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This document contains the problems presented at problem sessions at the British Combina-
torial Conference, from BCC12 to the present. All those problems which were published in the
Conference proceedings, and some others, are included. | have annotated and updated them with
further references wherever | know of any. Further information on any of the problems are very
welcome, and will be included in subsequent versions of the problems. The proposers’ addresses
are the most recent known to me, but some are now long out of date; again, updates are welcome.

From BCC13 onwards, the problems (together with the contributed papers) have been published
in the Research Problems sectiorbDagcrete Mathematic€Each problem appearing in this section
receives a unique number, which | have given in the fDinnn. These problems arg Elsevier
Science B.V.

1 BCC12

BCC12 was held at the University of East Anglia, Norwich, 3—7 July 1989. Contributed papers
were published irArs Combinatoria29 (1990); the problems were not included, but were circu-
lated to participants.

Problem BCC12.1: Some doubly resolvable design€?roposed by R. A. Bailey. Correspon-
dent: R. A. Bailey.


mailto:p.j.cameron@qmul.ac.uk

For whichn andk does there exist a doubly resolvable incomplete block desigrkfiveatments
in n? blocks of sizek, so that all concurrences are 0 or 1?

Such a design exists if there a&keViOLS of ordern. What about other values? In particular,
does it exist for(n,k) = (6,3), (6,4), (6,5) or (10,3)?

Editor’'s Note: These designs are now known as SOMAs (see Phillips and Waiijs [For re-
cent results on their structure and classification, including existendd®8), see Soicherdd).
Further information on semi-Latin squares is available frén [

Problem BCC12.2: Latin squares with transitive groups. Proposed by R. A. Bailey. Corre-
spondent: R. A. Bailey.

Do there exist any Latin squares, other than Cayley tables, whose automorphism groups are
transitive?

Editor’'s note: The proposer answered her own question: there is such a square of orderg: see [
p. 54]. A more difficult question would be to determine all such squares.

Problem BCC12.3: Two Diophantine equationsProposed by Peter Cameron. Correspondent:
Peter Cameron.

Let g,n, k be positive integers witg > 1,n > 3.

k g1
<2>_1_ q-1

k AN
(2)—1—q +1

has only the solutioq" = 64,k = 12.

(a) Show that

has no solutions.

(b) Show that

Remark: Richard Guy remarks that, for fixen these equations are presumably of the sort to
which Faltings’ theorem applies, in which case there are only finitely many solutions foneach
But surely these equations are less difficult than Fermat’s last theorem!
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Editor’s Note: Hering [60] has obtained further results on these equations, including the fact that
the second equation has only finitely many solutiorgg<f 47 or if nis divisible by 3.

Problem BCC12.4: Generalised quadranglesProposed by J. Tits and P. J. Cameron. Corre-
spondent: Peter Cameron.

Show that there is no generalised quadrangle with paramgtemsheres is finite and greater
than 1, and is infinite.

Note: A generalised quadranglis a geometry of points and lines, with any two points on at most
one line, such that if poin® is not on lineL, thenP is collinear with a unique point df. It has
parameters,t if each line contains+ 1 points and each point lies an- 1 lines. Ifs=1, itis

a complete bipartite graph. The finiteness efhens = 2,3 was shown by Cameron and Kantor
respectively.

Editor’s Note: A simplified proof for the case= 3 was given by Brouwerl[d]. Finiteness in the
cases= 4 was shown by Cherlin (unpublished), who gave a general method which can in principle
deal with larger values of (with ever-increasing amounts of hard labour).

Problem BCC12.5: Edge-density of infinite graphs.Proposed by Peter Cameron. Correspon-
dent: Peter Cameron.

Let G be an infinite graph. List alabelled rvertex subgraphs d& (a finite list, for each),
and letd, be the average density of edges in the list (that is, the total number of edges divided by
(5) times the number of graphs in the list. Doesing, dy exist?

Problem BCC12.6: Intersecting families. Proposed by P. J. Cameron, P. Frankl and W. M.
Kantor. Correspondent: Peter Cameron.

Let # C P({1,2,...,n}) be an intersecting family of sets which is maximal (that4s|, = 2"~1)
and regular (each point lies in the same number of elementy.diet mbe the size of the smallest
setin#. Itis known thatm > %Iogn+c; examples are known witin ~ \/n. (See P&]). What is
the truth?

Editor's Note: This problem has been solved by Aaron Meyerowiiz][ who showed that the
lower bound is correct.



Problem BCC12.7: Forbidding divisibility. Proposed by P. J. Cameron and P.d&dCorre-
spondent: Peter Cameron.

Let f(n) be the number of sequences
I<ay<...<a<n

with a Ja; fori # j. Prove that lim_. f(n)¥/" exists.
Note: The limit should be about.%8: see }7].

Problem BCC12.8: Inverting sign matrices. Proposed byOmer Eecidjlu. Correspondent:
Omer Kjecidjlu.

Consider two disjoint finite setd and B, each partitioned intm? not necessarily nonempty
subset®\j andB;; fori, j =1,...,n, respectively. Suppose that we have a mapping stgnB —

{—1,1}. Let
L= Y signx), b= S signy).
aj ng sign(x) j y;” sign(y)

In many combinatorial situations, the numbeajsandbj; are given not explicitly bualgorithmi-
cally.

Put

n n
lij = | Ak x Bj, 1= .
k=1 ij=1

Clearlyl € A x B. Denote byx; andujj generic elements o4j, and byy;j andvij elements of
Bij. We turnl into asigned spac®y defining, for every(xi, ykj) € I,

sign(Xik, Ykj) = Sign(Xix) sign(yk;)-

Let A = ||ajj||, andB = ||bij||, and suppose thaB = I. In many instances (for example,
in the combinatorics of the transition matrices for symmetric function bases), one can provide a
combinatorial proof of this fact (vizAB = |) by means of aign-reversing involutiomn |. That
iS, we can construct a permutatiaron| satisfying

() a:lij — lij;

(i) if a(Xik, Ykj) = (Ui, vij) # (X, Ykj), then sigrixic, Ykj) # sign(ui,vij) (that is, a is sign-
reversing outside its fixed point set);

(i) o has no fixed points i for i # j, and a unique fixed point (with positive sign) linfor
eachi;



a is an involution, that isp? is the identity.

Then it is easy to see, by using that
n
> aibyj = &ij,
K=1

whered;j is the Kronecker delta.
SinceAB = | if and only if BA =1, it is natural to ask iBA = | admits a combinatorial proof
via a sign-reversing involutiofd defined on

n

J= U ‘]ij7

ij=1
where .
Jj = U Bk x Aj,
k=1
wheref3 is constructed directly from. We would also like the construction to batural, in the

sense that the map— B itself should be an involution.
Problem: Give such a construction @gfrom a.

Problem BCC12.9: Subgraphs of then-cube. Proposed by Paul Eé$. Correspondent: Paul
Erdos.

Let Q, denote the-cube, a graph with2"~1 edges.
(a) Show that a subgraph %, with at Ieast(% +€)n2"~1 edges contains @;.

(b) Show that a subgraph &, with at leastn2"~! edges contains Ge.

Of course, the assertion is to be shown for all sufficiently largir any givene > 0. Each of
these problems is worth $100.

Editor’s Note: Part (b) has been disproved by Cond&#[ who partitioned the edge-set Gf, into
threeCg-free subsets. For up-to-date results on both problems, see Chung and Gighaur43.

Problem BCC12.10: Sum-free sets containing a small even numbédProposed by Paul Eé&s.
Correspondent: Paul Edd.

Let Sbe a sum-free subset §1,... n} (thatis, for allx,y,z€ S x+y # 2). Clearly|S < (%n}.
Now suppose th&b contains an even number less tl@m f(n). Isittrue thatS < %n— ef(n)?

The hypothesis is clearly necessary: the set of odd numbers, and the set of numbers greater than
3n, are both sum-free. It is known that, ife2S, then|S) < (2 +o(1))n.
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Editor’'s Note: Deshouillers, Freiman, & and Temkinj&] have shown that a sum-free &which
contains an even number satisfies eitlrK min(S) or |§ < %(n+ 2). More generally, they have
given a description of all such sets satisfyisy> %n —cwith n> ng(c) for fixedc.

Problem BCC12.11: Forbidding x+Yy = 4z Proposed by Paul Eé$. Correspondent: Paul
Erdos.

Let Sbe a set of positive integers containing no solutior-toy = 4z. DoesShave lower density
less thang?
Note that the set of integers congruent to 1 or 4 modulo 5 satisfies the constraint and has density

(62118}

Problem BCC12.12: Sets with all subset-sums distinctProposed by Paul Eés. Correspon-
dent: Paul Erds.

Let Sbe a subset of1,...,n} with all sums of subsets distinct. Is it true that

logn
< —=+C?
S IogZJr
It is known that|S| < :8%2 + '02?(';;92”, and that there is such a set with= 2™ and|S = m+ 2.

This problem is worth $500.

Problem BCC12.13: Some distance-regular graphsProposed by Tony Gardiner. Correspon-
dent: Tony Gardiner.

Is there a distance-regular graph with diameter 3 having intersection array

* 1 cm
0 0 a 0
m m—1 b =x

withb#1,a+# 0?

Theith column of the intersection array gives the number of vertices adjacgahbat distance
i—1,i,i+1 respectively fronx, wherex andy are at distancethese numbers being (by definition)
constant. The smallest such feasible graph has valency 126.



Problem BCC12.14: Determining a graph from its cycle spaceProposed by Oliver Pretzel.
Correspondent: Oliver Pretzel.

Given a cycle basis of a grapgh, one can view the cycles @ as elements of a free abelian
group (or, if orientation is disregarded, of a vector space @y&). Many functions on the cycles
are linear on this algebraic structure, but the length function (the number of edges in the cycle) is
not. Informally, the question is: “how closely does the length function deter@#ie

More formally, suppose that two grap@sandH are given with isomorphic cycle spaces. Sup-
pose further thaG is known and that, for suitable cycle bases, the length functions on the cycle
spaces oz andH are the same. What can be said ald@t

For example, ifG is a tree, therH is a forest. IfG is a cycle with two chords anH is 2-
connected, theHl is a cycle of the same length with two chords, but the chords can be moved
slightly. SoH need not be isomorphic .

Conjecture:If G andH are 3-connected and have the same length function for cyclesGthed
H are isomorphic

Problem BCC12.15: A double Youden rectangleProposed by Donald A. Preece. Correspon-
dent: Donald A. Preece.

Construct a 5 11 double Youden rectangle.
For the definition, see Baileys]. Briefly: what is required is a &% 11 rectangle, each cell
containing a symbol fromay, ...,a;1} and a symbol fron{by,...,bs}, such that

(i) the a’'s form a Latin rectangle, and the setsad appearing in the columns are the blocks of a
symmetric(11,5,2) BIBD;

(i) eachb appears once in each column and once paired with &ach
(iii) For i # ], the numbers of occurrenceslpfandbj in any row differ by at most 1.

Of course, this definition is much less “symmetrical” than that in Bait@y [

Editor’s Note: This problem has been solved by the proposé}. [

Problem BCC12.16: Monotone directed paths in tournaments. Proposed by V. Linek, B.
Sands, N. Sauer and R. E. Woodrow. Correspondent: Bill Sands.



Problem 1:If the edges of a tournament are coloured with three colours, is there a set of three
vertices such that there is a monochromatic directed path from any other vertex to one of these
three?

It is known that, if only two colours are used, then a single vertex will suffice. For three colours,
three vertices are necessary but it is not known whether any finite number is sufficieri5See |

Problem 2:Let P be a poset, and colour the edges of a tournament with the element<all a
directed pathxy, X2, . .., X monotonef
colounxixi+1) < coloun(x+1%+2)

foralli. If Pis the pose{z e}, is there a set of three verticesDfsuch that there is a monotone
directed path from any other vertex ©fto one of these three?

Again it is known that two vertices will not always do, but no fixed number is known to suffice.
Problem 1 is just Problem 2 witR a 3-element antichain. Linek and Sands][have found all
posetsP for which asinglevertex suffices; they are exactly those containing nei{leer ¢ o}

nor{{ e}.
Problem 3: Problem 2 can be generalised by replacing the pBday a directed graplD, and
replacing “monotone” paths by patks ..., xx such that

(colournxxi+1),colounXi+1Xi+2)) is an edge oD

for all i. For example, ilD = Cs, the undirected 5-cycle (with each edge directed both ways), is
there always a vertex in any tournament reachable from all other®bgath?

Problem BCC12.17: Independence numbers in non-Hamiltonian graphsProposed by Dou-
glas R. Woodall. Correspondent: Douglas R. Woodall.

Let G be ak-connected graph with vertex independence nurfé&).
Conjecture 1LIf Gis not HamiltonianC is a longest circuit irG, andk > 2, then

a(G—-C) <a(G) -k
Conjecture 2:If G is not traceableR is a longest path i, andk > 1, then
a(G—-P)<a(G)—k—1.

Here,G — C means the graph obtained by removing ¥ieeticesof C from G.

If true, both conjectures are best possible: Gebe the union of a large number of complete
graphs, all having exactly vertices in common. Conjecture 2 is obviouk i 1 (since the end
vertices ofP are not adjacent to each other or to anything outsljjeand has been proved for
k=2, but is open fok > 3, as is Conjecture 1 in all cases.
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Problem BCC12.18: Zara graphs.Proposed by Francois Zara. Correspondent: Frangois Zara.
A Zara graphis a graph with the properties that, for some natural numbarsit,

(i) each maximal clique is of cardinality

(i) if Cis a maximal clique and a vertex not irC, thenx is adjacent to exactlyvertices inC.
Problems:

1. Find new Zara graphs.

2. A Zara graph with = 2 is a special kind of “extended generalised quadrangle” (54 [Can
these graphs be classified?

For further background, see4, 109, 110.

Editor’s note: At the Second Franco-Chinese Conference on Counting and Coding, held at ENST,
Paris, 6-8 September 1989, Tayuan Huang (Department of Applied Mathematics, National Chiao-
Tung University, Hsin Chu 30050, Taiwan, RO®@uang@twnctu0l1.bitnet ) proposed a
solution to Problem 1, involving a family of Zara graphs witk- g°, t = g for any prime power

g, constructed from alternating bilinear forms in 4 variables &E(q). (Join two forms if their
difference is singular.) Subsequently, it turned out that these are isomorphic to some of the known
examples.

Of course, by definition, Problem 1 remains open!

Final note. Participants at the problem session will recall some discussion of a problem posed
by Oliver Pretzel. Subsequently, a message reached me by an indirect route from Noga Alon,
pointing out that the problem had been solved “decades ago” yskndd Selfridge. The proof is
elegant, and participants may be interested in seeing it.

The problem was as follows. LétandB be distinct finite sets of positive integers for which the
multisets
A, ={a+d:ad cAa#d}, By={b+b:bb cBb#b}

coincide. Is it true thatA| = |B| is a power of 2?
Solution.Put f(X) = T acaX? andg(X) = TpeaX°. Then
f(x)2—f(x®) = 2§ X,

rehAy

g2 -gid) = 25

SEb2


mailto:thuang@twnctu01.bitnet

Hencef(x)? — f(x?) = g(x)2 — g(x?), that is, (f — g)(X)(f +g)(x) = (f —g)(x?). Suppose that
(f —g)(x) = (1—x)kP(x) whereP(1) # 0. Then

_ 2
(f+g)(x)+%:(1+x)k

Putx=1to get

20 = (f +)(1) = zk% o

so the answer is affirmative.

2 BCC13

BCC13 was held at the University of Surrey, Guildford, 8-12 July 1991. The contributed papers
were published iDiscrete Mathematicd25(1994). The problems appear on pages 407-417 of
the journal. The problems a@@ Elsevier Science B.V. 1994.

Problem BCC13.1 (DM178): Stable partitions of graphs.Proposed by Z. &redi. Correspon-
dent: Z. Riredi.

A partition of the vertex sef of a (simple) grapl@ into two non-empty partg; andV, is called
stableif, for i = 1,2 and all verticex € Vi,

degsy, () > 3degs(X).

A graph with a stable patrtition is callestable The complete graph is not stable, but every 3-
regular graph other thafy is stable.

What is the number of stable graphs? In particular, is the proportion of graphs/erices
which are stable(1)?

Problem BCC13.2 (DM179): Ramsey perfect graphsProposed by J. Nfil. Correspondent:
J. Nesefil.

Is it true that, for every perfect grapB, there exists a perfect graph such that, for every
partition E(H) = E; UEy, there is an induced subgra@ of H such thatG’ is isomorphic toG
andE(G') C E; for somei (i =1 or 2)?

We expect a negative answer to this question, despite the fact that the analogous question for
partitions of vertices has an affirmative answer (using theasa\Multiplication Lemma).
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Problem BCC13.3 (DM180): Reconstructing spanning treesProposed by W. L. Kocay. Cor-
respondent: C. Wakelin.

Is the number of spanning trees with exaalgutomorphisms reconstructible from the deck of
vertex-deleted subgraphs of a graph, for edeh

Problem BCC13.4 (DM181):1time 2-tough implies2times1-tough?. Proposed by C. Hoede.
Correspondent: C. Hoede.

Prove that the edge-set of a 2-tough graph can be partitioned into twlB;setsl E, such that
each of; andE; induces a 1-tough spanning subgrapltof

If this conjecture is true, then a 4-regular 2-tough graph would consist of two edge-disssjoint
Hamiltonian cycles. One could accordingly extend Thomassen’s conjecture to the assertion that
any 2-tough graph contains two edge-disjoint Hamiltonian cycles.

[A graph ist-toughis, for any vertex cutsédm G — S has at mostS|/t components. Cratal
conjectured that, forr > % at-tough graph is Hamiltonian. This was refuted by Thomassen, who
conjectured instead that a 2-tough graph is Hamiltonian.]

Problem BCC13.5(DM182): Path-tough graphsProposed by I. Schiermeyer. Correspondent:
|. Schiermeyer.

Let G be a simple graph on vertices, wheren > 3, which ispath-tough(that is,G — v has
a Hamiltonian path for any verteX. Suppose thati(u) = d(v) = d(w) > n— 2 for any three
independent verticas v,w. Prove that eithe is Hamiltonian, oG is isomorphic to the Petersen
graph.

Problem BCC13.6 (DM183): Hamiltonian cycles and a bit more. Proposed by R. Biggkvist.
Correspondent: R. &jgkuvist.

Prove that any graph of orderamd minimum degree at Iea%linqL 1) contains a subgraph
which is a Hamiltonian cycle together with a longest diagonal.

Problem BCC13.7 (DM184): The second longest cycleProposed by R. Biggkvist. Corre-
spondent: R. Hggkvist.

Give lower bounds for the length of the second longest cycle in a Hamiltonian 3-regular graph.
(The best bound currently is— 4,/n.) More generally, the same problem with “minimum de-
gree 3" in place of “3-regular”.

11



Problem BCC13.8 (DM185): 4-chromatic covering graphs. Proposed by D. Youngs. Corre-
spondent: D. Youngs.

What is the smallest 4-chromatic covering graph? (A graphcevaring graphf its edges can
be directed in such a way that it becomes the Hasse diagram of a poset.) The answer lies between
12 and 14 inclusive.

Problem BCC13.9 (DM186): Special Hamiltonian paths. Proposed by W. T. Trotter and S.
Felsner. Correspondent: W. T. Trotter.

Consider the diagram of the poset of all subset§1o®,...,n}. As a graph, this is the-cube.
Does the graph have a Hamiltonian pAthA1, ..., Ay starting atA; = 0 and having the following
property?

If, at stepi, you visit a se#y;, then you must previously have visited all subseta;afith
at most one exception. If there is an exception, you must visit it next (that it {3.

For example, witm = 4,
0,1,12,2,23,3,34,4,24,124,14,134,13,123 1234 234

is such a path.

Problem BCC13.10 (DM187): Interval-regular graphs. Proposed by H. M. Mulder. Corre-
spondent: H. M. Mulder.

Let G be a connected simple graph. Tinerval I(u,v) between vertices andv is the set of
all vertices which lie on some shortest path faro v. The graph is calledhterval-regularif, for
any two verticesl andv, we have

[IN(u) A1 (u,v)| = d(u,v),

whereN(u) is the set of neighbours of

Examples of interval-regular graphs include hypercubes, and the 2-cube and 3-cube with added
edges joining all vertices iN(u) for some vertexu. The class of interval-regular graphs is closed
under taking Cartesian products. S&g|[

Conjecture:Let G be interval-regular. Then
Xy € l(u,v) = 1(xy) CI(u,v)

for any verticesi andv.
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Problem BCC13.11 (DM188): Permutations of a cube Proposed by M. K. Siu. Correspon-
dent: M. K. Siu.

Let C be then-cube graphd the graph metric. Is every permutation of the verticeg tiie
composite of at most permutations;, each satisfying
d(x;s(x)) <1

forall xe C?

Editor's Note: More generally, which graphs of diametehave this property?
Note that it is not true that a permutatisihe vertices o€ which satisfiesl(x,s(x)) < k can be
written as the product of at mokipermutations as above.

Problem BCC13.12 (DM189): Permutations of projective space.Proposed by A.Garfas.
Correspondent: P. J. Cameron.

For whichn andqg does there exist a permutatiorof the point set oPG(n, q) with the property
that, for any hyperplané, there exists a hyperplat# with (H) "H’ = 07 It is known that the
answer is “yes” fom = 2 (asymptotically, almost all permutations have this property), and “no”
for n> q (by a short argument due to A. Blokhuis).

Problem BCC13.13:g-polynomials. Proposed by A. Bonisoli. Correspondent: A. Bonisoli.

A polynomialc(z) =5 ciZ ovberGF(q) is said to be @-polynomiaif ¢; # 0 only if i is a power
of g. (See [4].) Letm= 29 — 1 be a Mersenne prime. Does there exist a 2-polynomial

c(z) = iixi Z

of degree 2 such thatc(z)/z is irreducible oveiGF(2)? The answer is “yes” for the first four
Mersenne primes, viz., 3, 7, 31, 127.

Problem BCC13.14 (DM190): Cyclic shifts of binary words. Proposed by P. J. Cameron.
Correspondent: P. J. Cameron.

For oddn, let W, be the space of binary words of lengttand even weight. Lef(n) be the
maximum codimension of a subspadef W, such that the union of all cyclic shifts tf is equal
to Wh. Itis known thatf (n) > 2 for n > 3, but little more is known. Doe§(n) — o asn — «? Or
is f(n) = 2 for infinitely manyn?
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Problem BCC13.15 (DM191): A generalisation of arcs.Proposed by J. Bierbrauer. Corre-
spondent: J. Bierbrauer.

Let (V, B) be an affine plane of odd ordgr Given a functiorw: V — Z such that

p;vv(p) <2

massw) = ) w(p).
2

forall L € B, set

Then mas@v) < q+ 2 holds. The valug+ 1 can be attained (by the characteristic function of a
conic). Prove that necessarily méass < q+ 1.

Problem BCC13.16 (DM192): Perfect Steiner triple systemsProposed by C. J. Colbourn and
A. Rosa. Correspondent: A. Rosa.

Let (V,B) be a Steiner triple system of ordefa STv)). For distinct points,y contained in
the block{x,y, z}, theinterlacing graph Gy is the 2-regular graph on the vertex ¥et{x,y,z}, in
whicha andb are adjacent whenevéa, b,x} or {a,b,y} is in B. The STS is callegerfectif Gyy
is a Hamiltonian cycle for alkk,y € V.

Problem:Find more perfect STS. Are there infinitely many?
Only four are known, with orders 7, 9, 25 and 33. There is none of order 13 or 15. All known
examples have point-transitive automorphism groups.

Problem BCC13.17 (DM193): A generalisation of affine designroposed by P. J. Cameron
and M. E. Kimberley. Correspondent: P. J. Cameron.

An affine desigis a resolvable 2-design in which any two non-parallel blocks meet in a constant
numbery of points. What happens if we replace “non-parallel” by “non-disjoint” in this definition?
In addition to affine designs, there are resolvable designs Wwithl (andy = 1), for example
Kirkman systems. No others are known: the first unknown case is a resolvanlel®; 6) design
with y = 2. See P4].

Problem BCC13.18 (DM194): Blocking-set-free configurations.Proposed by J. W. DiPaola
and H. Gropp. Correspondent: H. Gropp.

A configurationng hasn points and lines, with three points on each line and three lines through
each point, so that two points lie on at most one lindalécking sets a set of points meeting every
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line but containing none. For whiam> 7 does there exist a connecteglconfiguration with no
blocking sets?

It is known that such configurations exist for all but finitely many values.ofThey do not
exist for the falues 8-12 or 14. The values in doubt are 15-18, 20, 23, 24, 26, 29, 30, 32, 38, 44.
See [1(].

Editor's Note: See also BCC14.14 and BCC16.20.

Problem BCC13.19 (DM195): Permutations with few distancesProposed by P. J. Cameron.
Correspondent: P. J. Cameron.

For fixeds and largen, the best known upper and lower bounds for the maximum number of
permutations of an-set withs different distances are both rougklsn/s)?s (with different values
of ¢). (See P3].) Find the correct value.

Problem BCC13.20 (DM196): Partial transversals of Latin rectanglesProposed by A. J. W.
Hilton. Correspondent: A. J. W. Hilton.

Let R be ann x 2n Latin rectangle on 2 symbols. A partial transversal of sizesof Ris a
collection ofs cells, no two in the same row or column, and no two containing the same symbol.
Is it true thatR can be expressed as the union ofgartial transversals of siz&

An equivalent formulation: Call twam x 2n Latin rectangledk, S on the same set of symbols
orthogonalif the pairs(rij,sj), fori=1,...,nandj = 1,...,2n, are all distinct. Does every
n x 2n Latin rectangle have an orthogonal mate?

Problem BCC13.21 (DM197): Semi-Latin squaresProposed by R. A. Bailey. Correspondent:
R. A. Bailey.

A semi-Latin squarés ann x n array withk symbols (chosen from a set of siak) in each cell,
such that each symbol occurs once in each row or column. We impose the further property:

No two symbols occur together in a cell more than once.

Such a structure clearly exists if there &enutually orthogonal Latin squares of order on
disjoint sets of symbols.

Problem: Find constructions for valug#, k) for which a set ok m.o.l.s. of orden does not exist
(or is unknown). Examples are known for,k) = (6,2) or (6,3). What abou{6,4) or (10,3)?

15



Editor's Note: See comments on BCC12.1 above.

Problem BCC13.22 (DM198): Tiling the square.Proposed by D. Youngs. Correspondent: D.
Youngs.

(a) What is the leasidd number of congruent non-rectangular tiles needed to tile a square?

(b) Is there such a tiling in which the tiles are not polyominoes?

The best tiling known to the proposer uses 25 copies of the polyomino with two rows containing 6
and 3 squares, aligned at one end.

Problem BCC13.23 (DM199): Covering the square.Proposed by F. Barnes. Correspondent:
F. Barnes.

(a) Prove that, for any partition of the plane into sets (or regions) of diameter 1, the density must
be at least 83/3.

(b) A finite variation. What is the largest square which can be partitionecisgis of diameter
(at most) 1? The answer is known for< 5. In general, we would expect a hexagonal
honeycomb with some distortion at the edges.

An alternative formulation of (b) asks for the chromatic number of the graph whose vertices are
the points of the unit square, two points adjacent if their distance exceeds

Problem BCC13.24 (DM200): Sum-free sets containing. Proposed by P. J. Cameron. Corre-
spondent: N. J. Calkin.

What is the probability that, in a random sum-free Sef natural numbers, 2 is the only even
number inS? (Is it zero or not?)

The probability measure is defined by the following rule. Consider the natural numbers in their
usual order. If is the sum of two numbers i§ thenn ¢ S, otherwise, decide on the toss of a fair
coin. It is known that the probability th& contains no even number is non-zero, but the present
problem seems a bit more delicate.
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Editor’s Note: This problem has been solved by the proposer and the presamtervho showed
that the probability is strictly positive and gave a heuristic estimate for it.

Problem BCC13.25 (DM201): Partitions of intersecting families. Proposed by N. Alon, P.
Seymour and Z. &redi. Correspondent: Z iifedi.

Let # be an intersecting family dé-subsets of the-element seV, that is,F NF’ £ 0 for all
F,F’ € 7. Let p(¥) be the minimump for which one can fing pairs (2-subsetd}, ..., P, of V
such that every member ¢f contains som&. Now let f (n, k) be the maximum op(F), over
all such intersecting families. Is it true thitn, k) < n for all n?

If true, this would imply a strengthened form of the casel of Larman’s conjecture, since,
setting

Fi={FeF:pCFP ZFforj<i},

then{# :i=1,...,n} is a decomposition of into 2-intersecting families.

(Larman’s conjecturg’ 7] asserts that, iff is at-intersecting family ok-subsets of the-setV,
thatis,|F NF'| >t forall F,F’ € F, then¥ can be decomposed intcsubfamilies each of which
is (t+ 1)-intersecting.

Editor’s note: A similiar question can be asked for arbitrary families of sets (not all of the same
size).

Problem BCC13.26 (DM202): Some families of set®2roposed by N. J. Calkin. Correspondent:
N. J. Calkin.

What can be said about famili¢'s of subsets of an-setV such that
@F,Ref =Rk
b)FLReF =FRNR#0
(€) (VxeV)( TR, R e F)FNFk = {x})?

Problem BCC13.27 (DM203): Some problems on perfect groupsProposed by J. énes and
P. Yff. Correspondent: P. Yff.

(a) Prove the Feit-Thompson Theorem by elementary means. (Remark: either of the following
equivalents of the Feit—-Thompson Theorem may be more convenient:
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o Afinite perfect group can be generated by a self-inverse conjugacy class of elements of
odd order (Heineken, unpublished);

e If G has odd orden, then some element @ is not the product oh distinct factors
(Dénes and Hermani{]).)

(b) Show that a perfect group can be generated by an involution and an element of odd order
which is conjugate to its inverse.

(c) Characterise finite groups in which every element is a commutator. In particular, show that
every non-abelian finite simple group has this peropedigs conjecture

(d) Characterise finite groups in which every element of the derived group is the product
of k commutators. (This condition can be expressed in terms of the notikicamjugacy

(Y [107).

3 BCC14

BCC14 was held at the University of Keele, 5-9 July 1993. The contributed papers were published
in Discrete Mathematic438(1995). The problems appear on pages 405411 of the journal. The
problems are&C) Elsevier Science B.V. 1995.

Problem BCC14.1 (DM215): Total colourings of hypergraphs.Proposed by P. Cowling. Cor-
respondent: P. Cowling.

A total colouringof a hypergraph is a colouring of vertices and edges such that
(a) the restrictions to vertices and edges are strong colourings;
(b) an incident vertex and edge have different colours.

Thetotal chromatic numbeis the least number of colours required for a total colouring. Sé [

Conjecture: If H = (V,E) is a linear hypergraph (two vertices on at most one edge) with total
chromatic numbegt(H), then

xt(H) <max| | E|+1.

xeV EcE
XeE
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Problem BCC14.2 (DM216): Critical K-free graphs. Proposed by J. Séinheim. Correspon-
dent: J. Scbhheim.

. L . k—1 .
It is known thatk-chromatic critical graphs on vertices have at lea t7 n edges. Gallai

showed that a better lower bound holds for graphs containini§yndCan this bound be further
improved for graphs containing nq, for fixed! with 3 <1 < k?
For example, wittkk = 10, = 9, can the bound.8n be improved to 6— 10?

Problem BCC14.3 (DM217): Bandwidth of a graph.Proposed by D. B. West. Correspondent:
D. B. West.

Thebandwidthof ann-vertex graplG is

minmax| (x) — £(y)!
where the minimum is over all bijections from the vertex sefla.., n}.

What is the bandwidth of the “triangular lattice” graph whose vertices are all triples of non-
negative integers with sumvertices(x,y,z) and(x,y,Z) being adjacent whenever— x| + |y —
Y|+|z—Z| =2? (A lower bound of /2 is known, and an upper bound lof- 1 is obtained by
numbering the vertices in layers.)

Editor's Note: This problem was solved immediately after the conference. The soluiidgn [
appears in the volume of contributed papers.

Problem BCC14.4 (DM218): How small is Tutte’s wheel?.Proposed by A. Shastri. Corre-
spondent: A. Shastri.

W. T. Tutte proved that any 3-connected graph can be obtained from a wheel by repeatedly
adding an edge or splitting the central vertex (keeping the minimum degree at least 3).

Conjecture.Any 3-connected cubic graph ornvertices may be obtained by this procedure from a
wheel onk vertices, wherd > cn (for some absolute constar)t

Problem BCC14.5 (DM219): Characteristic polynomials of graphs. Proposed by R.
Haggkvist. Correspondent: Raggkvist.

How many distinct characteristic polynomials of (adjacency matrices-@Brtex graphs are
there?

The proposer conjectures that a typicalertex graph has? cospectral mates, so that the answer
to the problem igD(2"("-1)/2 /n2n1),
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Problem BCC14.6 (DM220): Cliques and cocliques in Cayley graphs?roposed by N. Alon.
Correspondent: N. Alon.

Conjecture. There is a constard such that, for every finite grou@ of ordern > 1, there is a
symmetric (i.e., inverse-closed) generating Sdor G such that the Cayley graph(G,S) has
neither a clique nor an independent set of silwgyn.

This is not known for any infinite sequence of finite groups; but it is true witRnagplacing
logn.

Problem BCC14.7 (DM221): Local structure in 2-transitive graphs. Proposed by A. A.
Ivanov. Correspondent: A. A. Ivanov.

Problem:Determine the vertex and edge stabilizers in all locally finite 2-transitive graphs in which
Gl(X) = 1.

(A graph is 2-transitive if it admits a grou@ acting transitively on 2-arcs. The condition
G1(x) = 1 means that a vertex stabilizer acts faithfully (and 2-transitively) on its neighbours. The
answer to this problem would be a list of paiid,t), whereH is a finite 2-transitive group (the
vertex-stabiliseG(x)) andt an outer automorphism of order 2 of the stabilidgr(so thatHy (t) =
G(e), wheree = {x,y}), along with the trivial possibility tha(e) = Hy x 2.)

Problem BCC14.8 (DM222): The rows of a Latin square.Proposed by P. J. Cameron and J.
C. M. Janssen. Correspondent: P. J. Cameron.

(a) It is known that, for almost all Latin squares of oraefthat is, a proportion tending to 1 as
n — oo), the rows of the square (regarded as permutations) gerfratd\,. Is this statement
still true if the squares are normalized so that the first row is the identity permutation?

(b) Is it true that the distribution of the number of rows of a random Latin square which are odd
permutations is “approximately” binomi&i(n, %)?

(c) LetM(n) andm(n) denote the maximum and minimum numbers of extensions of a2atin
rectangle to am x n Latin square. Find a good upper bound fié(n) /m(n).

(d) How do you choose a random Latin square of order

Editor’s Note:In connection with (b), Fggkvist and Jansseat]] have shown that the proportion
of Latin squares in which all rows are even permutations is exponentially small. This was the form
asked at the Conference; the strengthened version was suggested by Jeannette Janssen.

A Markov chain method for choosing a random Latin square was given by Jacobson and
Matthews [3].
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Problem BCC14.9 (DM223): A bijective proof of the Dyson conjecture. Proposed by R.
Lewis. Correspondent: R. Lewis.

Let R(r,m,n) denote the set of partitions nfwhose rank is congruent tanodulom, where the
rank of a partition is the largest part minus the number of parts. Freeman Dyson conjectured, and
Atkin and Swinnerton-Dyer]] proved, that

IR(0,5,5n+4)| = |R(1,5,5n+4)| = ... = |R(4,5,5n+4)|.

The problem is to find a bijective proof.

Problem BCC14.10 (DM224): Even and odd permutationsProposed by P. J. Cameron. Cor-
respondent: P. J. Cameron.

For evenn, the number of permutations §1,...,n} with all cycles of even length is equal to
the number of permutations with all cycles of odd length. Find a bijective proof of this fact.

Editor’s Note: After the conference, this problem was solved independently by Richard Lewis and
Simon Norton. Their joint paper’{J] appears in the volume of contributed papers.

Problem BCC14.11 (DM225): How many sum-free sets?Proposed by P. J. Cameron and P.
Erdbs. Correspondent: P. J. Cameron.

Let s(n) be the number of sum-free subsets{df...,n} (that is, containing no solution to
X+Yy = 2z). Show that there exist constargs andce such thal*s;(n)/Z”/2 — Cg Or Ce SN — o
through odd or even values respectively.

It is known only thats(n) = 2(zFo)n: see B, 20.

Editor’s Note: For the motivation, and conjectured values of the constadsdc,, see P7].

Problem BCC14.12 (DM226): Non-crossing queens2roposed by G. B. Khosrovshahi. Corre-
spondent: G. B. Khosrovshahi.

What is the maximum number of non-crossmgueens? It is known that the maximumisgf
nis prime.

Problem BCC14.13 (DM227): Block-transitive designsProposed by P. J. Cameron and C. E.
Praeger. Correspondent: P. J. Cameron.

A t-(v,k,A) design haw points and a collection of blocks of sikeanyt points lying in exactly
A blocks. Terms such as “block-transitive” apply to the action of the automorphism group.
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(a) Show that there is no block-transitive 6-design.
(b) Show that a block-transitive, point-imprimitive 3-design satisfigs(g) +1.
(c) Is there a block-transitive @o,4, 1) design which is not point-transitive?

Editor’'s Note: For background to (a) and (b) se&)] 31]. The design asked for in (c) has been
constructed by David Evang{)]. Part (b) has been answered in the affirmative by Avinoam Mann
and Ngo Dac Tuan (to appear).

Problem BCC14.14 (DM228): Blocking-set-free configurations.Proposed by J. W. DiPaola
and H. Gropp. Correspondent: H. Gropp.

A configurationns hasn points and lines, with three points on each line and three lines through
each point, such that two points lie on at most one linébl@cking sefs a set of points meeting
every line but containing none. For whial> 7 does there exist a connectegconfiguration with
no blocking sets?

It is known that such configurations exist for all but finitely many values. dfhey do not exist
for the values 8-12 or 14. The values in doubt are 15-18, 20, 23, 24, 26. (The value 15 may now
be settled). See J. W. DiPaola and H. Gropd [

Editor’s Note: This problem an updated form of BCC13.18. See also BCC16.20.

Problem BCC14.15 (DM229): Arranging rows and columns.Proposed by D. B. West. Corre-
spondent: D. B. West.

A matrix of zeros and ones is said to be “zero-partitionable” if its rows and columns can be
permuted independently so that the zeros of the resulting matrix can be labeled R or C such that

e every position to the right of an R is a 0 labeled R, and
e every position below a Cis a 0 labeled C.
What is the complexity of recognizing zero-partitionable matrices?

This is equivalent to recognition of interval digraphs. If a O is allowed to receive both R and C,
this becomes recognition of digraphs with Ferrers dimension 2, which runs in polynomial time.
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4 BCC15

BCC15 was held at the University of Stirling, 3-7 July 1995. The contributed papers were pub-
lished inDiscrete Mathematic467/168(1997). The problems appear on pages 605-615 of the
journal. The problems ar@ Elsevier Science B.V. 1997.

Problem BCC15.1 (DM271): A generalization of Hadwiger’s conjecture Proposed by Ding,
Oporowski, Sanders, and Vertigan. Correspondent: D. P. Sanders.

A vertex partitionof G is a set{A, ..., A} of induced subgraphs such th&atG) is the disjoint
unionV (Ag) U... UV (Ay).

Conjecture:Every graph with nd<,, minor has a vertex partition into— m-+ 1 graphs with nd&y,
minor.

Form= 2, this is Hadwiger’s conjecture. It is known to be truefio 5 (Wagner [.03; Ding,
Oporowski, Sanders, Vertigan); for= 6,m = 2 (Robertson, Seymour, Thomas”]), and for
6 <n<8,m=3 (Jagrgensen]).

Problem BCC15.2 (DM272): Uniquely total colourable graphs.Proposed by M. Behzad and
E. S. Mahmoodian. Correspondent: E. S. Mahmoodian.

A total colouringof a graph is a colouring of the vertices and edges in such a way that no two
adjacent or incident elements have the same colour.

Problem: Show that, apart from empty graphs, paths, and cy@igsthere is no graph which has
a unique total colouring (in the minimum number of colours).
A prize of 500000 Iranian rials is offered for this problem. Sed.[

Problem BCC15.3 (DM273): 1-track-less orientations.Proposed bydrg Zuther. Correspon-
dent: &drg Zuther.

A 1-trackis a one-way infinite directed path (which may be directed either in or out).

Problem: Characterize those graphs which admit a 1-track-less orientation.

Note that every locally finite graph, and evarypartite graph (for finiten) has a 1-track-less
orientation, but the countable complete graph does not.

Problem BCC15.4 (DM274): Continuous maps between graphs.Proposed by Anthony
Hilton. Correspondent: Anthony Hilton.

A map isk-to-1 if the inverse of every point in the codomain has cardindit$ee [1].
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Problem: Determine the triplegk,m,n) for which there is &-to-1 continuous map frormm
to Knn, where these graphs are regarded as 1-dimensional simplicial complexes in the usual way
(with edges homeomorphic {6, 1]).

Problem BCC15.5 (DM275): A generalization of Tarsi’s problem.Proposed by R. Klein and
J. Scldnheim. Correspondent: J. Sttheim.

A graph ism-degeneratdf every subgraph has a vertex of valency at nmost

Problem:Prove or disprove that a graph which is the edge-disjoint union of subg@&phs, G,
whereG; is m-degenerate, can be coloured with

S

Zler 3|1+ 148 5 mmy

i= 1<i<j<s
colours.

Fors=2,m =1, mp = 2, this is M. Tarsi's problemdd].

Problem BCC15.6 (DM276): Common vertices on longest path®roposed by T. Gallai. Cor-
respondent: Sandi Klaar.

Let G be a finite connected graph. Do any three longest patshave a common vertex? It is
trivially true that every two longest paths have a common vertex; but there are graphs in which no
vertex lies on all the longest paths. (The problem is due to Galijj fee also 108 67]

Problem BCC15.7 (DM277): Edge-colourings of complete graphsProposed by Peter John-
son. Correspondent: Peter Johnson.

Suppose that the edges of the complete gigptn > 1) are coloured with four colours R, G,
B, Y such that each colour-class gives a connected subgraplvertices. It is easy to see from
Satz 1.2(3) of Gallai{d] that at least three of the four triangles with edge colourings RGB, RGY,
RBY, GBY occur.

Questions:
e (@) Do all four occur?
e (b) If not, how small cam be?

e (c) What happens with more than four colours?
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Problem BCC15.8 (DM278): On the probability of connectedness. Proposed by P. J.
Cameron. Correspondent: P. J. Cameron.

Which graphss have the property that, in the cla&$G) of graphs having no induced subgraph
isomorphic toG, the limiting probability of connectedness is strictly between zero and one (in
either the unlabelled or the labelled case)? (The smaesith this property is the path of
length 3; the probability of connectednessXiG) is % if the number of vertices is greater than
one.)

Editor’s Note: See [.7] for more information.

Problem BCC15.9 (DM279): Characteristic and chromatic polynomials. Proposed by
Roland Haggkvist. Correspondent: Rolanéggkvist.

Thecharacteristic polynomiabf a graphG is the polynomial dékl — A(G)), whereA(G) is the
adjacency matrix oG. Its roots are theigenvaluesf G.

Question: Are there more characteristic polynomials than chromatic polynomials of graphs on
vertices?

Editor's Note: See also BCC14.5.

Problem BCC15.10 (DM280): Graphs with three eigenvaluesProposed by Willem Haemers.
Correspondent: Willem Haemers.

Let G be a connected graph with just three distinct eigenvalues. Such a graph, if regular, must
be strongly regular; and any strongly regular graph has this property. Non-regular examples in-
clude the complete bipartite graphs, and one further example on 36 vertices constructed by M.
Muzychuk.

Questions:
(a) Is it true that G has at most two distinct valencies?
(b) Is G switching-equivalent to a null or strongly regular graph?
(c) Find more examples.

(The operation oswitchinga graph with respect to a sktof vertices replaces each edge from
X to its complement by a non-edge and each such non-edge by an edge, leaving edges within or
outsideX unaltered.)
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Editor's Note: M. Klin and M. Muzychuk (6] have pointed out that a family of examples were
found in 1981 by Bridges and Mena{], and have also constructed some ‘sporadic’ examples and
re-formulated and analysed the question.

Problem BCC15.11 (DM281): Spectra ofKs,1-free graphs. Proposed by Stephan Brandt.
Correspondent: Stephan Brandt.

Let A1 andA,, be the greatest and smallest eigenvalues of a grapivertices.

Conjecture:(A1+Apn)/n < 4/25 for any regular triangle-free graph arvertices.

This conjecture would be true if any of the following two old Bsdconjectures holds (see
e.g. f4)): Let G be a triangle-free graph anvertices. Then (als contains a set ofn/2| vertices
which span at most? /50 edges, and (i can be made bipartite by the omission of at m3gR5
edges.

Problem:Let&(s) be the supremum dh1 + An)/n over the class of reguldts . 1-free graphs om
vertices. Determine or estimagés).
The author 1 6] can show that

2v/2 =0.1715...

0.14 3—
(s—2)/(s—1) fors> 3.

(s—2)/s

&(2)
&(s)

< <
< <

Problem BCC15.12 (DM282): Semiregular automorphism groups. Proposed by Dragan
Marusic, Mikhail Klin. Correspondent: Mikhail Klin.

A permutation group isemiregularif no non-identity group element fixes a point. Itregular
if it is transitive and semiregular. A graph is a Cayley graph if and only if its automorphism
group contains a regular subgroup. It is known that there are vertex-transitive graphs which are
not Cayley graphs (the smallest such being the Petersen graph.)

Question:lIs there a vertex-transitive graph whose automorphism group contains no non-identity
semiregular subgroup?

More generally, is there a 2-closed transitive permutation group containing no non-identity
semiregular subgroup? (A permutation group isl@edif it is the automorphism group, pre-
serving the colours, of some edge-coloured directed graph.)

Editor's Note: Not every transitive permutation group contains a non-identity semiregular sub-
group: the smallest counterexample has degree 12 {sde Recently, Giudici (] has deter-
mined all the quasiprimitive permutation groups which contain no non-identity semiregular sub-
group; none of them is 2-closed.
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Problem BCC15.13 (DM283): A distance-regular graph.Proposed by Leonard Soicher. Cor-
respondent: Leonard Soicher.

Let Cy2 be the code obtained by puncturing the non-extended binary Golay@ada one
coordinate. Thely; is a[22,12 6] code with automorphism groudy, : 2. LetM be the set of
words of minimum non-zero weight €y,, so thaiM| = 77.

LetV be the set of pair§vy, v, } of words ofCy, which satisfy wtvy ) = wt(v2) andvy +vo =1,
wherel is the all-1 word. ThetV| = 672. Forv = {vi,w2} € V, define

M(v) = {me M|wt(vy +m) = wt(vo+m)}.

Then|M(v)| =55 forallve V.

Define a grapli with vertex se¥, in whichv ~ wif and only if M(v) "M (w)| = 43. TherT is
a distance-regular, but not distance-transitive graph. Moreover, the distance fundtiegiven
by

dr (v,w) = (47— [M(v) "M(w)))

forvyweV,v#£w.

These facts have been proved using the packaRRBPE (see pPd)).
Problem:

(a) Prove this by hand, to help understdnd

(b) Can a similar construction be applied to other codes with even length and minimum weight,
to construct other distance-regular graphs?

Problem BCC15.14 (DM284): Pasch configurations in 3-hypergraphsProposed by G. B.
Khosrovshahi. Correspondent: G. B. Khosrovshahi.

Let X ={1,2,...,v}. Denote the set of all 3-subsetsXfby P;(X). Show that forv > 6, any
((3) +1)-subset oP(X) must contain @asch configuratiorthat is,{abg, axy, bxz cyz for some
a,b,c,xy,ze X.
Editor's Note: A. Blokhuis (personal communication) has constructed hypergraphs with more than
(‘2’) + 1 edges with no Pasch configuration. The question should be modified to read: how many
edges can a hypergraph with no Pasch configuration have?

Problem BCC15.15 (DM285): Critical sets in Latin squares.Proposed by Ebad Mahmoodian.
Correspondent: Ebad Mahmoodian.

A critical setin ann x n array with entries from the sétl, ..., n} is a setS of the positions of
the array with the property that the entries in the positionSlodve a unique extension to a Latin
square of orden.
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Problem: Show that any critical set in a Latin square of orddras cardinality at least?/4|.

Problem BCC15.16 (DM286): Loops with conditions on area.Proposed by Alain Valette.
Correspondent: Alain Valette.

A loopy is a closed trajectory in the square lattice. dtgebraic areais A(y) = §yxdy. Let
N(2k; P) be the number of loops based at 0, of lengkhy ®hich satisfy property?. So, for

example N(2k; 0) = (Zkk)z.
Problem: Find either formulae or asymptotics fof(2k;A=1) andN(2k;A=1 (modq)), for
givenl,q.
For example, lim_N(2k;A = 0)Y/% = 4. Also, if n(2k,|,q) denotesN(2k;A=1 (modq)),
then it is known that
lim (n(2k;0,2) —n(2k; 1,2))Y% = 2y/2,

k—oo

lim (n(2k;0,3) —n(2k; 1,3))Y% = 1+ /3,

k—oo
lim (n(2k;0,4) —n(2k;2, 4))Y%k = 2./2.
This problem (secretly) deals with the walk generating function of the discrete Heisenberg group
in its 2-generator presentation.

Problem BCC15.17 (DM287): Proof of an identity. Proposed by Richard Lewis. Correspon-
dent: Richard Lewis.

For complex numberg # 0, |w| < 1, set[zw] = [To_;(1—zw" 1) (1 -z w"). It can be
shown, using Cauchy’s theorem, that for any non-zero complex nurapers, an, by, ..., b, with
ay...ap=bs...by, and anyg with |g| < 1,

L [aabrhiqlfagbr g [anbr g
r; [bibr ;g [babr t;q... ... [onbr ;g

where the ~ means to omit the teftab;; g].
Problem:Find a combinatorial (bijective) proof of this inequality.

Problem BCC15.18 (DM288): Counting classes of graphg$2roposed by Peter Cameron. Cor-
respondent: Peter Cameron.

Find good asymptotic estimates for the numbers of
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(a) line graphs,
(b) line graphs of bipartite graphs,
(c) comparability graphs of 2-dimensional posets

onnvertices? (The last class of graphs are defined as follows: Take a permutafigd, ..., n},
and joini to j whenever(i — j)(it— jm) > 0.)

Problem BCC15.19 (DM289): Antichains in products of chains. Proposed by Jonathan D.
Farley. Correspondent: Jonathan D. Farley.

Let 8(P) be the set of antichains of the po$ttand letn be then-element chain. Dedekind’s
problem (9] asks for the value of6(2")|. It is easy to show thdf(n)| = n+1 and|6(mx n)| =
(™). MacMahon, Stanley![D0, 101], Berman and Khler [15] showed that

B(kx )| :ﬁ(m+n’1+j)/(m;j).

(Despite appearances, this function is symmetric!)

Problem:What is|6(j x k x mx n)|?

Problem BCC15.20 (DM290): Cycles of a permutation.Proposed by Peter Cameron. Corre-
spondent: Peter Cameron.

As an example of a “typical” automorphism of the space of periodic integrable functions (acting
on Fourier coefficients), W. Rudir{] considered the permutation of the integers defined by

3n— 2n, 3n+1—4n+1, 3n—-1—4n—-1.

Problem: Describe the cycles of this permutation. In particular, does it have only finitely many
finite cycles?

Editor’s Note: This problem is older: it is the “original Collatz problem” from the 1930s (before
the famous 8+ 1 problem), though never published by him. A paper by Jeff Lagaridsgives
details.
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Problem BCC15.21 (DM291): Combinatorics and control theory. Proposed by Holger
Schellwat. Correspondent: Holger Schellwat.

In place of the Laplace transform, which is used to model continuous time control systems, in
discrete control thez-transform is the basic tool. For a functidn Z — C, its Z—transform is
defined byz(f)(z) = S, f(k)z K. One problem, for example, is the stability of an inert linear
controller and is determined by the loci of poles of a fraction of polynomial[ih, constituting
the Z-transform of the transfer functior]. On the other hand, the method of generating func-
tions [104] is used widely in combinatorics to solve enumeration problemgalfi € N) is a
sequence of numbers, for instance counting the number of distinct combinatorial objects of a cer-
tain kind, its associated ordinary generating function is the formal power $&fig®,z". But up
to the sign of the exponent, this is the defining sum for Zheansform of the sequence, viewed
as a function. Thus it seems natural to explore the implications of this correspondence. Is it even
possible to use it to translate problems in control theory into problems in combinatorics and/or
vice versa? Could representation theory help to establish such a correspondence?

5 BCC16

BCC16 was held at Queen Mary and Westfield College, London, 7-11 July 1997. The contributed
papers were published Discrete Mathematic497/198(1999). The problems appear on pages
799-812 of the journal. The problems &gElsevier Science B.V. 1999.

Problem BCC16.1 (DM315): Hamiltonian planar cubic graphs. Proposed by S. Jendrol’ and
Z. Skupiér. Correspondent: S. Jendrol’.

Let G be a cubic bipartite 3-connected planar graph whose edd@g &tcan be partitioned into
three subset8 (G) = E; UE; UE3 such thatE;) and(E;) are trees andEs) is a cycle. Prove that
G is hamiltonian.

Remark:This is true ifE is empty (Halin) or ifE2 consists of a single edge (Skup)e

Problem BCC16.2: Quasi Hamiltonian-Connected Graphs. Proposed by M. Alabdullatif.
Correspondent: M. Alabdullatif.

Consider a Hamiltonian graph with the following property: for each pajv} of non-adjacent
vertices, there exists a hamiltonian path joinin@ndv. Call such graphguasi hamiltonian-
connectedQHoc).

Unlike a hamiltonian-connected graph, a QHc graph may have connectivity 2. It has been shown
that ak-regular QHc graph is necessarily 3-connectedckfer3 or 4 (see f)]).
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Problem:Let G be ak-regular QHc graphk(= 3 or 4). IsG necessarily hamiltonian-connected?

The proposer checked the case wigis of order less than or equal to 10, and it turned out that
G is hamiltonian-connected.

Remark: Counterexamples to this problem, both fox 3 and fork = 4, have been found by
Gunnar Brinkmann. The smallest counterexample has 16 vertices. (This information is from
Stefan Brandt.)

Editor’'s Note: In the preliminary version, the proposer asked whether a 3-connkategllar

QHc graph is necessarily hamiltonian-connected? A negative answer was given by Stefan Brandt
at the conference. He constructed, for elchk-connected(2k — 1)-regular graph which is QHc

but not hamiltonian-connected.

Problem BCC16.3 (DM316): A condition for pancyclicity. Proposed by Uwe Schelten and
Ingo Schiermeyer. Correspondent: Ingo Schiermeyer.

Thek-closure G(G) of a graphG was defined by Bondy and Cétal (1976): recursively join
all pairs of non-adjacent vertices whose degrees have sum akledasiey showed that, for an
n-vertex graptG,

If Cy(G) = K, then G is Hamiltonian.
Faudree, Flandrin, Favaron and Li (1992) showed that
IfCh1(G) = K}, then G is pancyclic.

The example§ = K> n/> (and many others) show that it is not true tha€ifG) = K, thenG is
pancyclic.

Conjecture:lf C,(G) = K, andn is odd therG is pancyclic.

Problem BCC16.4 (DM317): Cutsets in bridged graphsProposed by G&a Hahn. Correspon-
dent: Gé&a Hahn.

A graphG is bridgedif every cycle of length of at least 4 has a bridge, that is, if every d§cle
of length 4 contains two verticeasandv such thatlg(u,Vv) < dc(u,Vv) (distance).

Conjecture:For any pair of vertices,vin a minimum cutset in a bridged gra) dg(u,v) < 2

Problem BCC16.5 (DM318):4-cycles in regular spanning subgraphsProposed by lan Wan-
less. Correspondent: lan Wanless.

Let n andk be integers satisfying > 2k. Let G be ak-regular spanning subgraphléf , and let
S(G) be the number of 4-cycles @. Suppose thab is chosen to maximisgG).
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Conjecture: GecontainsKy x as a component.

Notes:The conjecture is easily proved if
(1) k dividesn, or
(2) nis sufficiently large.

If it is true in toto, thenG is determined up to isomorphism. This follows from the fact th& if
maximisess(G) thens(G) is also maximised, whet® denotes the bipartite complement®f
A weaker result along the same lines would be to show@iatnecessarily disconnected.

Problem BCC16.6 (DM319): Alternating cycles in2-arc-coloured tournaments. Proposed
by G. Gutin, B. Sudakov and A. Yeo. Correspondent: Gregory Gutin.

A cycleCin a 2-arc-coloured digraph is alternating if any two consecutive aitChiave differ-
ent colours.

Problem: Does there exist a polynomial algorithm to check whether a 2-arc-coloured tournament
has an alternating cycle?
The same problem for 2-arc-coloured digraphs has been proved to be NP-complete.

Problem BCC16.7 (DM320): Monochromatically absorbing sets in tournamentsProposed
by Geha Hahn. Correspondent: @Hahn.

Call a setS of vertices in an edge-coloured tournamerdnochromatically absorbindg, from
anyu € V(D) \ Sthere is a monochromatic directed path frano S.

It follows from a theorem of Sands, Sauer and Woodraw fhat any tournament not containing
a ray (directed infinite path) whose arcs are coloured in two colours contains a vedek that
{v} is monochromatically absorbing.

Problems:

() Is there a functionf : N — N such that in any tournament without a ray, edge-colourdd in
colours, there is a monochromatically absorbing set of size at fiflag? (It is known that if
such a function exists, thei(3) > 3.)

(i) Shen has shown that in a 3-arc-coloured finite tournament without 3-coloured triples (that is,
such that between any three points two of the three arcs have the same colour) always contains
a monochromatically absorbing vertex; this can be generalize@atours. Is this true if the
3-coloured tournament has no 3-coloured directed cycles (as Shjerohjectures)?
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(i) If an infinite tournament without rays is arc-coloured wklitolours, is there alwaysfaite
monochromatically absorbing set?

Editor's Note: See also BCC12.16.

Problem BCC16.8 (DM321): The ultimate independence ratio of a wheeProposed by Gea
Hahn. Correspondent: Ga Hahn.

Define theindependence ratiof a graphG by i(G) = a(G) /|G|, and theultimate independence
ratio by 1 (G) = limy_..,i(G¥), with G = G andG* = GOG* 1.

Conjecture: (Ws) = | (Wany1) = 3 (WhereWan, 1 is the odd wheel).

Problem BCC16.9 (DM322): Colorings with minimum sum. Proposed by H. Hajiabolhassan,
M.L. Mehrabadi, and R. Tusserkani. Correspondent: E.S. Mahmoodian.

Let G be a graph. A minimal coloring d& is a coloring which has the smallest possible sum
among all proper colorings db, using natural numbers. Thertex—strengtlof G, denoted by
S(G), is the minimum number of colors which is necessary to obtain a minimal coloring. Prove or
disprove:

We have already proved that:
col(G) +A(G)

2 1
wherecol(G) is the smallest numbet such that for some linear orderirg of the vertex set, the
back degreé{v:v < u, vue E(G)}| of every vertexu is strictly less thard. Therefore for all
graphsG with x(G) = col(G) e.g. all trees, the conjecture is verified. Also, we have verified this
conjecture for line graphs.

S(G)<T

Problem BCC16.10 (DM323): Colouring Kempe chains.Proposed by F. C. Holroyd, W. S.
Leng. Correspondent: W. S. Leng.

Let G be a plane graph all of whose faces except the infinite face are triangles, and whose vertex
set can be expressed as the disjoint uMguo ... UV, where

(i) Vo is a single vertex and, for eack=1,...,n,V; induces a cycle;

(ii) each vertex inV; is adjacent only to vertices M_1, Vi1 and two other vertices of.
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Can it be shown, without assuming the four-colour theorem, that there is a proper 4-colouring of
G such that eacl receives at most three colours?

Problem BCC16.11 (DM324): Linkages and flowsProposed by Bruce Reed. Correspondent:
Bruce Reed.

Find a short proof of the following theorem of Robertson and Seymour:

There is a function f such that, if the vertex set of a graph can be partitioned into a unique
k-linkage (that is, k disjoint rooted paths as on page 101 of the proposer’s papn[
the Proceedings), then it can be partitioned into a uniqyle)flow.

Problem BCC16.12 (DM325): Second neighbourhoods in digraphsProposed by Paul Sey-
mour. Correspondent: Bruce Reed.

Does every digrapb® have a vertex such that
INT(V)] < INTT(v)],

whereN™ (v) is the (out-)neighbourhood efandN* (v) the strict second neighbourhood, the set
of vertices reachable by directed paths of length 2 but not by single arcs/from

The truth of this would imply that of the Caccettaa¢iykvist conjecture, according to which a
digraph om vertices with in- and out-degrees at leag8 contains a directed triangle.

Remark: Gregory Gutin has pointed out that a special case of this problem, known as Dean’s
Conjecture, was recently solved by Fishér]|

Problem BCC16.13 (DM326): Book numbers of graphs.Proposed by E. Gyri. Correspon-
dent: E. Gyri.

The book K is the graph consisting df triangles sharing an edge. For a graphdefine
bn(G) = max{k: Bx C G}.
For 3 < c < 1, define

b(c) = lim }min{bn(G) 1 [V(G)| = n, d(x) > cnvx}.

n—oo N

The problem is to determint®c). The intriguing conjecture about its value follows.
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Let x be rational with% < x< 1. The “greedy representation” gfs given by

kamlke-1 k-1
ko ko ke '

wherek; > (ki1 —1)?fori=2,3,...,r. (This representation is unique.) Then set

k-2 k-2 k-2
f(x)_ i . k2 .

Thenf extends to a function on the real inter@L 1), continuous on every irrational. It is mono-
tonic increasing left continuous but jumps at each rational.

Conjecture: lic) = f(c).

Remark:This is easy for = 1, and is true (with a 20-page proof, sée]) for r = 2.

Problem BCC16.14 (DM327): Automorphisms of lexicographic squaresProposed by Gert
Sabidussi. Correspondent: &eHahn.

Let G be a graph such th&[G| ~ G, whereG[G] is the lexicographic product @ with itself.

Conjecture:There is an automorphismof G[G| and verticess, v, w, X, y of G such thatp(u,x) €
{v} xV(G), o(uy) € {w} xV(G), andv # w.

Problem BCC16.15 (DM328): Simultaneous edge-colouringsProposed by A. D. Keedwell.
Correspondent: P. J. Cameron.

Suppose thaxi,...,Xm,Y1,...,Ym are positive integers such that there exists a bipartite graph
with vertex degreezq, ..., Xm in one bipartite block angh, ...,y in the other. (This is equivalent
to asserting that the conditions of the Gale—Ryser theorem are satisfied.) Suppose further that all
thex; andy; are greater than 1. Show that there is a bipartite graph having these vertex degrees,
which has two proper edge-colourings such that

e for any vertex, the sets of colours appearing on edges at that vertex are the same in both
colourings;

e no edge receives the same colour in both colourings.
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Note: M. Mahdian, E. S. Mahmoodian, A. Saberi, M. R. Salavatipour and R. Tusserkdtgve
made a stronger conjecture, namely, that any bridgeless bipartite graph has a pair of colourings
satisfying the above properties. They have shown that this conjecture is equivalent to the celebrated
‘oriented cycle double cover conjecture’ of Paul Seymaiit.|

More recently (29 November 2000) | have learned that this problem has been solved by Rong
Luo, Wen-An Zang and Cun-Quan Zhang].

Problem BCC16.16 (DM329): Abnormal strongly regular graphs.Proposed by P. J. Cameron
and P. H. Fisher. Correspondent: P. J. Cameron.

Call a strongly regular graghabnormalif it contains verticex,y, zsuch thak £ y, X £ z,y ~ z,
andlr (x)NT(y) =F(x)Nr(z).

Problem:Does an abnormal strongly regular graph exist?

Remark:Such a graph must havwe> , and not all the induced subgraphs on the non-neighbours
of a vertex can be edge-regular. Any strongly regular graph Avith0 andp = 1 is abnormal; but
no such graphs are known.

Problem BCC16.17 (DM330): A problem on Soicher’s graph.Proposed by Bill Martin. Cor-
respondent: Bill Martin.

This problem concerns a distance-regular griapim 672 vertices, based on the punctured Golay
code of length 22, constructed by Leonard Soiché} (see Problem BCC15.13). It turns out that
Soicher’s graph, as well as being P-polynomial (that is, distance-regular), is also Q-polynomial;
indeed, it is one of only two “sporadic” P- and Q-polynomial graphs (that is, not having classical
parameters) which are known to the proposer. (The other is the doubled Higman—-Sims graph.)

Problems:
(a) Find a simple description &fin PG(2,4).
(b) Is there a Q-poset fdr? (See below.)

Letl" be a distance-regular graph of diameteiet Eg, Ey, . .., E4 be the minimal idempotents
in the Bose—Mesner algebra for(in some order). The poséP, <) of heightd is aQ-posetfor I
if
() the dth level 74 of P is the vertex set oF ;

(i) for 0 <i < d, the incidence matri¥\i between theth anddth levels of? has constant row
sums;
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(iii) _
|
rowspacéE;) C rowspacé\) C 5 rowspacéE;)
j=0
forO<i<d.

Remark:The standard example: the Boolean lattice of subsets afset, truncated to heiglak,

is a Q-poset for the Johnson grapin,d). If we require equality on the right-hand side of the
inequality in (iii), and if rankW) = || (both of which occur in the standard example), then the
Q-poset for Soicher’s graph would satisfy

|Po| =1,

|P1| =1+ 55="56,

|P5| = 1+ 55+ 385— 441

|3 = 14 55+ 385+ 231— 672

Also, presumably, the poset must be constructed from the punctured Golay code (or ff@m)PG
if problem (a) is solved). Sinckl2> has no permutation action on 56 points, a construction from
the punctured Golay code would require some “symmetry-breaking”.

Problem BCC16.18 (DM331): The Canterbury Parades.Proposed by D. A. Preece. Corre-
spondent: D. A. Preece.

The organisers of the Seventeenth British Combinatorial Conference are planning a series of
parades to entertain the delegates. Seventy-six trombones will lead the parades, with one hundred
and ten cornets close behind. Since the mediaeval streets of Canterbury are quite narrow, the
trombonists can march four abreast, and the cornettists five abreast. It is required first that any
three trombonists march in the same row in exactly one parade. This of course means constructing
a resolvable 376,4,1) design. Such designs are known, and have 925 parallel classes, which
means that the daily parades will last for about two and a half years.

The marching orders for the cornettists require a resolvaloliel 8-5,1) design.

Problem: Construct such a design.

Editor’'s Note: The required design has 981 parallel classes. So, for the parades, it would suffice to
find a “partial design” in which any three trombonists march together at most once, and there are
925 parallel classes.

In general, one could ask for solutions to the diophantine equation

o)/ () - (o) /(52):
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and then ask for a solution to the corresponding parade problem.

Problem BCC16.19 (DM332): Semi-Latin squares which are partial linear space®?roposed
by L. H. Soicher, R. A. Bailey and P. J. Cameron. Correspondent: R. A. Bailey.

An (nx n)/k semi-Latin square is an arrangemennkietters in am x n square, withk letters
per cell, such that each letter occurs once in each row and once in each column.Ttbjara
square if it can be obtained by superimposkgutually orthogonah x n Latin squares. Itis a
partial linear spacef no two letters occur together in the same cell more than once. Trojan squares
are partial linear spaces.

Bailey [5] showed that whek = n— 1 then any semi-Latin square which is a partial linear space
must be Trojan, and arises from an affine plane with two distinguished parallel classes of lines.

Problem:If k =n— 2, must any semi-Latin square which is a partial linear space be Trojan?

Editor’'s Note: Semi-Latin squares which are partial linear spaces are known as SOMAs. See also
BCC12.1 and BCC13.21.

Recent exhaustive checking by Soichéf][shows that the answer to the problem stated is
affirmative whem = 6 (there are no SLS-PLS or Trojan squares) and wherv.

Problem BCC16.20 (DM333): Blocking-set-free configurationsProposed by H. Gropp. Cor-
respondent: H. Gropp.

Is there a 3-chromatic linear 3-regular 3-uniform hypergraph with 16 vertices and 16 hyper-
edges? (Equivalently, a configurationsMdith no blocking set.)

Remark:This is an update of problems from earlier British Combinatorial Conferences: see Prob-
lems BCC13.18 and BCC14.14. See als{ for the background and current state of knowledge.)

In particular, in BCC14.14 the proposer asked whether there ig wit» no blocking set. This
has been resolved negatively by unpublished results of Kel’'mans, Lomonosov and Kornerup.

Problem BCC16.21 (DM334): A non-Desarguesian configurationProposed by Jane W. Di
Paola. Correspondent: Jane W. Di Paola.

Prove that a non-Desarguesian projective plane must cohtartinetti’'s third configuration
(The lines of the configuration a®BF, BCD, CAE, DEI, EFG, FDH, AGJ, BHJ, C1J andGHI.)
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Remark:Killgrove has shown that each of the three non-Desarguesian planes of order 9 contains
this configuration.

Problem BCC16.22 (DM335): A matrix problem. Proposed by David Bedford and Roger
Whitaker. Correspondent: David Bedford.

Let
Bi1 B2 - Bi

X = : .
Bia B - B
where eaclB;jj is anx n matrix. Assume thaB;j = nl for all i, and that, foni # |, Bjj has the
following properties:

e entries on the leading diagonal are 1 and all other entries are 0, 1 or 2;
e Bj; has row and column sunmg

° Bﬂ = Bji (and henceX is symmetric);

¢ Bj; + Bji = 2J, wherelJ is then x n matrix with every entry 1.

Problem: Prove thak has nullityt — 1. (Itis easily seen that- 1 is a lower bound for the nullity.)

Problem BCC16.23 (DM336): Representing orthogonal matroids. Proposed by P. J.
Cameron. Correspondent: P. J. Cameron.

LetV andW be vector spaces over a fidkd Suppose thaty,...,v, €V andws,...,w, € W
satisfy

n

iZOVi @w; =0. (1)

Then the matroidsM and M’ on the ground se{1,...,n} represented by(vi,...,vy) and
(wi,...,Wn) areorthogona) in the sense that any base Mfis disjoint from some base d¥’
andvice versa

Problem:Let M andM’ be matroids oq 1,...,n} which are both representable over a fiEldnd
are orthogonal in the above sense. Do there exist representativhamwdM’ (by vy,...,v, €V
andws, ..., w, € W) overF such that the displayed equation holds?
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Problem BCC16.24 (DM337): Subsums of signed permutation?roposed by J. Sémheim.
Correspondent: J. S6hheim.

Given a sequenca, ay, . .., a,, being a permutation of the firatpositive integers, we say it has
theNZS propertyf it is possible to assigs: to its members so that no subsequence of consecutive
elements has a zero sum moduto{21.

(a) Which permutations of1,2,...,n} have the NZS property?

(b) Show that for everym there exists a latin square of ordewith entries from{1,2,...,n} such
that each of its rows has the NZS property.

(c) Find for everyn a sequencey, ay, ..., an, being a permutation of the firatpositive integers,
such that every cyclic permutation af, ay, . . . ,a, has the NZS property.

Problem BCC16.25 (DM338): Erdds—Ko—Rado at the court of King Arthur. Proposed by
Fred Holroyd. Correspondent: Fred Holroyd.

King Arthur hasn knights, who have permanent places round the Table. They are to be arranged
into sorties, ok knights each, such that:

(a) any two sorties intersect;

(b) because of courtly rivalries, any two knights in any sortie must sit atdalsices apart round
the Table (wherel > 2; that is,d = 2 means adjacent knights cannot be in the same sortie).

Is it true that the Erds—Ko—Rado theorem still holds, in the sense that to maximize the number of
sorties, King Arthur should belong to all of them?

Remark: This is known to be true if is sufficiently large (in terms ofl andk) or if kd < n <
(k+1)d.

Problem BCC16.26: The thrackle problem. Proposed by J. H. Conway. Correspondent: J. H.
Conway.

A thrackleconsists of a set of points in the plane caligabts and a set of differentiable simple
curves callegpaths such that

¢ the ends of each path are distinct spots, and it contains no other spot;

e any two paths mugtit once and only once, that is, have just one common point, at which they
must have different tangents;
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e every spotis a hit.

Problem:Is there a thrackle with more paths than spots?

The proposer has offered $1000 for this problem. For registered delegates of BCC16 only, the
value of the prize is increased £6000. For more information, seé([5.

6 BCC1lv

BCC17 was held at the University of Kent at Canterbury, 12-16 July 1999. The contributed papers
were published iDiscrete Mathematic231 (2001). The problems appear on pages 469-478 of
the journal. The problems a(®@ Elsevier Science B.V. 2001.

Problem BCC17.1 (DM343): Drawing configurations in the plane. Proposed by Harald
Gropp. Correspondent: Harald Gropp.

The projective plane P@, 2) has a familiar drawing in the euclidean plane with six of its seven
lines drawn as Euclidean straight lines. What is the maximum number of straight lines in a Eu-
clidean drawing of P@,3)? (A drawing with eight straight lines is known.)

Problem BCC17.2 (DM344): Nested BIBDs. Proposed by D. A. Preece and R. A. Bailey.
Correspondent: R. A. Bailey.

Let A be a balanced incomplete block design (BIBD)\etters, having blocks of sizek. Let
I" be a BIBD on the sameletters havingysblocks of sizek/s (with s> 1), its blocks obtained by
splitting the blocks of\ into s subblocks. Thell is nestedn A.

(a) Find examples with Agf) = Aut(l") = 1.

(b) Do almost all pairs of nested BIBDs satisfy this?

Problem BCC17.3 (DM345): Intersecting families andS(4,7,23). Proposed by Peter Rowlin-
son. Correspondent: Peter Rowlinson.

The family # of 7-subsets of a 23-set has the property that any two membefrsmtrsect in
1 or 3 elements. (Hend# | < 253.) How large musit7 | be to guarantee thg can be embedded
in S(4,7,23)?
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Problem BCC17.4 (DM346): An extremal problem related to biplanes.Proposed by Gret-
gory Gutin. Correspondent: P. J. Cameron.

Givenn, what is the smallesh such that there exish subsets (called blocks) of the point set
{1,...,n} such that

(a) any two points lie irat leasttwo blocks,
(b) any two blocks meet iat mosttwo points?

Remark: It is known thatn < m < (24 0(1))n; the lower bound comes from a simple counting
argument, and the upper bound is obtained by taking blocks to be the transl&esndf—D,
whereD is a planar difference set ®,, with n = g+ q+ 1. For more details, se€ ).

Problem BCC17.5 (DM347): Somel-factorizations. Proposed by Chris Rodger. Correspon-
dent: Chris Rodger.

Let G be the multigraph whose vertex set4s,, the integers modulor? in whichi and j are
joined by two edges if = i+ nand one edge otherwise. Give an easy way to find a 1-factorization
of G in which each of the 2 1-factors contains one of the doubled ed@ies+ n}.

This 1-factorization is equivalent to a symmetric Latin square with holes of size 2, so can be
constructed reasonably easily using design-theoretic techniques.

Editor’s note: There is a simple solution whemnis odd. Take the vertices to be those of a regular
2n-gon, the doubled edges being the long diagonals. Now let one 1-factor containing a long diag-
onal{i,i + n} contain all edges and short diagonals parall€lito+ n}, and the other contain all
short diagonals perpendicular{oi + n}.

A solution forn=0 (mod 4 is given by Bailey and Monod![]; but this perhaps does not
qualify as “easy”.

Problem BCC17.6 (DM348): Unions of random matchingsProposed by Nick Wormald. Cor-
respondent: Nick Wormald.

Choosek perfect matchings of the complete graigh(for n even) at random. Denote them by
Mg,...,My. Let p(n) denote the probability that for every# j, the union ofVlj andMj forms a
Hamilton cycle. How does this probability behaveras: « with k fixed? In particular, is it true
that

(5)9

pk(n) ~ (p2(n))'?”

Remark:The answer to the last question is known to be “yes”ifet 3 (shown in joint work of
the proposer and J. H. Kin® f]).
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Problem BCC17.7 (DM349): Edge-colouring nearly complete graphsProposed by N. Za-
gaglia Salvi. Correspondent: N. Zagaglia Salvi.

Let G be a graph obtained froi,, wheren = 2t + 1, by deleting any edges. Lett be a proper
X'-edge-colouring of5, wherex’ = x'(G) = n— 1.

Problems:(a) Does there exist a subgraph@®@havingn — 1 edges and maximum degrae= 2,
whose edges all have different colours in the coloudfg

(b) For every edge € E(G), does there exist a subgraph ®fcontaininge which hasn — 2
edges and has maximum degrtee 2, whose edges all have different colours in the coloudifig

Problem BCC17.8 (DM350): Caterpillar-arboricity of planar graphs. Proposed by
Y. Roditty. Correspondent: Y. Roditty.

The arboricity a(G) of a graphG is defined to be the smallest number of forests containing
all the edges ofs. In a similar way, thdinear arboricity l1a(G) (resp.,star arboricity s4G),
caterpillar arboricity caG)) of G is the smallest number of forests containing all edges sfich
that each component of each forest is a path (resp., a star, a caterpillasqtefillar is a tree
with the property that removal of all the end vertices and the edges containing them yields a path.)
Nash-Williams B7] proved that any planar grapgh satisfiesa(G) < 3. Hakimi, Mitcham and
Schmeichel§7] showed that a planar graph satisf&$G) < 5.

Conjecture:A planar graphG satisfiexa(G) < 4.

Problem BCC17.9 (DM351): Binding functions for graphs. Proposed by Ingo Schiermeyer
and Bert Randerath. Correspondent: Ingo Schiermeyer.

As introduced by Gérfas [5], a family G of graphs is callegt-boundwith x-binding function
fif x(G') < f(w(G')) holds wheneve&' is an induced subgraph & € G. (Here as usuab(G')
andy(G') are the cligue number and chromatic numbeGbj

Let G'(3,4) denote the class of graphs whose induced cycles have length 3 or 4 only.

Problem: Determine g-binding function forG' (3, 4).
Remark:The authors{(] have shown that this class does not have a ligelainding function.

Problem BCC17.10 (DM352): Group analogues of graph problems.Proposed by Frank
Harary. Correspondent: Frank Harary.

Find and solve problems about finite groups (or finite abelian groups) motivated by results in
graph theory.
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For example, Harary and Hawthorad] found the minimum number of elements in a Sat
A\ {0} such thatA\ Shas no subgroup isomorphic B) whereA andB are finite abelian groups;
this is an analogue of Tan’s Theorem for graphs.

Problem BCC17.11 (DM353): Neighbourhood-symmetric graphs. Proposed by Dalibor
Frontek. Correspondent: Dalibor Froek.

Theneighbourhoof a vertexx in a graphG, denotedNg(x), is thesubgraphof G induced on
the set of all neighbours of We say thats hasconstant neighbourhood H Ng(x) = H for all
x € V(G). We say thaG is aneighbourhood-symmetric gragbr NSG) if Ng(x) = Ng(x) = H,
for someH, and allx € V(G). Clearly any vertex-transitive self-complementary graph is a NSG.

Problem: Construct a counterexample to the converse assertion; that is, find a NSG which fails to
be vertex-transitive and self-complentary.

Problem BCC17.12 (DM354): Semiregular automorphismsProposed by Peter Cameron and
John Sheehan. Correspondent: P. J. Cameron.

Marusic and Scapellato/[] proved that a vertex-transitive connected cubic simple graph has a
non-trivial semiregular automorphism (one for which all cycles have the same length). Is it true
that there exists such an automorphism having order ati¢agtwheren is the number of vertices
and f/ is a function for whichf (n) — c asn — «? Easy examples show th&tn) cannot exceed
o(n*/3).

Editor’s note: The proposers have recently shown that there is a semiregular automorphism of
order greater than 2.

Problem BCC17.13 (DM355): Regular graphs admitting a given group.Proposed by Peter
J. Cameron. Correspondent: Peter J. Cameron.

It is known (see 77]) that, for any finite grougd, there exists a rational numba(T) < [0,1]
such that, ifG denotes a random graph on the vertex{det. ., n} (with all graphs equally likely),
then

Prob/Aut(G) =T | Aut(G) >T') — a(l') ash — co.

Does a similar result hold for other random graph models, in particular for random regular graphs
of degread > 2 (as described by Nick Wormald (4 at the conference)?
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Problem BCC17.14 (DM356): Symmetry groups of boolean functionsProposed by Andrzej
Kisielewicz. Correspondent: Andrzej Kisielewicz.

Let f be ak-valued boolean functiof n variables, that is, a function fronf0,1}" to
{0,1,...,k—1}. If k=2, we simply callf a boolean function The symmetry group &) of
f is the group of all permutatiors € S, such that

f(XG(l),,XG(n)) = f(Xj_,...,Xn)

forall (xq,...,xn) € {0,1}".

We say that a subgrou@ of S, is k-representabléf G = G(f) for somek-valued boolean
function f. Clote and Kranakis4] proved that, ifG is k-representable for some> 2, thenG is
2-representable. However, the Klein group

Va=((12)(34).(13)(24)) < S

is a counterexample: it is 3-representable but not 2-representable. The prédf ma§ a gap,
which does not seem to be fixable. For more information s& [

Problem: Are there any other counterexamples?

Problem BCC17.15 (DM357): Non-zero-sum sequence®roposed by J. Séimheim. Corre-
spondent: J. S@nheim.

Let & € Zomy1 (the integers modulor@+ 1) fori = 1,...,t. We say that the sequenee=

(a1,...,a) has thek-NZS propertyf no subsequence &for fewer consecutive terms has sum zero

(mod 2n+1).

In these problems = (ay, ...,am) denotes a permutation ¢1,... ,m), ande = (€1,...,&m) @
sequence of signs;j(= +1 for all ).

It is known that there exist such sequenagssuch that the sequen¢gay, . .., Emam) has sum
zero (mod I+ 1) but has thém— 1)-NZS property.

Problem: Givenbx, ..., bm, show that there exist, ..., ¢y such that

(@) (c1,...,Cm) is a permutation ofe} by, . .., €bm) for some choice of signs = (€. ..., &p);

(b) each row in the array

b]_ b2 e bm_]_ Cm
b, bz ... bm C1
b3 b4 ... bl C2
bm b]_ e bm_2 Cm_]_

ism-NZS.
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Problem:Prove that giver, there exists such that the sequenea has than-NZS property.

Problem BCC17.16 (DM358): Acceptable cross-sectionfroposed by Nigel Martin. Corre-
spondent: Nigel Martin.

A cross-sectionf a sequencgs,, ..., &) of sets of integers is a sequengeg, ..., Xx) withx € §
fori=1,...,k. A cross-section isacceptablef for all i, j withi # |,
Xj—X # j—i (modk).
Fix p=2r + 1, and consider the se$, ..., S, given by

S={j:i<j<r+i-1} for 1<i<r,
S’—i-l:{j lS J Sr}u
Stita={j:i<j<r+i} for 1<i<r-1
Srii={j:r<j<r-1}
Find p — 2 acceptable cross-sections for this sequence so that, in aggregate, every number in the

range{1,...,p— 2} occursp+ 1 times.
Solutions are known fop = 2"+ 1, p=6-2"— 1 and finitely many other values.

Editor’s Note: This problem has been solved by Richard Stong.

Problem BCC17.17 (DM359): Evaluating inversion numbers. Proposed by Timothy R.
Walsh. Correspondent: Timothy R. Walsh.

The numbeM (n,r) of permutations of1,2,...,n} with r inversions is the coefficient of in
(LX) (LHXFX2) - (L+X+X2 4 X1,
To find a single value d¥1(n,r) by evaluatingv(n',r’) for all ' < nandr’ < r takesO(nr) = O(n®)
arithmetic operations.

Problem: Find a non-recursive formula fov(n,r) which can be evaluated in at most the same
time.

Donald E. Knuth (], page 16 gave a simple formula in the casén. The proposer has given
a monstrously complicated formula for the general case.
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Problem BCC17.18 (DM360): Sets of permutations with given minimum distanceProposed
by Wendy Myrvold. Correspondent: Wendy Myrvold.

What is the largest number of permutations)x@ymbols in a set with the property that any two
agree in at mogt columns? This number is at magl/ (n—r — 1)!, with equality if and only if the
set is sharplyr + 1)-transitive.

For further details on this problem, see Section 5 of the surx@y [

Problem BCC17.19 (DM361): Covering radius and Tutte polynomial.Proposed by Carrie G.
Rutherford, Fuad Shareef. Correspondent: Peter J. Cameron.

Associated with any matri over a fieldF, there is a matroid representable o¥efwhose
elements are the columns Af and in which dependence is linear dependence) and a linear code
(spanned by the rows d¥. Greene $3] showed that the weight enumerator of the code is a
specialisation of the Tutte polynomial of the matroid.

Do there exist two binary linear codes which have the same Tutte polynomials but different
covering radii? (There are codes with the same weight enumerators but different covering radii.)

Editor's Note: At the conference, the following problem was presented:

Problem BCC17.20: Derangements in the alternating group Proposed byomer Ecglioglu.
CorrespondentOmer Ecé@lioglu.

Let d, be the number of derangements (fixed-point-free permutations) in the symmetric group
Sy, anda, the number of derangements in the alternating griyugt is known that

n
a, = <2> On_2+ (_1)n—1(n_ 1).
Problem:Find a bijective proof of this fact.

The problem is equivalent to the statement that the nundjees a, andd;, of derangements
which are even and odd permutations satisfy

df —d> =(—1)"(n-1).
This was subsequently solved by Robin Chapman. His elegant solution follows.
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Let Dy the be set of derangements. We can split this setnntdl equal parts according to
where the permutation sendsWe look therefore only @b;, = {0 € D, : o(n) = n— 1}. Define
a sign-reversing involution on the sBf \ {(123... n—2nn—1)}. This will give us what we
want.

For o € Dy, let a(o) be the least numbex with o(a) < a. Thena(o) < n— 1 with the sole
exceptiono=(123... n—2nn-—1). For allg € Dy, apart from this one permutation, lefc) =
(a(o)n)oo.

It suffices to show that = f (o) satisfiest € Dj, anda(t) = a(0).

First of all a(n) = n— 1 which is not in{a,n}, sot(n) = n—1. Suppose&(j) = j for somej.
Thent(j) # o(j), so thato(j) =aornandt(j) = j = norarespectively. But(a) < a, soj=a
ando(j) =nisimpossible. Alsa(n) =n—1> a, so thatj = nando(j) = ais impossible. Hence
TliesinDj,.

If j <a, thena(j) > j and1(j) equals one obi(j), a andn, all of which exceedj. But
o(a) <a<nandsor(a) =o(a) < a. Hencea(t) = a.

/ BCC18

BCC18 was held at the University of Sussex, 2-6 July 2001.

Problem BCC18.1: Freese—Nation numbers of posets.Proposed by D. H. Fremlin and
D. B. Penman. Correspondent: D. B. Penman.

Let (P, <) be a poset. A functiofi : P+— PP (where?P is the power set d?) is aFreese—Nation
functionif, wheneverp < g, we have

f(p)N f(a)Nip,q #0.

The Freese—Nation numbé¥N(P) is the smallest for which there is a Freese—Nation functién
with |f(p)| < r for all p € P. Observe thap € f(p) forall pe P.
For example,

1. if Pis an antichain, then F¥) = 2;
2. if Pis ann-element chain, then KR) = 2+ |log,n|;
3. if P=AUBwWith |A|=2r—5,|B|=2r —6,anda<bforallac A be B, then FNP) =r;

4. If P is selected from the uniform distribution erelement posets, then FR) = (n/8)(1+
0(1) with high probability.
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Problem: Find
lim (FN(2m))Y™,

m—oo

wherem denotes anm-element set. (It is known that the limit exists and lies in the interval
[2/V/3,V/3] ~ [1.1547,1.4427.)

Problem BCC18.2: Matching roots of vertex-transitive graphs. Proposed by Bojan Mohar.
Correspondent: Bojan Mohar.

Let p(G, k) be the number of matchings of the gra@iwith k edges. Then thmatching poly-
nomialof G is
[n/2]
MGX) = (=1)*p(G,kx"*
k=0
It is known thatu(G, k) has only real roots.
Conjecture: For every integer there exists a connected vertex-transitive graph whose matching
polynomial has a root of multiplicity at least
Even examples of vertex-transitive graphs with at least one non-simple root would be of great
interest, since such graphs cannot contain a Hamiltonian path55€&7).
Editor's note: This was the proposer'sProblem of the monthfor July 2001: see
http://www.fmf.uni-lj.si/ ~ mohar/Problems.html

Problem BCC18.3: Strongly distance-regular graphs.Proposed by M. A. Fiol. Correspon-
dent: M. A. Fiol.

For the definition of a distance-regular graph and related concepts, we refer to
Brouweret al.[19].

A graphT with diameterd is calledstrongly distance-regulaif I is distance-regular and the
distanced graphl 4 (in which vertices are adjacent if they have distadae ") is strongly regular.
Examples include

1. any strongly regular graph;
2. any distance-regular graph with= 3 and third-largest eigenvaluel,
3. any antipodal distance-regular graph.

Problem: Prove or disprove that these examples exhaust all possibilities.
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Problem BCC18.4: Some configurations in polar spacesProposed by Harm Pralle. Corre-
spondent: Harm Pralle.

For which polar spacel of rank 3, other than the Klein quadric, does there exist dlset
planes such that

(i) there exists a unique plardec H such that any plane di intersecting in a line belongs to
H, and

(ii) every line of 1 not contained i is covered uniquely by a plane Bif?

The only known example fdil lives in the symplectic varietgs(R) in PG(5,R); itis a hyperplane
of the dual ofS;(R) arising from an embedding in RG3,R). (All examples in the Klein quadric
are obtained by taking to be a plane and including also all the planes of the opposite ruling.)

Problem BCC18.5: Projective space analogues of Steiner systemBroposed by “Folklore”
(possibly Ph. Delsarte). Correspondent: Peter J. Cameron.

Does there exist a collectidhof planes in the projective space B(xq), wheren > 2, such that
any line lies in a unique member & (This would be the analogue for projective spaces of a
Steiner triple system.) No examples are known.

One can easily define analogues of arbitreagesigns in projective spaces (probably Del-
sarte B7] was the first to do so), but very few examples are known. However, infinite examples
exist in great profusion!

Problem BCC18.6: “Problem 6”. Proposed by Harald Gropp. Correspondent: Harald Gropp.

Is there a bipartite 6-regular graph with 66 vertices having girth 6?

Equivalently, is there a 33xonfiguration? (This is a configuration with 33 points and 33 lines,
each point on 6 lines and each line containing 6 points, such that two points lie on at most one
line.)

Problem BCC18.7: Multiplication group of a Latin square. Proposed by Alg Drapal. Corre-
spondent: Alé Drapal.

Consider a Latin square of ordern whose first row and column are normalised to have the
entries 1...,nin order. Each row and column &f is a permutation of1,...,n}; the group
generated by these permutations isrdtiplication groupof L, denoted byM(L).
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Givenk > 3 and a prime poweg, does there exist a Latin squdresuch that
PSL(k,q) <M(L) <PrL(kq)?

The proposer has shown recentlyl] 47] that, if k = 2, there is only one such squate with
M(L) =PrL(k,q) = Ss.

For the next two problems, we introduce a Markov chain method for choosing Latin squares
uniformly at random, due to Jacobson and Matthewz. [
We represent a Latin square of ordeby a functionf : N3 — {0,1} (whereN = {1,...,n})

satisfying
f(x,y,2) =1
2

for giveny,z € N, and two similar equations for the other coordinates. We allow iatgooper
Latin squareswhich are functions satisfying these constraints but which take the vdlexactly
once. Now to take one step in the Markov chain starting at a fundtiaio the following:

(a) If f is proper, choose anik,y,z) with f(x,y,z) = O; if f is improper, use the unique triple
with f(x,y,z) = —1.

(b) LetX,y,Z € N satisfy

f(X,y,2)=f(xy,2) = f(xy,Z) =1

(If f is proper, these points are unique;fifis improper, there are two choices for each of
them.)

(c) Now increase the value dfby one on the triple$x,y, z), (x,y',Z), (X,y,Z) and(X,y, z), and
decrease it by one on the triples,y, z), (x,Y,2), (x,y,Z) and(X,y’,Z). We obtain another
proper or improper Latin square, accordingfés’,y’,Z) = 1 or 0.

Jacobson and Matthews show that the limiting distribution gives the same probability to each Latin
square.

Problem BCC18.8: Choosing Latin squares uniformly at random.Proposed by M. T. Jacob-
son and P. Matthews; J. Mgller; J. Besag. Correspondent: R. A. Bailey.

Problem: How fast does the Jacobson—Matthews Markov chain converge to the uniform distri-
bution?
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Problem BCC18.9: A Markov chain for Steiner triple systems.Proposed by Peter J. Cameron.
Correspondent: Peter J. Cameron.

A slight modification of the method of Jacobson and Matthews should work for Steiner triple
systems. We simply replace “ordered triples” by “unordered triples of distinct elements” in the
definition; then a STS is a function from unordered triple$Q@al} which satisfies

; f{xy.z}) =1
ZEXY

for all distinct pointsx,y, and an improper STS is allowed to take the valdeexactly once. Now
the moves are defined as before. However, before we know that the limiting distribution is uniform,
we have to solve the following

Problem: Is the chain connected? That is, is it possible to get from any STS to any other by a
sequence of moves?

Problem BCC18.10: Perfect Steiner triple systems. Proposed by M. J. Grannell and
T. S. Griggs. Correspondent: T. S. Griggs.

Let S= (V,B) be a Steiner triple system of order and leta andb be any two points, and
c the third point of the block containing them. Define a gr&pls as follows: the vertex set is
V\ {a,b,c}, and two verticex andy are adjacent if and only if eithdia, x,y} € B or {b,x,y} € B.
Clearly Gy, is a union of disjoint even cycles. G,y is a single cycle foall choices ofa,b € V,
thenSis said to beperfect

Perfect STS of orders 7, 9, 25 and 33 have been known for some time. More recently Grannell,
Griggs and Murphy%2] added nine new values to the list of orders:

79,139 367, 811, 1531 25771, 50923 61339 69991

These are all primes of the form42 7.
Problem: What number-theroretic property distinguishes these nine primes from the other
primes of this form less than 100000 (where the search terminated)?

The next two problems refer to circular chromatic number, which is defined as follows. For a
hypergrapiH, and positive integerp, q with 2q < p, we define &p, q)-colouringto be a function
c:V(H) —{0,1,...,p—1} such that each edgeof H contains two verticea andb with g <
lc(x) —c(y)| < p—g. Thecircular chromatic numbeof H, writtenx¢(H), is the infimum of the set
of valuesp/q for which there exists ép, q)-colouring ofH. (We can replace “inf” by “min” here.)
Alternatively, it is the smallest circumference of a cir@lsuch that the vertices of the graphs can
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be mapped to points & such that adjacent points are at distance at least 1. The definition of
circular chromatic number of a graph is just the specialisation of this definition.

Since everyp-colouring is a(p, 1)-colouring, we have(H) < x(H), wherex(H) is the chro-
matic number oH.

See Zhu [ 11] for a survey, and also the paper by Mohar][presented at the meeting.

Problem BCC18.11: Circular chromatic number of Steiner triple systems. Proposed by
Changiz Eslahchi, Arash Rafiey. Correspondent: Changiz Eslahchi.

Conjecture: For every Steiner triple systeBof order at least 13, we hayg(S) = x(S).

Editor’s note: The conjecture is false for order 7. | am grateful to Fred Holroyd for pointing
out to me that the usual cyclic representation of the STS of order 7 showg:{Sat 7/3, while
of coursex(S) = 3.

Problem BCC18.12: Bounding the circular chromatic number of a graph. Proposed by
Bojan Mohar. Correspondent: Bojan Mohar.

Let Ps(x) be the chromatic polynomial of the graghand letk be the chromatic number .
Let co < k be the largest real number such tRgtco) = k! .
Problem: Is it true thatxc(G) < co, wherexc(G) is the circular chromatic number Gf?

Problem BCC18.13: Two list colouring conjectures.Proposed by S. Akbari, V. S. Mirrokni,
B. S. Sadjad. Correspondent: S. Akbari.

1. A list edge-colouring conjecturé.et G be a graph withmedges and maximum degrae> 2.
Suppose that = {Lj,...,Ln} is an assignment of lists of colours to the edge&aduch that
ILi| =Afori=1,...,m. Show thaiG is not uniquelyL-colourable.

This is known to be true i€ is not regular, or ifG is regular and bipartite (seef]).

2. A list vertex-colouring conjecturéSuppose thab is a graph and : V(G) — N is a function,
whereN is the set of natural numbers. Letbe a list assignment to the vertices®f such that
ILy| = f(v) for anyv € V(G), and assume th& is uniquelyL-colourable. Suppose thatis a
maximal uniquelyf-colorable graph (that is, for any list assignmehof G, if f(v) < [L| for all
v e V(G) and there exists a vertey such thatf (vo) < |L,|, thenG is not uniquelyL’-colorable).
ThenGis f-choosable.
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Problem BCC18.14: Colouring and degeneracy of random graphsProposed by Bojan Mo-
har. Correspondent: Bojan Mohar.

Here Gn p denotes the random graph model in which edges are selected fromvéreex set
independently with probability (see Molloy’s paper3] presented at the conference). A graph
is k-degenerate if every induced subgraph has a vertex of degree smallet. tt@early ak-
degenerate graph iscolourable. Ak-coreof a graph is an induced subgraph with minimum
degree at least

Let p = p(n,k) be the smallest probability such that almost no graphgyp are (klogk)-
degenerate.

Conjecture: Almost all graphs inG, p have chromatic number at ledst(In other words, the
threshold for gklogk)-core is at least that fde-colourability.)

Problem BCC18.15: Odd holes in planar graphs.Proposed by Colin McDiarmid. Correspon-
dent: Colin McDiarmid.

An odd holein a graph is an induced subgraph which is an odd circuit of length at least 5.

Does every planar graph have 3-colouring (not necessarily proper) of the vertices such that every
odd hole receives all three colours?

This question is related to measuring how imperfect a planar graph can be.

Problem BCC18.16: Chord diagrams and Vassiliev invariants.Proposed by Leonid Plachta.
Correspondent: Leonid Plachta.

The following combinatorial problem arises in the study of Vassiliev knot invariants. To formu-
late it let us first recall that eachsingular knot C1-immersion ofS! into R3) with exactlyn double
transverse points (called singularities) can be represented (though not uniquelyghyraslia-
gram (for short, CD), in which the preimages of each singular poirlimre the endpoints of a
chord in the CD.

Let K denote the set of knots k3. Any isotopy invariant of knots: X — Q can be extended in
a natural way to the set of singular knots with a finite number of singularities (see, for example,
[11]). Anisotopy invariant: L — Q is called avassiliev invarianf ordern if v vanishes on any
(n+ 1)-singular knot andh is the smallest number with this property. It turns out (se8)[that
any Vassiliev invariant of ordern has equal values on all singular knots having the same CDs
with n chords.

Let D, denote the set of chord diagrams witbhords, the CDs being considered up to the obvi-
ous equivalence relation, and let spap) be the vector space ov@ generated by, It follows
any Q-valued Vassiliev invariant of ordern determines a functiow(v): D, — Q satisfying the
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axioms 1T (framing independence) and 4T (the four term relation) described, for examplg, in [
Such a function is calledaeight systenof degreen. In other words, a weight system of degree
is an element of the dual space of the vector space

An = span{Dy) /spart{4T and 1T relationf).

For anyD € Dy, let G(D) denote thentersection grapl{or interplay graph in the terminology
of [1]) of D. Note that not every abstract intersection graph witrertices is realizable as an
intersection graph of some chord diagram of orderRosenstiehl’s theorem characrerizes the
class of all realizable abstract intersection graphs (5ge [

The Intersection Graph Conjecture, formulated by Chmubal. [37], asserts that a weight
systemw: D, — QQ has equal values on any two chord diagrams with the same intersection graphs,
so its values on CDs are determined uniquely by their intersection graphs. They proved the con-
jecture in the case when the intersection graphs of chord diagrams are trees. It follows that the
conjecture is true if the intersection graphs are forests. Recently B. M&llpshowed that the
conjecture is true for chord diagrams whose intersection graphs have exactly one loop.

T. Q. T. Le showed however that, in general, the conjecture is false, since it implies that Vas-
siliev knot invariants cannot detect mutation, contradicting the Morton/Cromwell examples. More
precisely, Morton and Cromwel8]] showed that there exists a framed Vassiliev invaneoitde-
gree 11 with values if[u] which takes different values on Kinoshita-Teresaka/Conway mutants.
This implies that there exists a (framing independépyalued Vassiliev invariant of order 11
distinguishing both the mutants (see)l]). This example yields two singular knots representing
by CDsD; andD; of order 11, with the same intersection gra@{®,) andG(D;), and such that
[D1] # [D2] in A11.

Problem: Describe the class of all (realizable) intersection graphs for which the Intersection
Graph Conjecture is true.

Problem BCC18.17: Fragmentability of graphs of bounded degreeProposed by Keith Ed-
wards, Graham Farr. Correspondent: Graham Farr.

Let C be a positive integer and a real number if0,1). A graphG on n vertices is(C,a)-
fragmentabléf there exists a seX of at mostan vertices such that each componentof X has
at mostC vertices.

Problem: Does there existt < 1 and a sequencg;,Cy, ... of constants such that every graph
G of maximum degred is (Cp,a)-fragmentable?

It is known that such an must be at least/2: see {3].
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Problem BCC18.18: Monotone paths in edge-ordered graphsProposed by Yehuda Roditty.
Correspondent: Yehuda Roditty.

An edge-ordered graplis an ordered paifG, f), whereG = G(V,E) is a finite undirected
simple graph and is a bijection fromE(G) to {1,2,...,|E(G)|}, called aredge-orderingf G. A
monotone path of lengthik (G, ) is a simple pathb,1 : v1,V2...,Vk+1 In G such that the values
f((vi,vit1)), fori=12,2,...,k— 1, are strictly monotonic (either increasing or decreasing). All
definitions and updated results can be foundi#.|

Given a graplG, denote bya(G) the minimum (over all edge orderings @) of the maximum
length of a monotone path.

Problems:

1. Prove thata(Kp) = (% +0(1))n. (The right-hand side is known to be an upper bound for
a(Kn).)

2. Determinea(G) for G a planar graph. (It is known thats a(G) <9, and ifG is bipartite
then 4<a(G) <6).

Problem BCC18.19: Decomposing complete multipartite graphs.Proposed by Keith Ed-
wards. Correspondent: Keith Edwards.

A graphH decomposea graphG if there is a se6 of subgraphs o6, each isomorphic tél,
such that each edge Gfis contained in exactly one of the graphsSn

Problem: Is it true that, for any\-partite graptH, there is an integar such thaH decomposes
the complete\-partite graph with all parts of siz&?

The answer is “yes” foh = 2 andA = 3.

Problem BCC18.20: Graphs isomorphic to their neighbourhoods and non-neighbourhoods.
Proposed by Anthony Bonato. Correspondent: Anthony Bonato.

Let N(x) and N°(x) denote the sets of neighbours and non-neighbours of the vertéa
graphG, respectively. We say th& hasproperty (N) if, for every vertexx, the subgraph in-
duced byN(x) is isomorphic tdG; property(N°) is defined similarly.

Problem Which countable simple graphs hdvethproperty(N) and property(N°¢)?

The only known example of such a graph is the countaatelom graph or Rado’s graph
the unique countable existentially closed graph. However, there@radh-isomorphic graphs
having one of these properties.
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