumference of a circleS such that the
vertices of the graphs can be mapped to points ofSsuch that adjacent points are at
distance at least 1. The definition of circular chromatic number of a graph is just
the specialisation of this definition.
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Since everyp-colouring is a(p,1)-colouring, we haveχc(H) ≤ χ(H), where
χ(H) is the chromatic number ofH.

See Zhu [20] for a survey, and also the paper by Mohar [15] presented at the
meeting.

Problem 11 (BCC18.11) Circular chromatic number of Steiner triple
systems.Proposed by Changiz Eslahchi, Arash Rafiey.
Correspondent: Changiz Eslahchi

Department of Mathematics
Shahid Beheshty University
Evin, Tehran
Iran
ch-eslahchi@cc.sbu.ac.ir

Conjecture: For every Steiner triple systemS of order at least 13, we have
χc(S) = χ(S).

Editor’s note: The conjecture is false for order 7. I am grateful to Fred Hol-
royd for pointing out to me that the usual cyclic representation of the STS of
order 7 shows thatχc(S)≤ 7/3, while of courseχ(S) = 3.

Problem 12 (BCC18.12) Bounding the circular chromatic number of a
graph. Proposed by Bojan Mohar.
Correspondent: Bojan Mohar

Department of Mathematics
University of Ljubljana
Jadranska 19
Ljubljana
1111 Slovenia
bojan.mohar@uni-lj.si

Let PG(x) be the chromatic polynomial of the graphG and letk be the chro-
matic number ofG. Let c0 ≤ k be the largest real number such thatPG(c0) = k!
.

Problem: Is it true thatχc(G) ≤ c0, whereχc(G) is the circular chromatic
number ofG?

Problem 13 (BCC18.13) Two list colouring conjectures.Proposed by
S. Akbari, V. S. Mirrokni, B. S. Sadjad.
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Correspondent: S. Akbari
Sharif University of Technology
Tehran
Iran
s akbari@sina.sharif.ac.ir

1. A list edge-colouring conjecture.Let G be a graph withm edges and max-
imum degree∆ ≥ 2. Suppose thatL = {L1, . . . ,Lm} is an assignment of lists of
colours to the edges ofG such that|Li | = ∆ for i = 1, . . . ,m. Show thatG is not
uniquelyL-colourable.

This is known to be true ifG is not regular, or ifG is regular and bipartite
(see [3]).

2. A list vertex-colouring conjecture.Suppose thatG is a graph andf :
V(G)→ N is a function, whereN is the set of natural numbers. LetL be a list
assignment to the vertices ofG, such that|Lv| = f (v) for anyv∈ V(G), and as-
sume thatG is uniquelyL-colourable. Suppose thatG is a maximal uniquely
f -colorable graph (that is, for any list assignmentL′ of G, if f (v) ≤ |L′v| for all
v∈V(G) and there exists a vertexv0 such thatf (v0)< |L′v0

|, thenG is not uniquely
L′-colorable). ThenG is f -choosable.

Problem 14 (BCC18.14) Colouring and degeneracy of random graphs.
Proposed by Bojan Mohar.
Correspondent: Bojan Mohar

Department of Mathematics
University of Ljubljana
Jadranska 19
Ljubljana
1111 Slovenia
bojan.mohar@uni-lj.si

HereGn,p denotes the random graph model in which edges are selected from
the n-vertex set independently with probabilityp (see Molloy’s paper [16] pre-
sented at the conference). A graph isk-degenerate if every induced subgraph has
a vertex of degree smaller thank. Clearly ak-degenerate graph isk-colourable. A
k-coreof a graph is an induced subgraph with minimum degree at leastk.

Let p = p(n,k) be the smallest probability such that almost no graphs inGn,p

are(k logk)-degenerate.
Conjecture: Almost all graphs inGn,p have chromatic number at leastk. (In

other words, the threshold for a(k logk)-core is at least that fork-colourability.)
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Problem 15 (BCC18.15) Odd holes in planar graphs.Proposed by Colin
McDiarmid.
Correspondent: Colin McDiarmid

Corpus Christi College
Oxford OX1 4JF
U.K.
cmcd@stats.ox.ac.uk

An odd holein a graph is an induced subgraph which is an odd circuit of length
at least 5.

Does every planar graph have 3-colouring (not necessarily proper) of the ver-
tices such that every odd hole receives all three colours?

This question is related to measuring how imperfect a planar graph can be.

Problem 16 (BCC18.16) Chord diagrams and Vassiliev invariants.Proposed
by Leonid Plachta.
Correspondent: Leonid Plachta

Institute of Appl. Problems of Mech. and Math
NAS of Ukraine
79000, Naukova 3b
L’viv
Ukraine

The following combinatorial problem arises in the study of Vassiliev knot in-
variants. To formulate it let us first recall that eachn-singular knot (C1-immersion
of S1 intoR3) with exactlyn double transverse points (called singularities) can be
represented (though not uniquely) by itschord diagram(for short, CD), in which
the preimages of each singular point inS1 are the endpoints of a chord in the CD.

Let K denote the set of knots inR3. Any isotopy invariant of knotsv:K →Q
can be extended in a natural way to the setL of singular knots with a finite number
of singularities (see, for example, [2]). An isotopy invariantv:L → Q is called
a Vassiliev invariantof ordern if v vanishes on any(n+ 1)-singular knot andn
is the smallest number with this property. It turns out (see [2]) that any Vassiliev
invariantv of ordern has equal values on all singular knots having the same CDs
with n chords.

Let Dn denote the set of chord diagrams withn chords, the CDs being consid-
ered up to the obvious equivalence relation, and let span(Dn) be the vector space
overQ generated byDn. It follows anyQ-valued Vassiliev invariantv of order
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n determines a functionw(v):Dn→ Q satisfying the axioms 1T (framing inde-
pendence) and 4T (the four term relation) described, for example, in [2]. Such a
function is called aweight systemof degreen. In other words, a weight system of
degreen is an element of the dual space of the vector space

An = span(Dn)/span({4T and 1T relations}).

For anyD∈Dn, let G(D) denote theintersection graph(or interplay graph, in
the terminology of [1]) of D. Note that not every abstract intersection graph with
n vertices is realizable as an intersection graph of some chord diagram of ordern.
Rosenstiehl’s theorem characrerizes the class of all realizable abstract intersection
graphs (see [1]).

The Intersection Graph Conjecture, formulated by Chmutovet al. [5], asserts
that a weight systemw:Dn→ Q has equal values on any two chord diagrams
with the same intersection graphs, so its values on CDs are determined uniquely
by their intersection graphs. They proved the conjecture in the case when the
intersection graphs of chord diagrams are trees. It follows that the conjecture is
true if the intersection graphs are forests. Recently B. Mellor [14] showed that the
conjecture is true for chord diagrams whose intersection graphs have exactly one
loop.

T. Q. T. Le showed however that, in general, the conjecture is false, since it im-
plies that Vassiliev knot invariants cannot detect mutation, contradicting the Mor-
ton/Cromwell examples. More precisely, Morton and Cromwell [17] showed that
there exists a framed Vassiliev invariantv of degree 11 with values inZ[u] which
takes different values on Kinoshita-Teresaka/Conway mutants. This implies that
there exists a (framing independent)Q-valued Vassiliev invariant of order 11 dis-
tinguishing both the mutants (see [19]). This example yields two singular knots
representing by CDsD1 andD2 of order 11, with the same intersection graphs
G(D1) andG(D2), and such that[D1] 6= [D2] in A11.

Problem: Describe the class of all (realizable) intersection graphs for which
the Intersection Graph Conjecture is true.

Problem 17 (BCC18.17) Fragmentability of graphs of bounded degree.
Proposed by Keith Edwards, Graham Farr.

11



Correspondent: Graham Farr
School of CSSE
Monash University
Clayton, Vic. 3168
Australia
gfarr@csse.monash.edu.au

Let C be a positive integer andα a real number in(0,1). A graphG on n
vertices is(C,α)-fragmentableif there exists a setX of at mostαn vertices such
that each component ofG−X has at mostC vertices.

Problem: Does there existα < 1 and a sequenceC1,C2, . . . of constants such
that every graphG of maximum degree∆ is (C∆,α)-fragmentable?

It is known that such anα must be at least 1/2: see [9].

Problem 18 (BCC18.18) Monotone paths in edge-ordered graphs.Proposed
by Yehuda Roditty.
Correspondent: Yehuda Roditty

Department of Computer Science
School of Mathematical Sciences
Tel Aviv University
Tel Aviv 69978
Israel
jr@math.tau.ac.il

An edge-ordered graphis an ordered pair(G, f ), whereG = G(V,E) is a
finite undirected simple graph andf is a bijection fromE(G) to{1,2, . . . , |E(G)|},
called anedge-orderingof G. A monotone path of length kin (G, f ) is a simple
pathPk+1 : v1,v2...,vk+1 in G such that the valuesf ((vi ,vi+1)), for i = 1,2, . . . ,k−
1, are strictly monotonic (either increasing or decreasing). All definitions and
updated results can be found in [18].

Given a graphG, denote byα(G) the minimum (over all edge orderings ofG)
of the maximum length of a monotone path.

Problems:

1. Prove thatα(Kn) = (1
2 + o(1))n. (The right-hand side is known to be an

upper bound forα(Kn).)

2. Determineα(G) for G a planar graph. (It is known that 5≤ α(G)≤ 9, and
if G is bipartite then 4≤ α(G)≤ 6 ).
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Problem 19 (BCC18.19) Decomposing complete multipartite graphs.
Proposed by Keith Edwards.
Correspondent: Keith Edwards

Department of Applied Computing
University of Dundee
Dundee DD1 4HN
U.K.
kedwards@computing.dundee.ac.uk

A graphH decomposesa graphG if there is a setS of subgraphs ofG, each
isomorphic toH, such that each edge ofG is contained in exactly one of the graphs
in S.

Problem: Is it true that, for anyλ-partite graphH, there is an integern such
thatH decomposes the completeλ-partite graph with all parts of sizen?

The answer is “yes” forλ = 2 andλ = 3.

Problem 20 (BCC18.20) Graphs isomorphic to their neighbourhoods and
non-neighbourhoods.Proposed by Anthony Bonato.
Correspondent: Anthony Bonato

Department of Mathematics
Wilfrid Laurier University
Waterloo, Ontario N2L 3C5
Canada
abonato@wlu.ca

Let N(x) andNc(x) denote the sets of neighbours and non-neighbours of the
vertexx of a graphG, respectively. We say thatG hasproperty(N) if, for ev-
ery vertexx, the subgraph induced byN(x) is isomorphic toG; property(Nc) is
defined similarly.

Problem Which countable simple graphs havebothproperty(N) and property
(Nc)?

The only known example of such a graph is the countablerandom graph, or
Rado’s graph, the unique countable existentially closed graph. However, there are
2ℵ0 non-isomorphic graphs having one of these properties.
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