
BCC Problem List

Peter J. Cameron
School of Mathematical Sciences

Queen Mary, University of London
London E1 4NS

U.K.
p.j.cameron@qmul.ac.uk

8 August 2001

This document contains the problems presented at problem sessions at the British Combina-
torial Conference, from BCC12 to the present. All those problems which were published in the
Conference proceedings, and some others, are included. I have annotated and updated them with
further references wherever I know of any. Further information on any of the problems are very
welcome, and will be included in subsequent versions of the problems. The proposers’ addresses
are the most recent known to me, but some are now long out of date; again, updates are welcome.

From BCC13 onwards, the problems (together with the contributed papers) have been published
in the Research Problems section ofDiscrete Mathematics. Each problem appearing in this section
receives a unique number, which I have given in the formDMnnn . These problems arec© Elsevier
Science B.V.

1 BCC12

BCC12 was held at the University of East Anglia, Norwich, 3–7 July 1989. Contributed papers
were published inArs Combinatoria29 (1990); the problems were not included, but were circu-
lated to participants.

Problem BCC12.1: Some doubly resolvable designs.Proposed by R. A. Bailey. Correspon-
dent: R. A. Bailey.
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For whichn andk does there exist a doubly resolvable incomplete block design fornk treatments
in n2 blocks of sizek, so that all concurrences are 0 or 1?

Such a design exists if there arek MOLS of ordern. What about other values? In particular,
does it exist for(n,k) = (6,3), (6,4), (6,5) or (10,3)?

Editor’s Note: These designs are now known as SOMAs (see Phillips and Wallis [88]). For re-
cent results on their structure and classification, including existence for(10,3), see Soicher [99].
Further information on semi-Latin squares is available from [9].

Problem BCC12.2: Latin squares with transitive groups. Proposed by R. A. Bailey. Corre-
spondent: R. A. Bailey.

Do there exist any Latin squares, other than Cayley tables, whose automorphism groups are
transitive?

Editor’s note:The proposer answered her own question: there is such a square of order 6: see [7,
p. 54]. A more difficult question would be to determine all such squares.

Problem BCC12.3: Two Diophantine equations.Proposed by Peter Cameron. Correspondent:
Peter Cameron.

Let q,n,k be positive integers withq> 1, n> 3.

(a) Show that (
k
2

)
−1 =

qn−1
q−1

has no solutions.

(b) Show that (
k
2

)
−1 = qn +1

has only the solutionqn = 64,k = 12.

Remark: Richard Guy remarks that, for fixedn, these equations are presumably of the sort to
which Faltings’ theorem applies, in which case there are only finitely many solutions for eachn.
But surely these equations are less difficult than Fermat’s last theorem!
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Editor’s Note:Hering [60] has obtained further results on these equations, including the fact that
the second equation has only finitely many solutions ifq< 47 or if n is divisible by 3.

Problem BCC12.4: Generalised quadrangles.Proposed by J. Tits and P. J. Cameron. Corre-
spondent: Peter Cameron.

Show that there is no generalised quadrangle with parameterss, t, wheres is finite and greater
than 1, andt is infinite.

Note: A generalised quadrangleis a geometry of points and lines, with any two points on at most
one line, such that if pointP is not on lineL, thenP is collinear with a unique point ofL. It has
parameterss, t if each line containss+ 1 points and each point lies ont + 1 lines. If s = 1, it is
a complete bipartite graph. The finiteness oft whens= 2,3 was shown by Cameron and Kantor
respectively.

Editor’s Note:A simplified proof for the cases= 3 was given by Brouwer [18]. Finiteness in the
cases= 4 was shown by Cherlin (unpublished), who gave a general method which can in principle
deal with larger values ofs (with ever-increasing amounts of hard labour).

Problem BCC12.5: Edge-density of infinite graphs.Proposed by Peter Cameron. Correspon-
dent: Peter Cameron.

Let G be an infinite graph. List alllabelled n-vertex subgraphs ofG (a finite list, for eachn),
and letdn be the average density of edges in the list (that is, the total number of edges divided by(n

2

)
times the number of graphs in the list. Does limn→∞ dn exist?

Problem BCC12.6: Intersecting families. Proposed by P. J. Cameron, P. Frankl and W. M.
Kantor. Correspondent: Peter Cameron.

Let F ⊆ P ({1,2, . . . ,n}) be an intersecting family of sets which is maximal (that is,|F |= 2n−1)
and regular (each point lies in the same number of elements ofF ). Letmbe the size of the smallest
set inF . It is known thatm≥ 1

2 logn+ c; examples are known withm∼
√

n. (See [28]). What is
the truth?

Editor’s Note: This problem has been solved by Aaron Meyerowitz [81], who showed that the
lower bound is correct.
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Problem BCC12.7: Forbidding divisibility. Proposed by P. J. Cameron and P. Erdős. Corre-
spondent: Peter Cameron.

Let f (n) be the number of sequences

1≤ a1 < .. . < at ≤ n

with ai 6 | a j for i 6= j. Prove that limn→∞ f (n)1/n exists.

Note: The limit should be about 1.58: see [27].

Problem BCC12.8: Inverting sign matrices. Proposed byÖmer Ĕgeciŏglu. Correspondent:
Ömer Ĕgeciŏglu.

Consider two disjoint finite setsA and B, each partitioned inton2 not necessarily nonempty
subsetsAi j andBi j for i, j = 1, . . . ,n, respectively. Suppose that we have a mapping sign :A∪B→
{−1,1}. Let

ai j = ∑
x∈Ai j

sign(x), bi j = ∑
y∈Bi j

sign(y).

In many combinatorial situations, the numbersai j andbi j are given not explicitly butalgorithmi-
cally.

Put

Ii j =
n⋃

k=1

Aik×Bk j, I =
n⋃

i, j=1

Ii j .

Clearly I ⊆ A×B. Denote byxi j andui j generic elements ofAi j , and byyi j andvi j elements of
Bi j . We turnI into asigned spaceby defining, for every(xik,yk j) ∈ I ,

sign(xik,yk j) = sign(xik)sign(yk j).

Let A = ||ai j ||, andB = ||bi j ||, and suppose thatAB = I . In many instances (for example,
in the combinatorics of the transition matrices for symmetric function bases), one can provide a
combinatorial proof of this fact (viz.,AB = I ) by means of asign-reversing involutionon I . That
is, we can construct a permutationα on I satisfying

(i) α : Ii j → Ii j ;

(ii) if α(xik,yk j) = (uil ,vl j ) 6= (xik,yk j), then sign(xik,yk j) 6= sign(uil ,vl j ) (that is, α is sign-
reversing outside its fixed point set);

(iii) α has no fixed points inIi j for i 6= j, and a unique fixed point (with positive sign) inIii for
eachi;
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α is an involution, that is,α2 is the identity.

Then it is easy to see, by usingα, that
n

∑
k=1

aikbk j = δi j ,

whereδi j is the Kronecker delta.
SinceAB = I if and only if BA = I , it is natural to ask ifBA = I admits a combinatorial proof

via a sign-reversing involutionβ defined on

J =
n⋃

i, j=1

Ji j ,

where

Ji j =
n⋃

k=1

Bik×Ak j,

whereβ is constructed directly fromα. We would also like the construction to benatural, in the
sense that the mapα→ β itself should be an involution.

Problem:Give such a construction ofβ from α.

Problem BCC12.9: Subgraphs of then-cube. Proposed by Paul Erdős. Correspondent: Paul
Erdős.

Let Qn denote then-cube, a graph withn2n−1 edges.

(a) Show that a subgraph ofQn with at least(1
2 + ε)n2n−1 edges contains aC4.

(b) Show that a subgraph ofQn with at leastεn2n−1 edges contains aC6.

Of course, the assertion is to be shown for all sufficiently largen, for any givenε > 0. Each of
these problems is worth $100.

Editor’s Note:Part (b) has been disproved by Conder [35], who partitioned the edge-set ofQn into
threeC6-free subsets. For up-to-date results on both problems, see Chung and Graham [33], p. 43.

Problem BCC12.10: Sum-free sets containing a small even number.Proposed by Paul Erdős.
Correspondent: Paul Erdős.

Let Sbe a sum-free subset of{1, . . . ,n} (that is, for allx,y,z∈ S, x+y 6= z). Clearly|S| ≤ d1
2ne.

Now suppose thatScontains an even number less than1
2n− f (n). Is it true that|S| ≤ 1

2n− ε f (n)?
The hypothesis is clearly necessary: the set of odd numbers, and the set of numbers greater than

1
2n, are both sum-free. It is known that, if 2∈ S, then|S| ≤ (2

5 +o(1))n.
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Editor’s Note:Deshouillers, Freiman, Śos and Temkin [38] have shown that a sum-free setSwhich
contains an even number satisfies either|S| ≤min(S) or |S| ≤ 2

5(n+2). More generally, they have
given a description of all such sets satisfying|S|> 2

5n−c with n> n0(c) for fixedc.

Problem BCC12.11: Forbidding x+ y = 4z. Proposed by Paul Erdős. Correspondent: Paul
Erdős.

Let Sbe a set of positive integers containing no solution tox+y= 4z. DoesShave lower density
less than1

2?
Note that the set of integers congruent to 1 or 4 modulo 5 satisfies the constraint and has density

2
5.

Problem BCC12.12: Sets with all subset-sums distinct.Proposed by Paul Erdős. Correspon-
dent: Paul Erd̋os.

Let Sbe a subset of{1, . . . ,n} with all sums of subsets distinct. Is it true that

|S|< logn
log2

+c?

It is known that|S| < logn
log2 + log logn

2log2 , and that there is such a set withn = 2m and |S| = m+ 2.
This problem is worth $500.

Problem BCC12.13: Some distance-regular graphs.Proposed by Tony Gardiner. Correspon-
dent: Tony Gardiner.

Is there a distance-regular graph with diameter 3 having intersection array ∗ 1 c m
0 0 a 0
m m−1 b ∗


with b 6= 1, a 6= 0?

Theith column of the intersection array gives the number of vertices adjacent toy and at distance
i−1, i, i +1 respectively fromx, wherex andy are at distancei these numbers being (by definition)
constant. The smallest such feasible graph has valency 126.
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Problem BCC12.14: Determining a graph from its cycle space.Proposed by Oliver Pretzel.
Correspondent: Oliver Pretzel.

Given a cycle basis of a graphG, one can view the cycles ofG as elements of a free abelian
group (or, if orientation is disregarded, of a vector space overZ/2). Many functions on the cycles
are linear on this algebraic structure, but the length function (the number of edges in the cycle) is
not. Informally, the question is: “how closely does the length function determineG?”

More formally, suppose that two graphsG andH are given with isomorphic cycle spaces. Sup-
pose further thatG is known and that, for suitable cycle bases, the length functions on the cycle
spaces ofG andH are the same. What can be said aboutH?

For example, ifG is a tree, thenH is a forest. IfG is a cycle with two chords andH is 2-
connected, thenH is a cycle of the same length with two chords, but the chords can be moved
slightly. SoH need not be isomorphic toG.

Conjecture:If G andH are 3-connected and have the same length function for cycles, thenG and
H are isomorphic

Problem BCC12.15: A double Youden rectangle.Proposed by Donald A. Preece. Correspon-
dent: Donald A. Preece.

Construct a 5×11 double Youden rectangle.
For the definition, see Bailey [6]. Briefly: what is required is a 5× 11 rectangle, each cell

containing a symbol from{a1, . . . ,a11} and a symbol from{b1, . . . ,b5}, such that

(i) thea’s form a Latin rectangle, and the sets ofa’s appearing in the columns are the blocks of a
symmetric(11,5,2) BIBD;

(ii) eachb appears once in each column and once paired with eacha;

(iii) For i 6= j, the numbers of occurrences ofbi andb j in any row differ by at most 1.

Of course, this definition is much less “symmetrical” than that in Bailey [6].

Editor’s Note:This problem has been solved by the proposer [89].

Problem BCC12.16: Monotone directed paths in tournaments.Proposed by V. Linek, B.
Sands, N. Sauer and R. E. Woodrow. Correspondent: Bill Sands.
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Problem 1: If the edges of a tournament are coloured with three colours, is there a set of three
vertices such that there is a monochromatic directed path from any other vertex to one of these
three?

It is known that, if only two colours are used, then a single vertex will suffice. For three colours,
three vertices are necessary but it is not known whether any finite number is sufficient. See [95].

Problem 2:Let P be a poset, and colour the edges of a tournament with the elements ofP. Call a
directed pathx1,x2, . . . ,xk monotoneif

colour(xixi+1)≤ colour(xi+1xi+2)

for all i. If P is the poset{|•• •}, is there a set of three vertices ofT such that there is a monotone
directed path from any other vertex ofT to one of these three?

Again it is known that two vertices will not always do, but no fixed number is known to suffice.
Problem 1 is just Problem 2 withP a 3-element antichain. Linek and Sands [75] have found all
posetsP for which asinglevertex suffices; they are exactly those containing neither{• • •}
nor{|•• •}.
Problem 3: Problem 2 can be generalised by replacing the posetP by a directed graphD, and
replacing “monotone” paths by pathsx1, . . . ,xk such that

(colour(xixi+1),colour(xi+1xi+2)) is an edge ofD

for all i. For example, ifD = C5, the undirected 5-cycle (with each edge directed both ways), is
there always a vertex in any tournament reachable from all others by aD-path?

Problem BCC12.17: Independence numbers in non-Hamiltonian graphs.Proposed by Dou-
glas R. Woodall. Correspondent: Douglas R. Woodall.

Let G be ak-connected graph with vertex independence numberα(G).

Conjecture 1:If G is not Hamiltonian,C is a longest circuit inG, andk≥ 2, then

α(G−C)≤ α(G)−k.

Conjecture 2:If G is not traceable,P is a longest path inG, andk≥ 1, then

α(G−P)≤ α(G)−k−1.

Here,G−C means the graph obtained by removing theverticesof C from G.
If true, both conjectures are best possible: letG be the union of a large number of complete

graphs, all having exactlyk vertices in common. Conjecture 2 is obvious ifk = 1 (since the end
vertices ofP are not adjacent to each other or to anything outsideP), and has been proved for
k = 2, but is open fork≥ 3, as is Conjecture 1 in all cases.
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Problem BCC12.18: Zara graphs.Proposed by François Zara. Correspondent: François Zara.

A Zara graphis a graph with the properties that, for some natural numbersr andt,

(i) each maximal clique is of cardinalityr;

(ii) if C is a maximal clique andx a vertex not inC, thenx is adjacent to exactlyt vertices inC.

Problems:

1. Find new Zara graphs.

2. A Zara graph witht = 2 is a special kind of “extended generalised quadrangle” (see [29]). Can
these graphs be classified?

For further background, see [14, 109, 110].

Editor’s note:At the Second Franco-Chinese Conference on Counting and Coding, held at ENST,
Paris, 6–8 September 1989, Tayuan Huang (Department of Applied Mathematics, National Chiao-
Tung University, Hsin Chu 30050, Taiwan, ROC;thuang@twnctu01.bitnet ) proposed a
solution to Problem 1, involving a family of Zara graphs withr = q3, t = q2 for any prime power
q, constructed from alternating bilinear forms in 4 variables overGF(q). (Join two forms if their
difference is singular.) Subsequently, it turned out that these are isomorphic to some of the known
examples.

Of course, by definition, Problem 1 remains open!

Final note. Participants at the problem session will recall some discussion of a problem posed
by Oliver Pretzel. Subsequently, a message reached me by an indirect route from Noga Alon,
pointing out that the problem had been solved “decades ago” by Erdős and Selfridge. The proof is
elegant, and participants may be interested in seeing it.

The problem was as follows. LetA andB be distinct finite sets of positive integers for which the
multisets

A2 = {a+a′ : a,a′ ∈ A,a 6= a′}, B2 = {b+b′ : b,b′ ∈ B,b 6= b′}

coincide. Is it true that|A|= |B| is a power of 2?

Solution.Put f (x) = ∑a∈Axa andg(x) = ∑b∈Bxb. Then

f (x)2− f (x2) = 2 ∑
r∈A2

xr ,

g(x)2−g(x2) = 2 ∑
s∈B2

xs.

9

mailto:thuang@twnctu01.bitnet


Hence f (x)2− f (x2) = g(x)2−g(x2), that is,( f −g)(x)( f + g)(x) = ( f −g)(x2). Suppose that
( f −g)(x) = (1−x)kP(x) whereP(1) 6= 0. Then

( f +g)(x)+
( f −g)(x2)
( f −g)(x)

= (1+x)kP(x2)
P(x)

.

Putx = 1 to get

2|A|= ( f +g)(1) = 2kP(1)
P(1)

= 2k,

so the answer is affirmative.

2 BCC13

BCC13 was held at the University of Surrey, Guildford, 8-12 July 1991. The contributed papers
were published inDiscrete Mathematics125 (1994). The problems appear on pages 407–417 of
the journal. The problems arec© Elsevier Science B.V. 1994.

Problem BCC13.1 (DM178): Stable partitions of graphs.Proposed by Z. F̈uredi. Correspon-
dent: Z. F̈uredi.

A partition of the vertex setV of a (simple) graphG into two non-empty partsV1 andV2 is called
stableif, for i = 1,2 and all verticesx∈Vi ,

degG|Vi
(x)> 1

2 degG(x).

A graph with a stable partition is calledstable. The complete graph is not stable, but every 3-
regular graph other thanK4 is stable.

What is the number of stable graphs? In particular, is the proportion of graphs onn vertices
which are stableo(1)?

Problem BCC13.2 (DM179): Ramsey perfect graphs.Proposed by J. Nešeťril. Correspondent:
J. Něseťril.

Is it true that, for every perfect graphG, there exists a perfect graphH such that, for every
partitionE(H) = E1∪E2, there is an induced subgraphG′ of H such thatG′ is isomorphic toG
andE(G′)⊆ Ei for somei (i = 1 or 2)?

We expect a negative answer to this question, despite the fact that the analogous question for
partitions of vertices has an affirmative answer (using the Lovász Multiplication Lemma).
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Problem BCC13.3 (DM180): Reconstructing spanning trees.Proposed by W. L. Kocay. Cor-
respondent: C. Wakelin.

Is the number of spanning trees with exactlyd automorphisms reconstructible from the deck of
vertex-deleted subgraphs of a graph, for eachd?

Problem BCC13.4 (DM181):1 time 2-tough implies2 times1-tough?. Proposed by C. Hoede.
Correspondent: C. Hoede.

Prove that the edge-set of a 2-tough graph can be partitioned into two setsE1 andE2 such that
each ofE1 andE2 induces a 1-tough spanning subgraph ofG.

If this conjecture is true, then a 4-regular 2-tough graph would consist of two edge-disssjoint
Hamiltonian cycles. One could accordingly extend Thomassen’s conjecture to the assertion that
any 2-tough graph contains two edge-disjoint Hamiltonian cycles.

[A graph ist-tough is, for any vertex cutsetSm G−S has at most|S|/t components. Chv́atal
conjectured that, fort > 3

2, a t-tough graph is Hamiltonian. This was refuted by Thomassen, who
conjectured instead that a 2-tough graph is Hamiltonian.]

Problem BCC13.5 (DM182): Path-tough graphs.Proposed by I. Schiermeyer. Correspondent:
I. Schiermeyer.

Let G be a simple graph onn vertices, wheren≥ 3, which ispath-tough(that is,G− v has
a Hamiltonian path for any vertexv). Suppose thatd(u) = d(v) = d(w) ≥ n− 2 for any three
independent verticesu,v,w. Prove that eitherG is Hamiltonian, orG is isomorphic to the Petersen
graph.

Problem BCC13.6 (DM183): Hamiltonian cycles and a bit more.Proposed by R. Ḧaggkvist.
Correspondent: R. Ḧaggkvist.

Prove that any graph of ordern amd minimum degree at least1
2(n+ 1) contains a subgraph

which is a Hamiltonian cycle together with a longest diagonal.

Problem BCC13.7 (DM184): The second longest cycle.Proposed by R. Ḧaggkvist. Corre-
spondent: R. Ḧaggkvist.

Give lower bounds for the length of the second longest cycle in a Hamiltonian 3-regular graph.
(The best bound currently isn− 4

√
n.) More generally, the same problem with “minimum de-

gree 3” in place of “3-regular”.
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Problem BCC13.8 (DM185): 4-chromatic covering graphs. Proposed by D. Youngs. Corre-
spondent: D. Youngs.

What is the smallest 4-chromatic covering graph? (A graph is acovering graphif its edges can
be directed in such a way that it becomes the Hasse diagram of a poset.) The answer lies between
12 and 14 inclusive.

Problem BCC13.9 (DM186): Special Hamiltonian paths.Proposed by W. T. Trotter and S.
Felsner. Correspondent: W. T. Trotter.

Consider the diagram of the poset of all subsets of{1,2, . . . ,n}. As a graph, this is then-cube.
Does the graph have a Hamiltonian pathA1,A1, . . . ,A2n starting atA1 = /0 and having the following
property?

If, at stepi, you visit a setAi , then you must previously have visited all subsets ofAi with
at most one exception. If there is an exception, you must visit it next (that is, it isAi+1).

For example, withn = 4,

/0,1,12,2,23,3,34,4,24,124,14,134,13,123,1234,234

is such a path.

Problem BCC13.10 (DM187): Interval-regular graphs. Proposed by H. M. Mulder. Corre-
spondent: H. M. Mulder.

Let G be a connected simple graph. Theinterval I(u,v) between verticesu andv is the set of
all vertices which lie on some shortest path formu to v. The graph is calledinterval-regularif, for
any two verticesu andv, we have

||N(u)∩ I(u,v)|= d(u,v),

whereN(u) is the set of neighbours ofu.
Examples of interval-regular graphs include hypercubes, and the 2-cube and 3-cube with added

edges joining all vertices inN(u) for some vertexu. The class of interval-regular graphs is closed
under taking Cartesian products. See [85].

Conjecture:Let G be interval-regular. Then

x,y∈ I(u,v) =⇒ I(x,y)⊆ I(u,v)

for any verticesu andv.
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Problem BCC13.11 (DM188): Permutations of a cube.Proposed by M. K. Siu. Correspon-
dent: M. K. Siu.

Let C be then-cube graph,d the graph metric. Is every permutation of the vertices ofc the
composite of at mostn permutationssi , each satisfying

d(x,si(x))≤ 1

for all x∈C?

Editor’s Note:More generally, which graphs of diametern have this property?
Note that it is not true that a permutations he vertices ofC which satisfiesd(x,s(x))≤ k can be

written as the product of at mostk permutationssi as above.

Problem BCC13.12 (DM189): Permutations of projective space.Proposed by A.Gýarfás.
Correspondent: P. J. Cameron.

For whichn andq does there exist a permutationπ of the point set ofPG(n,q) with the property
that, for any hyperplaneH, there exists a hyperplaneH ′ with π(H)∩H ′ = /0? It is known that the
answer is “yes” forn = 2 (asymptotically, almost all permutations have this property), and “no”
for n> q (by a short argument due to A. Blokhuis).

Problem BCC13.13:q-polynomials. Proposed by A. Bonisoli. Correspondent: A. Bonisoli.

A polynomialc(z) = ∑cizi ovberGF(q) is said to be aq-polynomialif ci 6= 0 only if i is a power
of q. (See [74].) Let m= 2d−1 be a Mersenne prime. Does there exist a 2-polynomial

c(z) =
d

∑
i=0

xiz
2i

of degree 2d such thatc(z)/z is irreducible overGF(2)? The answer is “yes” for the first four
Mersenne primes, viz., 3, 7, 31, 127.

Problem BCC13.14 (DM190): Cyclic shifts of binary words. Proposed by P. J. Cameron.
Correspondent: P. J. Cameron.

For oddn, let Wn be the space of binary words of lengthn and even weight. Letf (n) be the
maximum codimension of a subspaceU of Wn such that the union of all cyclic shifts ofU is equal
toWn. It is known thatf (n)≥ 2 for n> 3, but little more is known. Doesf (n)→∞ asn→∞? Or
is f (n) = 2 for infinitely manyn?
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Problem BCC13.15 (DM191): A generalisation of arcs.Proposed by J. Bierbrauer. Corre-
spondent: J. Bierbrauer.

Let (V,B) be an affine plane of odd orderq. Given a functionw : V→ Z such that

∑
p∈L

w(p)≤ 2

for all L ∈ B, set
mass(w) = ∑

p∈V
w(p).

Then mass(w) ≤ q+ 2 holds. The valueq+ 1 can be attained (by the characteristic function of a
conic). Prove that necessarily mass(w)≤ q+1.

Problem BCC13.16 (DM192): Perfect Steiner triple systems.Proposed by C. J. Colbourn and
A. Rosa. Correspondent: A. Rosa.

Let (V,B) be a Steiner triple system of orderv (a STS(v)). For distinct pointsx,y contained in
the block{x,y,z}, theinterlacing graph Gxy is the 2-regular graph on the vertex setV \{x,y,z}, in
which a andb are adjacent whenever{a,b,x} or {a,b,y} is in B. The STS is calledperfectif Gxy

is a Hamiltonian cycle for allx,y∈V.

Problem:Find more perfect STS. Are there infinitely many?
Only four are known, with orders 7, 9, 25 and 33. There is none of order 13 or 15. All known

examples have point-transitive automorphism groups.

Problem BCC13.17 (DM193): A generalisation of affine designs.Proposed by P. J. Cameron
and M. E. Kimberley. Correspondent: P. J. Cameron.

An affine designis a resolvable 2-design in which any two non-parallel blocks meet in a constant
numbery of points. What happens if we replace “non-parallel” by “non-disjoint” in this definition?
In addition to affine designs, there are resolvable designs withλ = 1 (andy = 1), for example
Kirkman systems. No others are known: the first unknown case is a resolvable 2-(70,10,6) design
with y = 2. See [24].

Problem BCC13.18 (DM194): Blocking-set-free configurations.Proposed by J. W. DiPaola
and H. Gropp. Correspondent: H. Gropp.

A configurationn3 hasn points andn lines, with three points on each line and three lines through
each point, so that two points lie on at most one line. Ablocking setis a set of points meeting every
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line but containing none. For whichn≥ 7 does there exist a connectedn3 configuration with no
blocking sets?

It is known that such configurations exist for all but finitely many values ofn. They do not
exist for the falues 8–12 or 14. The values in doubt are 15–18, 20, 23, 24, 26, 29, 30, 32, 38, 44.
See [40].

Editor’s Note:See also BCC14.14 and BCC16.20.

Problem BCC13.19 (DM195): Permutations with few distances.Proposed by P. J. Cameron.
Correspondent: P. J. Cameron.

For fixeds and largen, the best known upper and lower bounds for the maximum number of
permutations of ann-set withsdifferent distances are both roughly(cn/s)2s (with different values
of c). (See [23].) Find the correct value.

Problem BCC13.20 (DM196): Partial transversals of Latin rectangles.Proposed by A. J. W.
Hilton. Correspondent: A. J. W. Hilton.

Let R be ann×2n Latin rectangle on 2n symbols. A partial transversalT of sizes of R is a
collection ofs cells, no two in the same row or column, and no two containing the same symbol.
Is it true thatRcan be expressed as the union of 2n partial transversals of sizen?

An equivalent formulation: Call twon× 2n Latin rectanglesR,S on the same set of symbols
orthogonal if the pairs(r i j ,si j ), for i = 1, . . . ,n and j = 1, . . . ,2n, are all distinct. Does every
n×2n Latin rectangle have an orthogonal mate?

Problem BCC13.21 (DM197): Semi-Latin squares.Proposed by R. A. Bailey. Correspondent:
R. A. Bailey.

A semi-Latin squareis ann×n array withk symbols (chosen from a set of sizenk) in each cell,
such that each symbol occurs once in each row or column. We impose the further property:

No two symbols occur together in a cell more than once.

Such a structure clearly exists if there arek mutually orthogonal Latin squares of ordern. on
disjoint sets of symbols.

Problem:Find constructions for values(n,k) for which a set ofk m.o.l.s. of ordern does not exist
(or is unknown). Examples are known for(n,k) = (6,2) or (6,3). What about(6,4) or (10,3)?
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Editor’s Note:See comments on BCC12.1 above.

Problem BCC13.22 (DM198): Tiling the square.Proposed by D. Youngs. Correspondent: D.
Youngs.

(a) What is the leastoddnumber of congruent non-rectangular tiles needed to tile a square?

(b) Is there such a tiling in which the tiles are not polyominoes?

The best tiling known to the proposer uses 25 copies of the polyomino with two rows containing 6
and 3 squares, aligned at one end.

Problem BCC13.23 (DM199): Covering the square.Proposed by F. Barnes. Correspondent:
F. Barnes.

(a) Prove that, for any partition of the plane into sets (or regions) of diameter 1, the density must
be at least 8/3

√
3.

(b) A finite variation. What is the largest square which can be partitioned inton sets of diameter
(at most) 1? The answer is known forn ≤ 5. In general, we would expect a hexagonal
honeycomb with some distortion at the edges.

An alternative formulation of (b) asks for the chromatic number of the graph whose vertices are
the points of the unit square, two points adjacent if their distance exceedsd.

Problem BCC13.24 (DM200): Sum-free sets containing2. Proposed by P. J. Cameron. Corre-
spondent: N. J. Calkin.

What is the probability that, in a random sum-free setSof natural numbers, 2 is the only even
number inS? (Is it zero or not?)

The probability measure is defined by the following rule. Consider the natural numbers in their
usual order. Ifn is the sum of two numbers inS, thenn /∈ S; otherwise, decide on the toss of a fair
coin. It is known that the probability thatScontains no even number is non-zero, but the present
problem seems a bit more delicate.
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Editor’s Note:This problem has been solved by the proposer and the presenter [21], who showed
that the probability is strictly positive and gave a heuristic estimate for it.

Problem BCC13.25 (DM201): Partitions of intersecting families. Proposed by N. Alon, P.
Seymour and Z. F̈uredi. Correspondent: Z. Füredi.

Let F be an intersecting family ofk-subsets of then-element setV, that is,F ∩F ′ 6= /0 for all
F,F ′ ∈ F . Let p(F ) be the minimump for which one can findp pairs (2-subsets)P!, . . . ,Pp of V
such that every member ofF contains somePi . Now let f (n,k) be the maximum ofp(F ), over
all such intersecting families. Is it true thatf (n,k)≤ n for all n?

If true, this would imply a strengthened form of the caset + 1 of Larman’s conjecture, since,
setting

Fi = {F ∈ F : pi ⊆ F,Pj 6⊆ F for j < i},

then{Fi : i = 1, . . . ,n} is a decomposition ofF into 2-intersecting families.
(Larman’s conjecture[72] asserts that, ifF is at-intersecting family ofk-subsets of then-setV,

that is,|F ∩F ′| ≥ t for all F,F ′ ∈ F , thenF can be decomposed inton subfamilies each of which
is (t +1)-intersecting.

Editor’s note: A similiar question can be asked for arbitrary families of sets (not all of the same
size).

Problem BCC13.26 (DM202): Some families of sets.Proposed by N. J. Calkin. Correspondent:
N. J. Calkin.

What can be said about familiesF of subsets of ann-setV such that

(a)F1,F2 ∈ F =⇒ F1 6⊂ F2;

(b) F1,F2 ∈ F =⇒ F1∩F2 6= /0;

(c) (∀x∈V)(∃F1,F2 ∈ F )(F1∩F2 = {x})?

Problem BCC13.27 (DM203): Some problems on perfect groups.Proposed by J. D́enes and
P. Yff. Correspondent: P. Yff.

(a) Prove the Feit–Thompson Theorem by elementary means. (Remark: either of the following
equivalents of the Feit–Thompson Theorem may be more convenient:
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• A finite perfect group can be generated by a self-inverse conjugacy class of elements of
odd order (Heineken, unpublished);

• If G has odd ordern, then some element ofG is not the product ofn distinct factors
(Dénes and Hermann [39]).)

(b) Show that a perfect group can be generated by an involution and an element of odd order
which is conjugate to its inverse.

(c) Characterise finite groups in which every element is a commutator. In particular, show that
every non-abelian finite simple group has this peroperty (Ore’s conjecture).

(d) Characterise finite groupsG in which every element of the derived group is the product
of k commutators. (This condition can be expressed in terms of the notion ofk-conjugacy
(Yff [ 107]).

3 BCC14

BCC14 was held at the University of Keele, 5–9 July 1993. The contributed papers were published
in Discrete Mathematics138 (1995). The problems appear on pages 405–411 of the journal. The
problems arec© Elsevier Science B.V. 1995.

Problem BCC14.1 (DM215): Total colourings of hypergraphs.Proposed by P. Cowling. Cor-
respondent: P. Cowling.

A total colouringof a hypergraph is a colouring of vertices and edges such that

(a) the restrictions to vertices and edges are strong colourings;

(b) an incident vertex and edge have different colours.

Thetotal chromatic numberis the least number of colours required for a total colouring. See [36].

Conjecture: If H = (V,E) is a linear hypergraph (two vertices on at most one edge) with total
chromatic numberχT(H), then

χT(H)≤max
x∈V

∣∣∣∣∣∣∣
⋃
E∈E
x∈E

E

∣∣∣∣∣∣∣+1.
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Problem BCC14.2 (DM216): Critical Kl -free graphs. Proposed by J. Schöhheim. Correspon-
dent: J. Scḧohheim.

It is known thatk-chromatic critical graphs onn vertices have at least

(
k−1

2

)
n edges. Gallai

showed that a better lower bound holds for graphs containing noKk. Can this bound be further
improved for graphs containing noKl , for fixed l with 3≤ l ≤ k?

For example, withk = 10, l = 9, can the bound 4.5n be improved to 5n−10?

Problem BCC14.3 (DM217): Bandwidth of a graph.Proposed by D. B. West. Correspondent:
D. B. West.

Thebandwidthof ann-vertex graphG is

min
f

max
x∼y
| f (x)− f (y)|,

where the minimum is over all bijections from the vertex set to{1, . . . ,n}.
What is the bandwidth of the “triangular lattice” graph whose vertices are all triples of non-

negative integers with suml , vertices(x,y,z) and(x′,y′,z′) being adjacent whenever|x−x′|+ |y−
y′|+ |z− z′| = 2? (A lower bound ofl/2 is known, and an upper bound ofl + 1 is obtained by
numbering the vertices in layers.)

Editor’s Note: This problem was solved immediately after the conference. The solution [62]
appears in the volume of contributed papers.

Problem BCC14.4 (DM218): How small is Tutte’s wheel?.Proposed by A. Shastri. Corre-
spondent: A. Shastri.

W. T. Tutte proved that any 3-connected graph can be obtained from a wheel by repeatedly
adding an edge or splitting the central vertex (keeping the minimum degree at least 3).

Conjecture.Any 3-connected cubic graph onn vertices may be obtained by this procedure from a
wheel onk vertices, wherek≥ cn (for some absolute constantc).

Problem BCC14.5 (DM219): Characteristic polynomials of graphs. Proposed by R.
Häggkvist. Correspondent: R. Häggkvist.

How many distinct characteristic polynomials of (adjacency matrices of)n-vertex graphs are
there?

The proposer conjectures that a typicaln-vertex graph hasn2 cospectral mates, so that the answer
to the problem isO(2n(n−1)/2/n2n!).
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Problem BCC14.6 (DM220): Cliques and cocliques in Cayley graphs.Proposed by N. Alon.
Correspondent: N. Alon.

Conjecture. There is a constantc such that, for every finite groupG of ordern> 1, there is a
symmetric (i.e., inverse-closed) generating setS for G such that the Cayley graphΓ(G,S) has
neither a clique nor an independent set of sizeclogn.

This is not known for any infinite sequence of finite groups; but it is true with log2n replacing
logn.

Problem BCC14.7 (DM221): Local structure in 2-transitive graphs. Proposed by A. A.
Ivanov. Correspondent: A. A. Ivanov.

Problem:Determine the vertex and edge stabilizers in all locally finite 2-transitive graphs in which
G1(x) = 1.

(A graph is 2-transitive if it admits a groupG acting transitively on 2-arcs. The condition
G1(x) = 1 means that a vertex stabilizer acts faithfully (and 2-transitively) on its neighbours. The
answer to this problem would be a list of pairs(H, t), whereH is a finite 2-transitive group (the
vertex-stabiliserG(x)) andt an outer automorphism of order 2 of the stabilizerHy (so thatHy〈t〉=
G(e), wheree= {x,y}), along with the trivial possibility thatG(e) = Hy×2.)

Problem BCC14.8 (DM222): The rows of a Latin square.Proposed by P. J. Cameron and J.
C. M. Janssen. Correspondent: P. J. Cameron.

(a) It is known that, for almost all Latin squares of ordern (that is, a proportion tending to 1 as
n→∞), the rows of the square (regarded as permutations) generateSn or An. Is this statement
still true if the squares are normalized so that the first row is the identity permutation?

(b) Is it true that the distribution of the number of rows of a random Latin square which are odd
permutations is “approximately” binomialB(n, 1

2)?

(c) LetM(n) andm(n) denote the maximum and minimum numbers of extensions of a 2×n Latin
rectangle to ann×n Latin square. Find a good upper bound forM(n)/m(n).

(d) How do you choose a random Latin square of ordern?

Editor’s Note: In connection with (b), Ḧaggkvist and Janssen [56] have shown that the proportion
of Latin squares in which all rows are even permutations is exponentially small. This was the form
asked at the Conference; the strengthened version was suggested by Jeannette Janssen.

A Markov chain method for choosing a random Latin square was given by Jacobson and
Matthews [63].
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Problem BCC14.9 (DM223): A bijective proof of the Dyson conjecture. Proposed by R.
Lewis. Correspondent: R. Lewis.

Let R(r,m,n) denote the set of partitions ofn whose rank is congruent tor modulom, where the
rank of a partition is the largest part minus the number of parts. Freeman Dyson conjectured, and
Atkin and Swinnerton-Dyer [5] proved, that

|R(0,5,5n+4)|= |R(1,5,5n+4)|= . . .= |R(4,5,5n+4)|.

The problem is to find a bijective proof.

Problem BCC14.10 (DM224): Even and odd permutations.Proposed by P. J. Cameron. Cor-
respondent: P. J. Cameron.

For evenn, the number of permutations of{1, . . . ,n} with all cycles of even length is equal to
the number of permutations with all cycles of odd length. Find a bijective proof of this fact.

Editor’s Note:After the conference, this problem was solved independently by Richard Lewis and
Simon Norton. Their joint paper [73] appears in the volume of contributed papers.

Problem BCC14.11 (DM225): How many sum-free sets?.Proposed by P. J. Cameron and P.
Erdős. Correspondent: P. J. Cameron.

Let s(n) be the number of sum-free subsets of{1, . . . ,n} (that is, containing no solution to
x+ y = z). Show that there exist constantsco andce such thats(n)/2n/2→ co or ce asn→ ∞
through odd or even values respectively.

It is known only thats(n) = 2( 1
2+o(1))n: see [3, 20].

Editor’s Note:For the motivation, and conjectured values of the constantsce andco, see [27].

Problem BCC14.12 (DM226): Non-crossing queens.Proposed by G. B. Khosrovshahi. Corre-
spondent: G. B. Khosrovshahi.

What is the maximum number of non-crossingn-queens? It is known that the maximum isn if
n is prime.

Problem BCC14.13 (DM227): Block-transitive designs.Proposed by P. J. Cameron and C. E.
Praeger. Correspondent: P. J. Cameron.

A t-(v,k,λ) design hasv points and a collection of blocks of sizek, anyt points lying in exactly
λ blocks. Terms such as “block-transitive” apply to the action of the automorphism group.
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(a) Show that there is no block-transitive 6-design.

(b) Show that a block-transitive, point-imprimitive 3-design satisfiesv≤
(k

2

)
+1.

(c) Is there a block-transitive 2-(∞,4,1) design which is not point-transitive?

Editor’s Note: For background to (a) and (b) see [30, 31]. The design asked for in (c) has been
constructed by David Evans [46]. Part (b) has been answered in the affirmative by Avinoam Mann
and Ngo Dac Tuan (to appear).

Problem BCC14.14 (DM228): Blocking-set-free configurations.Proposed by J. W. DiPaola
and H. Gropp. Correspondent: H. Gropp.

A configurationn3 hasn points andn lines, with three points on each line and three lines through
each point, such that two points lie on at most one line. Ablocking setis a set of points meeting
every line but containing none. For whichn≥ 7 does there exist a connectedn3 configuration with
no blocking sets?

It is known that such configurations exist for all but finitely many values ofn. They do not exist
for the values 8–12 or 14. The values in doubt are 15–18, 20, 23, 24, 26. (The value 15 may now
be settled). See J. W. DiPaola and H. Gropp [40].

Editor’s Note:This problem an updated form of BCC13.18. See also BCC16.20.

Problem BCC14.15 (DM229): Arranging rows and columns.Proposed by D. B. West. Corre-
spondent: D. B. West.

A matrix of zeros and ones is said to be “zero-partitionable” if its rows and columns can be
permuted independently so that the zeros of the resulting matrix can be labeled R or C such that

• every position to the right of an R is a 0 labeled R, and

• every position below a C is a 0 labeled C.

What is the complexity of recognizing zero-partitionable matrices?
This is equivalent to recognition of interval digraphs. If a 0 is allowed to receive both R and C,

this becomes recognition of digraphs with Ferrers dimension 2, which runs in polynomial time.
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4 BCC15

BCC15 was held at the University of Stirling, 3-7 July 1995. The contributed papers were pub-
lished inDiscrete Mathematics167/168(1997). The problems appear on pages 605–615 of the
journal. The problems arec© Elsevier Science B.V. 1997.

Problem BCC15.1 (DM271): A generalization of Hadwiger’s conjecture.Proposed by Ding,
Oporowski, Sanders, and Vertigan. Correspondent: D. P. Sanders.

A vertex partitionof G is a set{A1, . . . ,Ak} of induced subgraphs such thatV(G) is the disjoint
unionV(A1)∪ . . .∪V(Ak).

Conjecture:Every graph with noKn minor has a vertex partition inton−m+1 graphs with noKm

minor.

For m= 2, this is Hadwiger’s conjecture. It is known to be true forn≤ 5 (Wagner [103]; Ding,
Oporowski, Sanders, Vertigan); forn = 6,m = 2 (Robertson, Seymour, Thomas [92]), and for
6≤ n≤ 8, m= 3 (Jørgensen [64]).

Problem BCC15.2 (DM272): Uniquely total colourable graphs.Proposed by M. Behzad and
E. S. Mahmoodian. Correspondent: E. S. Mahmoodian.

A total colouringof a graph is a colouring of the vertices and edges in such a way that no two
adjacent or incident elements have the same colour.

Problem:Show that, apart from empty graphs, paths, and cyclesC3k, there is no graph which has
a unique total colouring (in the minimum number of colours).

A prize of 500000 Iranian rials is offered for this problem. See [78].

Problem BCC15.3 (DM273): 1-track-less orientations.Proposed by J̈org Zuther. Correspon-
dent: J̈org Zuther.

A 1-track is a one-way infinite directed path (which may be directed either in or out).

Problem:Characterize those graphs which admit a 1-track-less orientation.

Note that every locally finite graph, and everym-partite graph (for finitem) has a 1-track-less
orientation, but the countable complete graph does not.

Problem BCC15.4 (DM274): Continuous maps between graphs.Proposed by Anthony
Hilton. Correspondent: Anthony Hilton.

A map isk-to-1 if the inverse of every point in the codomain has cardinalityk. See [61].
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Problem: Determine the triples(k,m,n) for which there is ak-to-1 continuous map fromKm,m

to Kn,n, where these graphs are regarded as 1-dimensional simplicial complexes in the usual way
(with edges homeomorphic to[0,1]).

Problem BCC15.5 (DM275): A generalization of Tarsi’s problem.Proposed by R. Klein and
J. Scḧonheim. Correspondent: J. Schönheim.

A graph ism-degenerateif every subgraph has a vertex of valency at mostm.

Problem:Prove or disprove that a graph which is the edge-disjoint union of subgraphsG1, . . . ,Gs,
whereGi is mi-degenerate, can be coloured with

s

∑
i=1

mi +

⌊
1
2

(
1+
√

1+8 ∑
1≤i< j≤s

mimj

)⌋

colours.
For s= 2, m1 = 1, m2 = 2, this is M. Tarsi’s problem [68].

Problem BCC15.6 (DM276): Common vertices on longest paths.Proposed by T. Gallai. Cor-
respondent: Sandi Klavžar.

Let G be a finite connected graph. Do any three longest paths inG have a common vertex? It is
trivially true that every two longest paths have a common vertex; but there are graphs in which no
vertex lies on all the longest paths. (The problem is due to Gallai [49]; see also [108, 67]

Problem BCC15.7 (DM277): Edge-colourings of complete graphs.Proposed by Peter John-
son. Correspondent: Peter Johnson.

Suppose that the edges of the complete graphKn (n> 1) are coloured with four colours R, G,
B, Y such that each colour-class gives a connected subgraph onn vertices. It is easy to see from
Satz 1.2(3) of Gallai [48] that at least three of the four triangles with edge colourings RGB, RGY,
RBY, GBY occur.

Questions:

• (a) Do all four occur?

• (b) If not, how small cann be?

• (c) What happens with more than four colours?
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Problem BCC15.8 (DM278): On the probability of connectedness. Proposed by P. J.
Cameron. Correspondent: P. J. Cameron.

Which graphsG have the property that, in the classX (G) of graphs having no induced subgraph
isomorphic toG, the limiting probability of connectedness is strictly between zero and one (in
either the unlabelled or the labelled case)? (The smallestG with this property is the path of
length 3; the probability of connectedness inX (G) is 1

2 if the number of vertices is greater than
one.)

Editor’s Note:See [12] for more information.

Problem BCC15.9 (DM279): Characteristic and chromatic polynomials. Proposed by
Roland Ḧaggkvist. Correspondent: Roland Häggkvist.

Thecharacteristic polynomialof a graphG is the polynomial det(xI−A(G)), whereA(G) is the
adjacency matrix ofG. Its roots are theeigenvaluesof G.

Question:Are there more characteristic polynomials than chromatic polynomials of graphs onn
vertices?

Editor’s Note:See also BCC14.5.

Problem BCC15.10 (DM280): Graphs with three eigenvalues.Proposed by Willem Haemers.
Correspondent: Willem Haemers.

Let G be a connected graph with just three distinct eigenvalues. Such a graph, if regular, must
be strongly regular; and any strongly regular graph has this property. Non-regular examples in-
clude the complete bipartite graphs, and one further example on 36 vertices constructed by M.
Muzychuk.

Questions:

(a) Is it true that G has at most two distinct valencies?

(b) Is G switching-equivalent to a null or strongly regular graph?

(c) Find more examples.

(The operation ofswitchinga graph with respect to a setX of vertices replaces each edge from
X to its complement by a non-edge and each such non-edge by an edge, leaving edges within or
outsideX unaltered.)
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Editor’s Note: M. Klin and M. Muzychuk [86] have pointed out that a family of examples were
found in 1981 by Bridges and Mena [17], and have also constructed some ‘sporadic’ examples and
re-formulated and analysed the question.

Problem BCC15.11 (DM281): Spectra ofKs+1-free graphs. Proposed by Stephan Brandt.
Correspondent: Stephan Brandt.

Let λ1 andλn be the greatest and smallest eigenvalues of a graph onn vertices.

Conjecture:(λ1 + λn)/n≤ 4/25 for any regular triangle-free graph onn vertices.

This conjecture would be true if any of the following two old Erdős conjectures holds (see
e.g. [44]): Let G be a triangle-free graph onn vertices. Then (a)G contains a set ofbn/2c vertices
which span at mostn2/50 edges, and (b)G can be made bipartite by the omission of at mostn2/25
edges.

Problem:Let ξ(s) be the supremum of(λ1 +λn)/n over the class of regularKs+1-free graphs onn
vertices. Determine or estimateξ(s).

The author [16] can show that

0.14 ≤ ξ(2)≤ 3−2
√

2 = 0.1715. . .

(s−2)/s ≤ ξ(s)≤ (s−2)/(s−1) for s≥ 3.

Problem BCC15.12 (DM282): Semiregular automorphism groups. Proposed by Dragan
Marǔsič, Mikhail Klin. Correspondent: Mikhail Klin.

A permutation group issemiregularif no non-identity group element fixes a point. It isregular
if it is transitive and semiregular. A graph is a Cayley graph if and only if its automorphism
group contains a regular subgroup. It is known that there are vertex-transitive graphs which are
not Cayley graphs (the smallest such being the Petersen graph.)

Question:Is there a vertex-transitive graph whose automorphism group contains no non-identity
semiregular subgroup?

More generally, is there a 2-closed transitive permutation group containing no non-identity
semiregular subgroup? (A permutation group is 2-closedif it is the automorphism group, pre-
serving the colours, of some edge-coloured directed graph.)

Editor’s Note: Not every transitive permutation group contains a non-identity semiregular sub-
group: the smallest counterexample has degree 12 (see [86]). Recently, Giudici [50] has deter-
mined all the quasiprimitive permutation groups which contain no non-identity semiregular sub-
group; none of them is 2-closed.
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Problem BCC15.13 (DM283): A distance-regular graph.Proposed by Leonard Soicher. Cor-
respondent: Leonard Soicher.

Let C22 be the code obtained by puncturing the non-extended binary Golay codeC23 in one
coordinate. ThenC22 is a [22,12,6] code with automorphism groupM22 : 2. Let M be the set of
words of minimum non-zero weight inC22, so that|M|= 77.

LetV be the set of pairs{v1,v2} of words ofC22 which satisfy wt(v1) = wt(v2) andv1 +v2 = 1,
where1 is the all-1 word. Then|V|= 672. Forv = {v1,v2} ∈V, define

M(v) = {m∈M|wt(v1 +m) = wt(v2 +m)}.

Then|M(v)|= 55 for allv∈V.
Define a graphΓ with vertex setV, in whichv∼w if and only if |M(v)∩M(w)|= 43. ThenΓ is

a distance-regular, but not distance-transitive graph. Moreover, the distance function inΓ is given
by

dΓ(v,w) = 1
4(47−|M(v)∩M(w)|)

for v,w∈V, v 6= w.
These facts have been proved using the packageGRAPE (see [98]).

Problem:

(a) Prove this by hand, to help understandΓ.

(b) Can a similar construction be applied to other codes with even length and minimum weight,
to construct other distance-regular graphs?

Problem BCC15.14 (DM284): Pasch configurations in 3-hypergraphs.Proposed by G. B.
Khosrovshahi. Correspondent: G. B. Khosrovshahi.

Let X = {1,2, . . . ,v}. Denote the set of all 3-subsets ofX by P3(X). Show that forv≥ 6, any
(
(v

2

)
+1)-subset ofP3(X) must contain aPasch configuration, that is,{abc,axy,bxz,cyz} for some

a,b,c,x,y,z∈ X.

Editor’s Note:A. Blokhuis (personal communication) has constructed hypergraphs with more than(v
2

)
+ 1 edges with no Pasch configuration. The question should be modified to read: how many

edges can a hypergraph with no Pasch configuration have?

Problem BCC15.15 (DM285): Critical sets in Latin squares.Proposed by Ebad Mahmoodian.
Correspondent: Ebad Mahmoodian.

A critical set in ann×n array with entries from the set{1, . . . ,n} is a setSof the positions of
the array with the property that the entries in the positions ofShave a unique extension to a Latin
square of ordern.
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Problem:Show that any critical set in a Latin square of ordern has cardinality at leastbn2/4c.

Problem BCC15.16 (DM286): Loops with conditions on area.Proposed by Alain Valette.
Correspondent: Alain Valette.

A loop γ is a closed trajectory in the square lattice. Itsalgebraic areais A(γ) =
∮

γ xdy. Let
N(2k;P ) be the number of loops based at 0, of length 2k, which satisfy propertyP . So, for

example,N(2k; /0) =
(2k

k

)2
.

Problem: Find either formulae or asymptotics forN(2k;A = l) andN(2k;A≡ l (modq)), for
given l ,q.

For example, limk→∞ N(2k;A = 0)1/2k = 4. Also, if n(2k, l ,q) denotesN(2k;A≡ l (modq)),
then it is known that

lim
k→∞

(n(2k;0,2)−n(2k;1,2))1/2k = 2
√

2,

lim
k→∞

(n(2k;0,3)−n(2k;1,3))1/2k = 1+
√

3,

lim
k→∞

(n(2k;0,4)−n(2k;2,4))1/2k = 2
√

2.

This problem (secretly) deals with the walk generating function of the discrete Heisenberg group
in its 2-generator presentation.

Problem BCC15.17 (DM287): Proof of an identity. Proposed by Richard Lewis. Correspon-
dent: Richard Lewis.

For complex numbersz 6= 0, |w| < 1, set [z;w] = ∏∞
n=1(1− zwn−1)(1− z−1wn). It can be

shown, using Cauchy’s theorem, that for any non-zero complex numbersa1, . . . ,an,b1, . . . ,bn with
a1 . . .an = b1 . . .bn, and anyq with |q|< 1,

n

∑
r=1

[a1b−1
r ;q][a2b−1

r ;q] . . . [anb−1
r ;q]

[b1b−1
r ;q][b2b−1

r ;q] . . . ˆ . . . [bnb−1
r ;q]

= 0,

where the ˆ means to omit the term[brb−1
r ;q].

Problem:Find a combinatorial (bijective) proof of this inequality.

Problem BCC15.18 (DM288): Counting classes of graphs.Proposed by Peter Cameron. Cor-
respondent: Peter Cameron.

Find good asymptotic estimates for the numbers of
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(a) line graphs,

(b) line graphs of bipartite graphs,

(c) comparability graphs of 2-dimensional posets

onn vertices? (The last class of graphs are defined as follows: Take a permutationπ of {1, . . . ,n},
and joini to j whenever(i− j)(iπ− jπ)> 0.)

Problem BCC15.19 (DM289): Antichains in products of chains. Proposed by Jonathan D.
Farley. Correspondent: Jonathan D. Farley.

Let θ(P) be the set of antichains of the posetP, and letn be then-element chain. Dedekind’s
problem [69] asks for the value of|θ(2n)|. It is easy to show that|θ(n)|= n+ 1 and|θ(m×n)|=(m+n

m

)
. MacMahon, Stanley [100, 101], Berman and K̈ohler [13] showed that

|θ(k×m×n)|=
k−1

∏
j=0

(
m+n+ j

m

)/(m+ j
m

)
.

(Despite appearances, this function is symmetric!)

Problem:What is|θ( j×k×m×n)|?

Problem BCC15.20 (DM290): Cycles of a permutation.Proposed by Peter Cameron. Corre-
spondent: Peter Cameron.

As an example of a “typical” automorphism of the space of periodic integrable functions (acting
on Fourier coefficients), W. Rudin [94] considered the permutation of the integers defined by

3n 7→ 2n, 3n+1 7→ 4n+1, 3n−1 7→ 4n−1.

Problem: Describe the cycles of this permutation. In particular, does it have only finitely many
finite cycles?

Editor’s Note: This problem is older: it is the “original Collatz problem” from the 1930s (before
the famous 3x+ 1 problem), though never published by him. A paper by Jeff Lagarias [71] gives
details.
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Problem BCC15.21 (DM291): Combinatorics and control theory. Proposed by Holger
Schellwat. Correspondent: Holger Schellwat.

In place of the Laplace transform, which is used to model continuous time control systems, in
discrete control theZ-transform is the basic tool. For a functionf : Z→ C, its Z–transform is
defined byZ( f )(z) = ∑∞

k=0 f (k)z−k. One problem, for example, is the stability of an inert linear
controller and is determined by the loci of poles of a fraction of polynomials inR[x], constituting
the Z-transform of the transfer function [4]. On the other hand, the method of generating func-
tions [104] is used widely in combinatorics to solve enumeration problems. If(ai : i ∈ N) is a
sequence of numbers, for instance counting the number of distinct combinatorial objects of a cer-
tain kind, its associated ordinary generating function is the formal power series∑∞

n=0anzn. But up
to the sign of the exponent, this is the defining sum for theZ-transform of the sequence, viewed
as a function. Thus it seems natural to explore the implications of this correspondence. Is it even
possible to use it to translate problems in control theory into problems in combinatorics and/or
vice versa? Could representation theory help to establish such a correspondence?

5 BCC16

BCC16 was held at Queen Mary and Westfield College, London, 7-11 July 1997. The contributed
papers were published inDiscrete Mathematics197/198(1999). The problems appear on pages
799–812 of the journal. The problems arec© Elsevier Science B.V. 1999.

Problem BCC16.1 (DM315): Hamiltonian planar cubic graphs.Proposed by S. Jendrol’ and
Z. Skupién. Correspondent: S. Jendrol’.

Let G be a cubic bipartite 3-connected planar graph whose edge setE(G) can be partitioned into
three subsetsE(G) = E1∪E2∪E3 such that〈E1〉 and〈E2〉 are trees and〈E3〉 is a cycle. Prove that
G is hamiltonian.

Remark:This is true ifE2 is empty (Halin) or ifE2 consists of a single edge (Skupień).

Problem BCC16.2: Quasi Hamiltonian-Connected Graphs. Proposed by M. Alabdullatif.
Correspondent: M. Alabdullatif.

Consider a Hamiltonian graph with the following property: for each pair{u,v} of non-adjacent
vertices, there exists a hamiltonian path joiningu and v. Call such graphquasi hamiltonian-
connected(QHc).

Unlike a hamiltonian-connected graph, a QHc graph may have connectivity 2. It has been shown
that ak-regular QHc graph is necessarily 3-connected fork = 3 or 4 (see [2]).
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Problem:Let G be ak-regular QHc graph (k = 3 or 4). IsG necessarily hamiltonian-connected?

The proposer checked the case whenG is of order less than or equal to 10, and it turned out that
G is hamiltonian-connected.

Remark: Counterexamples to this problem, both fork = 3 and fork = 4, have been found by
Gunnar Brinkmann. The smallest counterexample has 16 vertices. (This information is from
Stefan Brandt.)

Editor’s Note: In the preliminary version, the proposer asked whether a 3-connectedk-regular
QHc graph is necessarily hamiltonian-connected? A negative answer was given by Stefan Brandt
at the conference. He constructed, for eachk, ak-connected,(2k−1)-regular graph which is QHc
but not hamiltonian-connected.

Problem BCC16.3 (DM316): A condition for pancyclicity. Proposed by Uwe Schelten and
Ingo Schiermeyer. Correspondent: Ingo Schiermeyer.

Thek-closure Ck(G) of a graphG was defined by Bondy and Chvátal (1976): recursively join
all pairs of non-adjacent vertices whose degrees have sum at leastk. They showed that, for an
n-vertex graphG,

If Cn(G) = Kn then G is Hamiltonian.

Faudree, Flandrin, Favaron and Li (1992) showed that

If Cn+1(G) = Kn then G is pancyclic.

The examplesG = Kn/2,n/2 (and many others) show that it is not true that ifCn(G) = Kn thenG is
pancyclic.

Conjecture:If Cn(G) = Kn andn is odd thenG is pancyclic.

Problem BCC16.4 (DM317): Cutsets in bridged graphs.Proposed by Gẽna Hahn. Correspon-
dent: Gẽna Hahn.

A graphG is bridged if every cycle of length of at least 4 has a bridge, that is, if every cycleC
of length 4 contains two verticesu andv such thatdG(u,v)< dC(u,v) (distance).

Conjecture:For any pair of verticesu,v in a minimum cutset in a bridged graphG, dG(u,v)≤ 2.

Problem BCC16.5 (DM318):4-cycles in regular spanning subgraphs.Proposed by Ian Wan-
less. Correspondent: Ian Wanless.

Let n andk be integers satisfyingn≥ 2k. Let G be ak-regular spanning subgraph ofKn,n and let
s(G) be the number of 4-cycles inG. Suppose thatG is chosen to maximises(G).
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Conjecture: GcontainsKk,k as a component.

Notes:The conjecture is easily proved if

(1) k dividesn, or

(2) n is sufficiently large.

If it is true in toto, thenG is determined up to isomorphism. This follows from the fact that ifG
maximisess(G) thens(G) is also maximised, whereG denotes the bipartite complement ofG.

A weaker result along the same lines would be to show thatG is necessarily disconnected.

Problem BCC16.6 (DM319): Alternating cycles in2-arc-coloured tournaments. Proposed
by G. Gutin, B. Sudakov and A. Yeo. Correspondent: Gregory Gutin.

A cycleC in a 2-arc-coloured digraph is alternating if any two consecutive arcs inC have differ-
ent colours.

Problem:Does there exist a polynomial algorithm to check whether a 2-arc-coloured tournament
has an alternating cycle?

The same problem for 2-arc-coloured digraphs has been proved to be NP-complete.

Problem BCC16.7 (DM320): Monochromatically absorbing sets in tournaments.Proposed
by Gẽna Hahn. Correspondent: Geña Hahn.

Call a setSof vertices in an edge-coloured tournamentmonochromatically absorbingif, from
anyu∈V(D)\S there is a monochromatic directed path fromu to S.

It follows from a theorem of Sands, Sauer and Woodrow [95] that any tournament not containing
a ray (directed infinite path) whose arcs are coloured in two colours contains a vertexv such that
{v} is monochromatically absorbing.

Problems:

(i) Is there a functionf : N→ N such that in any tournament without a ray, edge-coloured ink
colours, there is a monochromatically absorbing set of size at mostf (k)? (It is known that if
such a function exists, thenf (3)≥ 3.)

(ii) Shen has shown that in a 3-arc-coloured finite tournament without 3-coloured triples (that is,
such that between any three points two of the three arcs have the same colour) always contains
a monochromatically absorbing vertex; this can be generalized tok colours. Is this true if the
3-coloured tournament has no 3-coloured directed cycles (as Shen [97] conjectures)?
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(iii) If an infinite tournament without rays is arc-coloured withk colours, is there always afinite
monochromatically absorbing set?

Editor’s Note:See also BCC12.16.

Problem BCC16.8 (DM321): The ultimate independence ratio of a wheel.Proposed by Gẽna
Hahn. Correspondent: Geña Hahn.

Define theindependence ratioof a graphG by i(G) = α(G)/|G|, and theultimate independence
ratio by I(G) = limk→∞ i(Gk), with G1 = G andGk = G2Gk−1.

Conjecture: I(W5) = I(W2n+1) = 1
4 (whereW2n+1 is the odd wheel).

Problem BCC16.9 (DM322): Colorings with minimum sum.Proposed by H. Hajiabolhassan,
M.L. Mehrabadi, and R. Tusserkani. Correspondent: E.S. Mahmoodian.

Let G be a graph. A minimal coloring ofG is a coloring which has the smallest possible sum
among all proper colorings ofG, using natural numbers. Thevertex–strengthof G, denoted by
s(G), is the minimum number of colors which is necessary to obtain a minimal coloring. Prove or
disprove:

s(G)≤
⌈

χ(G)+ ∆(G)
2

⌉
.

We have already proved that:

s(G)≤ dcol(G)+ ∆(G)
2

e.

wherecol(G) is the smallest numberd such that for some linear ordering< of the vertex set, the
back degree|{v : v< u, vu∈ E(G)}| of every vertexu is strictly less thand. Therefore for all
graphsG with χ(G) = col(G) e.g. all trees, the conjecture is verified. Also, we have verified this
conjecture for line graphs.

Problem BCC16.10 (DM323): Colouring Kempe chains.Proposed by F. C. Holroyd, W. S.
Leng. Correspondent: W. S. Leng.

Let G be a plane graph all of whose faces except the infinite face are triangles, and whose vertex
set can be expressed as the disjoint unionV0∪ . . .∪Vn, where

(i) V0 is a single vertex and, for eachi = 1, . . . ,n, Vi induces a cycle;

(ii) each vertex inVi is adjacent only to vertices inVi−1, Vi+1 and two other vertices ofVi .
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Can it be shown, without assuming the four-colour theorem, that there is a proper 4-colouring of
G such that eachVi receives at most three colours?

Problem BCC16.11 (DM324): Linkages and flows.Proposed by Bruce Reed. Correspondent:
Bruce Reed.

Find a short proof of the following theorem of Robertson and Seymour:

There is a function f such that, if the vertex set of a graph can be partitioned into a unique
k-linkage (that is, k disjoint rooted paths as on page 101 of the proposer’s paper [91] in
the Proceedings), then it can be partitioned into a unique f(k)-flow.

Problem BCC16.12 (DM325): Second neighbourhoods in digraphs.Proposed by Paul Sey-
mour. Correspondent: Bruce Reed.

Does every digraphD have a vertexv such that

|N+(v)| ≤ |N++(v)|,

whereN+(v) is the (out-)neighbourhood ofv andN++(v) the strict second neighbourhood, the set
of vertices reachable by directed paths of length 2 but not by single arcs fromv?

The truth of this would imply that of the Caccetta–Häggkvist conjecture, according to which a
digraph onn vertices with in- and out-degrees at leastn/3 contains a directed triangle.

Remark: Gregory Gutin has pointed out that a special case of this problem, known as Dean’s
Conjecture, was recently solved by Fisher [47].

Problem BCC16.13 (DM326): Book numbers of graphs.Proposed by E. Gy̋ori. Correspon-
dent: E. Gy̋ori.

The book Bk is the graph consisting ofk triangles sharing an edge. For a graphG, define
bn(G) = max{k : Bk ⊆G}.

For 1
2 < c< 1, define

b(c) = lim
n→∞

1
n

min{bn(G) : |V(G)|= n, d(x)≥ cn∀x}.

The problem is to determineb(c). The intriguing conjecture about its value follows.
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Let x be rational with1
2 < x< 1. The “greedy representation” ofx is given by

x =
k1−1

k2
· k2−1

k2
· · · kr −1

kr
,

whereki > (ki−1−1)2 for i = 2,3, . . . , r. (This representation is unique.) Then set

f (x) =
k1−2

k2
· k2−2

k2
· · · kr −2

kr
.

Then f extends to a function on the real interval(1
2,1), continuous on every irrational. It is mono-

tonic increasing left continuous but jumps at each rational.

Conjecture: b(c) = f (c).

Remark:This is easy forr = 1, and is true (with a 20-page proof, see [45]) for r = 2.

Problem BCC16.14 (DM327): Automorphisms of lexicographic squares.Proposed by Gert
Sabidussi. Correspondent: Geña Hahn.

Let G be a graph such thatG[G]'G, whereG[G] is the lexicographic product ofG with itself.

Conjecture:There is an automorphismφ of G[G] and verticesu, v, w, x, y of G such thatφ(u,x) ∈
{v}×V(G), φ(u,y) ∈ {w}×V(G), andv 6= w.

Problem BCC16.15 (DM328): Simultaneous edge-colourings.Proposed by A. D. Keedwell.
Correspondent: P. J. Cameron.

Suppose thatx1, . . . ,xm,y1, . . . ,ym are positive integers such that there exists a bipartite graph
with vertex degreesx1, . . . ,xm in one bipartite block andy1, . . . ,yn in the other. (This is equivalent
to asserting that the conditions of the Gale–Ryser theorem are satisfied.) Suppose further that all
thexi andy j are greater than 1. Show that there is a bipartite graph having these vertex degrees,
which has two proper edge-colourings such that

• for any vertex, the sets of colours appearing on edges at that vertex are the same in both
colourings;

• no edge receives the same colour in both colourings.
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Note:M. Mahdian, E. S. Mahmoodian, A. Saberi, M. R. Salavatipour and R. Tusserkani [77] have
made a stronger conjecture, namely, that any bridgeless bipartite graph has a pair of colourings
satisfying the above properties. They have shown that this conjecture is equivalent to the celebrated
‘oriented cycle double cover conjecture’ of Paul Seymour [96].

More recently (29 November 2000) I have learned that this problem has been solved by Rong
Luo, Wen-An Zang and Cun-Quan Zhang [76].

Problem BCC16.16 (DM329): Abnormal strongly regular graphs.Proposed by P. J. Cameron
and P. H. Fisher. Correspondent: P. J. Cameron.

Call a strongly regular graphΓ abnormalif it contains verticesx,y,zsuch thatx 6∼ y, x 6∼ z, y∼ z,
andΓ(x)∩Γ(y) = Γ(x)∩Γ(z).

Problem:Does an abnormal strongly regular graph exist?

Remark:Such a graph must haveλ≥ µ, and not all the induced subgraphs on the non-neighbours
of a vertex can be edge-regular. Any strongly regular graph withλ> 0 andµ = 1 is abnormal; but
no such graphs are known.

Problem BCC16.17 (DM330): A problem on Soicher’s graph.Proposed by Bill Martin. Cor-
respondent: Bill Martin.

This problem concerns a distance-regular graphΓ on 672 vertices, based on the punctured Golay
code of length 22, constructed by Leonard Soicher [98] (see Problem BCC15.13). It turns out that
Soicher’s graph, as well as being P-polynomial (that is, distance-regular), is also Q-polynomial;
indeed, it is one of only two “sporadic” P- and Q-polynomial graphs (that is, not having classical
parameters) which are known to the proposer. (The other is the doubled Higman–Sims graph.)

Problems:

(a) Find a simple description ofΓ in PG(2,4).

(b) Is there a Q-poset forΓ? (See below.)

Let Γ be a distance-regular graph of diameterd. Let E0,E1, . . . ,Ed be the minimal idempotents
in the Bose–Mesner algebra forΓ (in some order). The poset(P ,≤) of heightd is aQ-posetfor Γ
if

(i) thedth levelPd of P is the vertex set ofΓ;

(ii) for 0 ≤ i ≤ d, the incidence matrixWi between theith anddth levels ofP has constant row
sums;
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(iii)

rowspace(Ei)⊆ rowspace(Wi)⊆
i⊕

j=0

rowspace(E j)

for 0≤ i ≤ d.

Remark:The standard example: the Boolean lattice of subsets of ann-set, truncated to heightd,
is a Q-poset for the Johnson graphJ(n,d). If we require equality on the right-hand side of the
inequality in (iii), and if rank(Wi) = |Pi | (both of which occur in the standard example), then the
Q-poset for Soicher’s graph would satisfy

|P0|= 1,

|P1|= 1+55= 56,

|P2|= 1+55+385= 441,

|P3|= 1+55+385+231= 672.

Also, presumably, the poset must be constructed from the punctured Golay code (or from PG(2,4),
if problem (a) is solved). SinceM22 has no permutation action on 56 points, a construction from
the punctured Golay code would require some “symmetry-breaking”.

Problem BCC16.18 (DM331): The Canterbury Parades.Proposed by D. A. Preece. Corre-
spondent: D. A. Preece.

The organisers of the Seventeenth British Combinatorial Conference are planning a series of
parades to entertain the delegates. Seventy-six trombones will lead the parades, with one hundred
and ten cornets close behind. Since the mediaeval streets of Canterbury are quite narrow, the
trombonists can march four abreast, and the cornettists five abreast. It is required first that any
three trombonists march in the same row in exactly one parade. This of course means constructing
a resolvable 3-(76,4,1) design. Such designs are known, and have 925 parallel classes, which
means that the daily parades will last for about two and a half years.

The marching orders for the cornettists require a resolvable 3-(110,5,1) design.

Problem:Construct such a design.

Editor’s Note:The required design has 981 parallel classes. So, for the parades, it would suffice to
find a “partial design” in which any three trombonists march together at most once, and there are
925 parallel classes.

In general, one could ask for solutions to the diophantine equation(
v1−1
t1−1

)/(k1−1
t1−1

)
=
(

v2−1
t2−1

)/(k2−1
t2−1

)
,
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and then ask for a solution to the corresponding parade problem.

Problem BCC16.19 (DM332): Semi-Latin squares which are partial linear spaces.Proposed
by L. H. Soicher, R. A. Bailey and P. J. Cameron. Correspondent: R. A. Bailey.

An (n×n)/k semi-Latin square is an arrangement ofnk letters in ann×n square, withk letters
per cell, such that each letter occurs once in each row and once in each column. It is aTrojan
square if it can be obtained by superimposingk mutually orthogonaln×n Latin squares. It is a
partial linear spaceif no two letters occur together in the same cell more than once. Trojan squares
are partial linear spaces.

Bailey [8] showed that whenk = n−1 then any semi-Latin square which is a partial linear space
must be Trojan, and arises from an affine plane with two distinguished parallel classes of lines.

Problem: If k = n−2, must any semi-Latin square which is a partial linear space be Trojan?

Editor’s Note:Semi-Latin squares which are partial linear spaces are known as SOMAs. See also
BCC12.1 and BCC13.21.

Recent exhaustive checking by Soicher [99] shows that the answer to the problem stated is
affirmative whenn = 6 (there are no SLS-PLS or Trojan squares) and whenn = 7.

Problem BCC16.20 (DM333): Blocking-set-free configurations.Proposed by H. Gropp. Cor-
respondent: H. Gropp.

Is there a 3-chromatic linear 3-regular 3-uniform hypergraph with 16 vertices and 16 hyper-
edges? (Equivalently, a configuration 163 with no blocking set.)

Remark:This is an update of problems from earlier British Combinatorial Conferences: see Prob-
lems BCC13.18 and BCC14.14. See also [54] for the background and current state of knowledge.)

In particular, in BCC14.14 the proposer asked whether there is a 153 with no blocking set. This
has been resolved negatively by unpublished results of Kel’mans, Lomonosov and Kornerup.

Problem BCC16.21 (DM334): A non-Desarguesian configuration.Proposed by Jane W. Di
Paola. Correspondent: Jane W. Di Paola.

Prove that a non-Desarguesian projective plane must containMartinetti’s third configuration.
(The lines of the configuration areABF, BCD, CAE, DEI, EFG, FDH, AGJ, BHJ, CIJ andGHI.)
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Remark:Killgrove has shown that each of the three non-Desarguesian planes of order 9 contains
this configuration.

Problem BCC16.22 (DM335): A matrix problem. Proposed by David Bedford and Roger
Whitaker. Correspondent: David Bedford.

Let

X =

B11 B12 · · · B1t
...

...
Bt1 Bt2 · · · Btt

 ,
where eachBi j is a n×n matrix. Assume thatBii = nI for all i, and that, fori 6= j, Bi j has the
following properties:

• entries on the leading diagonal are 1 and all other entries are 0, 1 or 2;

• Bi j has row and column sumsn;

• B>i j = B ji (and henceX is symmetric);

• Bi j +B ji = 2J, whereJ is then×n matrix with every entry 1.

Problem:Prove thatX has nullityt−1. (It is easily seen thatt−1 is a lower bound for the nullity.)

Problem BCC16.23 (DM336): Representing orthogonal matroids. Proposed by P. J.
Cameron. Correspondent: P. J. Cameron.

Let V andW be vector spaces over a fieldF . Suppose thatv1, . . . ,vn ∈ V andw1, . . . ,wn ∈W
satisfy

n

∑
i=0

vi⊗wi = 0. (1)

Then the matroidsM and M′ on the ground set{1, . . . ,n} represented by(v1, . . . ,vn) and
(w1, . . . ,wn) are orthogonal, in the sense that any base ofM is disjoint from some base ofM′

andvice versa.

Problem:Let M andM′ be matroids on{1, . . . ,n} which are both representable over a fieldF and
are orthogonal in the above sense. Do there exist representations ofM andM′ (by v1, . . . ,vn ∈V
andw1, . . . ,wn ∈W) overF such that the displayed equation holds?
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Problem BCC16.24 (DM337): Subsums of signed permutations.Proposed by J. Schönheim.
Correspondent: J. Schönheim.

Given a sequencea1,a2, . . . ,an, being a permutation of the firstn positive integers, we say it has
theNZS propertyif it is possible to assign± to its members so that no subsequence of consecutive
elements has a zero sum modulo 2n+1.

(a) Which permutations of{1,2, . . . ,n} have the NZS property?

(b) Show that for everyn there exists a latin square of ordern with entries from{1,2, . . . ,n} such
that each of its rows has the NZS property.

(c) Find for everyn a sequencea1,a2, . . . ,an, being a permutation of the firstn positive integers,
such that every cyclic permutation ofa1,a2, . . . ,an has the NZS property.

Problem BCC16.25 (DM338): Erdős–Ko–Rado at the court of King Arthur. Proposed by
Fred Holroyd. Correspondent: Fred Holroyd.

King Arthur hasn knights, who have permanent places round the Table. They are to be arranged
into sorties, ofk knights each, such that:

(a) any two sorties intersect;

(b) because of courtly rivalries, any two knights in any sortie must sit at leastd places apart round
the Table (whered≥ 2; that is,d = 2 means adjacent knights cannot be in the same sortie).

Is it true that the Erd̋os–Ko–Rado theorem still holds, in the sense that to maximize the number of
sorties, King Arthur should belong to all of them?

Remark:This is known to be true ifn is sufficiently large (in terms ofd andk) or if kd≤ n<
(k+1)d.

Problem BCC16.26: The thrackle problem.Proposed by J. H. Conway. Correspondent: J. H.
Conway.

A thrackleconsists of a set of points in the plane calledspots, and a set of differentiable simple
curves calledpaths, such that

• the ends of each path are distinct spots, and it contains no other spot;

• any two paths musthit once and only once, that is, have just one common point, at which they
must have different tangents;
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• every spot is a hit.

Problem: Is there a thrackle with more paths than spots?

The proposer has offered $1000 for this problem. For registered delegates of BCC16 only, the
value of the prize is increased to£1000. For more information, see [105].

6 BCC17

BCC17 was held at the University of Kent at Canterbury, 12-16 July 1999. The contributed papers
were published inDiscrete Mathematics231 (2001). The problems appear on pages 469–478 of
the journal. The problems arec© Elsevier Science B.V. 2001.

Problem BCC17.1 (DM343): Drawing configurations in the plane. Proposed by Harald
Gropp. Correspondent: Harald Gropp.

The projective plane PG(2,2) has a familiar drawing in the euclidean plane with six of its seven
lines drawn as Euclidean straight lines. What is the maximum number of straight lines in a Eu-
clidean drawing of PG(2,3)? (A drawing with eight straight lines is known.)

Problem BCC17.2 (DM344): Nested BIBDs. Proposed by D. A. Preece and R. A. Bailey.
Correspondent: R. A. Bailey.

Let ∆ be a balanced incomplete block design (BIBD) onv letters, havingb blocks of sizek. Let
Γ be a BIBD on the samev letters havingbsblocks of sizek/s (with s> 1), its blocks obtained by
splitting the blocks of∆ into s subblocks. ThenΓ is nestedin ∆.

(a) Find examples with Aut(∆) = Aut(Γ) = 1.

(b) Do almost all pairs of nested BIBDs satisfy this?

Problem BCC17.3 (DM345): Intersecting families andS(4,7,23). Proposed by Peter Rowlin-
son. Correspondent: Peter Rowlinson.

The familyF of 7-subsets of a 23-set has the property that any two members ofF intersect in
1 or 3 elements. (Hence|F | ≤ 253.) How large must|F | be to guarantee thatF can be embedded
in S(4,7,23)?
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Problem BCC17.4 (DM346): An extremal problem related to biplanes.Proposed by Gret-
gory Gutin. Correspondent: P. J. Cameron.

Givenn, what is the smallestm such that there existm subsets (called blocks) of the point set
{1, . . . ,n} such that

(a) any two points lie inat leasttwo blocks,

(b) any two blocks meet inat mosttwo points?

Remark: It is known thatn≤ m≤ (2+ o(1))n; the lower bound comes from a simple counting
argument, and the upper bound is obtained by taking blocks to be the translates ofD and−D,
whereD is a planar difference set inCn, with n = q2 +q+1. For more details, see [25].

Problem BCC17.5 (DM347): Some1-factorizations. Proposed by Chris Rodger. Correspon-
dent: Chris Rodger.

Let G be the multigraph whose vertex set isZ2n, the integers modulo 2n, in which i and j are
joined by two edges ifj = i +n and one edge otherwise. Give an easy way to find a 1-factorization
of G in which each of the 2n 1-factors contains one of the doubled edges{i, i +n}.

This 1-factorization is equivalent to a symmetric Latin square with holes of size 2, so can be
constructed reasonably easily using design-theoretic techniques.

Editor’s note:There is a simple solution whenn is odd. Take the vertices to be those of a regular
2n-gon, the doubled edges being the long diagonals. Now let one 1-factor containing a long diag-
onal{i, i + n} contain all edges and short diagonals parallel to{i, i + n}, and the other contain all
short diagonals perpendicular to{i, i +n}.

A solution for n≡ 0 (mod 4) is given by Bailey and Monod [10]; but this perhaps does not
qualify as “easy”.

Problem BCC17.6 (DM348): Unions of random matchings.Proposed by Nick Wormald. Cor-
respondent: Nick Wormald.

Choosek perfect matchings of the complete graphKn (for n even) at random. Denote them by
M1, . . . ,Mk. Let pk(n) denote the probability that for everyi 6= j, the union ofMi andM j forms a
Hamilton cycle. How does this probability behave asn→ ∞ with k fixed? In particular, is it true
that

pk(n)∼ (p2(n))(
k
2)?

Remark:The answer to the last question is known to be “yes” fork = 3 (shown in joint work of
the proposer and J. H. Kim [65]).
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Problem BCC17.7 (DM349): Edge-colouring nearly complete graphs.Proposed by N. Za-
gaglia Salvi. Correspondent: N. Zagaglia Salvi.

Let G be a graph obtained fromKn, wheren = 2t +1, by deleting anyt edges. Letα be a proper
χ′-edge-colouring ofG, whereχ′ = χ′(G) = n−1.

Problems:(a) Does there exist a subgraph ofG havingn−1 edges and maximum degree∆ = 2,
whose edges all have different colours in the colouringα?

(b) For every edgee∈ E(G), does there exist a subgraph ofG containinge which hasn− 2
edges and has maximum degree∆ = 2, whose edges all have different colours in the colouringα?

Problem BCC17.8 (DM350): Caterpillar-arboricity of planar graphs. Proposed by
Y. Roditty. Correspondent: Y. Roditty.

The arboricity a(G) of a graphG is defined to be the smallest number of forests containing
all the edges ofG. In a similar way, thelinear arboricity la(G) (resp.,star arboricity sa(G),
caterpillar arboricity ca(G)) of G is the smallest number of forests containing all edges ofG such
that each component of each forest is a path (resp., a star, a caterpillar). (Acaterpillar is a tree
with the property that removal of all the end vertices and the edges containing them yields a path.)

Nash-Williams [87] proved that any planar graphG satisfiesa(G) ≤ 3. Hakimi, Mitcham and
Schmeichel [57] showed that a planar graph satisfiessa(G)≤ 5.

Conjecture:A planar graphG satisfiesca(G)≤ 4.

Problem BCC17.9 (DM351): Binding functions for graphs. Proposed by Ingo Schiermeyer
and Bert Randerath. Correspondent: Ingo Schiermeyer.

As introduced by Gýarfás [55], a family G of graphs is calledχ-boundwith χ-binding function
f if χ(G′)≤ f (ω(G′)) holds wheneverG′ is an induced subgraph ofG∈ G . (Here as usualω(G′)
andχ(G′) are the clique number and chromatic number ofG′.)

Let G I (3,4) denote the class of graphs whose induced cycles have length 3 or 4 only.

Problem:Determine aχ-binding function forG I (3,4).

Remark:The authors [90] have shown that this class does not have a linearχ-binding function.

Problem BCC17.10 (DM352): Group analogues of graph problems.Proposed by Frank
Harary. Correspondent: Frank Harary.

Find and solve problems about finite groups (or finite abelian groups) motivated by results in
graph theory.
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For example, Harary and Hawthorn [58] found the minimum number of elements in a setS⊆
A\{0} such thatA\Shas no subgroup isomorphic toB, whereA andB are finite abelian groups;
this is an analogue of Turán’s Theorem for graphs.

Problem BCC17.11 (DM353): Neighbourhood-symmetric graphs. Proposed by Dalibor
Froňcek. Correspondent: Dalibor Fronček.

Theneighbourhoodof a vertexx in a graphG, denotedNG(x), is thesubgraphof G induced on
the set of all neighbours ofx. We say thatG hasconstant neighbourhood Hif NG(x) ∼= H for all
x∈V(G). We say thatG is aneighbourhood-symmetric graph(or NSG) if NG(x) ∼= NG(x) ∼= H,
for someH, and allx∈V(G). Clearly any vertex-transitive self-complementary graph is a NSG.

Problem:Construct a counterexample to the converse assertion; that is, find a NSG which fails to
be vertex-transitive and self-complentary.

Problem BCC17.12 (DM354): Semiregular automorphisms.Proposed by Peter Cameron and
John Sheehan. Correspondent: P. J. Cameron.

Marǔsič and Scapellato [79] proved that a vertex-transitive connected cubic simple graph has a
non-trivial semiregular automorphism (one for which all cycles have the same length). Is it true
that there exists such an automorphism having order at leastf (n), wheren is the number of vertices
and f is a function for whichf (n)→ ∞ asn→ ∞? Easy examples show thatf (n) cannot exceed
O(n1/3).

Editor’s note: The proposers have recently shown that there is a semiregular automorphism of
order greater than 2.

Problem BCC17.13 (DM355): Regular graphs admitting a given group.Proposed by Peter
J. Cameron. Correspondent: Peter J. Cameron.

It is known (see [22]) that, for any finite groupΓ, there exists a rational numbera(Γ) ∈ [0,1]
such that, ifG denotes a random graph on the vertex set{1, . . . ,n} (with all graphs equally likely),
then

Prob(Aut(G) = Γ | Aut(G)≥ Γ)→ a(Γ) asn→ ∞.

Does a similar result hold for other random graph models, in particular for random regular graphs
of degreed> 2 (as described by Nick Wormald [106] at the conference)?
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Problem BCC17.14 (DM356): Symmetry groups of boolean functions.Proposed by Andrzej
Kisielewicz. Correspondent: Andrzej Kisielewicz.

Let f be a k-valued boolean functionof n variables, that is, a function from{0,1}n to
{0,1, . . . ,k− 1}. If k = 2, we simply call f a boolean function. The symmetry group G( f ) of
f is the group of all permutationsσ ∈ Sn such that

f (xσ(1), . . . ,xσ(n)) = f (x1, . . . ,xn)

for all (x1, . . . ,xn) ∈ {0,1}n.
We say that a subgroupG of Sn is k-representableif G = G( f ) for somek-valued boolean

function f . Clote and Kranakis [34] proved that, ifG is k-representable for somek≥ 2, thenG is
2-representable. However, the Klein group

V4 = 〈(12)(34),(13)(24)〉 ≤ S4

is a counterexample: it is 3-representable but not 2-representable. The proof in [34] has a gap,
which does not seem to be fixable. For more information see [66].

Problem:Are there any other counterexamples?

Problem BCC17.15 (DM357): Non-zero-sum sequences.Proposed by J. Schönheim. Corre-
spondent: J. Scḧonheim.

Let ai ∈ Z2m+1 (the integers modulo 2m+ 1) for i = 1, . . . , t. We say that the sequencea =
(a1, . . . ,at) has thek-NZS propertyif no subsequence ofk or fewer consecutive terms has sum zero
(mod 2m+1).

In these problems,a = (a1, . . . ,am) denotes a permutation of(1, . . . ,m), andε = (ε1, . . . ,εm) a
sequence of signs (εi =±1 for all i).

It is known that there exist such sequencesa,ε such that the sequence(ε1a1, . . . ,εmam) has sum
zero (mod 2m+1) but has the(m−1)-NZS property.

Problem:Givenb1, . . . ,bm, show that there existc1, . . . ,cm such that

(a) (c1, . . . ,cm) is a permutation of(ε′1b1, . . . ,ε′mbm) for some choice of signsε′ = (ε′1. . . . ,ε
′
m);

(b) each row in the array
b1 b2 . . . bm−1 cm

b2 b3 . . . bm c1

b3 b4 . . . b1 c2
...

bm b1 . . . bm−2 cm−1

is m-NZS.
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Problem:Prove that givenε, there existsa such that the sequenceεa has them-NZS property.

Problem BCC17.16 (DM358): Acceptable cross-sections.Proposed by Nigel Martin. Corre-
spondent: Nigel Martin.

A cross-sectionof a sequence(S1, . . . ,Sk) of sets of integers is a sequence(x1, . . . ,xk) with xi ∈Si

for i = 1, . . . ,k. A cross-section isacceptableif for all i, j with i 6= j,

x j −xi 6≡ j− i (modk).

Fix p = 2r +1, and consider the setsS1, . . . ,Sp given by

Si = { j : i ≤ j ≤ r + i−1} for 1≤ i ≤ r,

Sr+1 = { j : 1≤ j ≤ r},
Sr+i+1 = { j : i ≤ j ≤ r + i} for 1≤ i ≤ r−1,

S2r+1 = { j : r ≤ j ≤ r−1}

Find p−2 acceptable cross-sections for this sequence so that, in aggregate, every number in the
range{1, . . . , p−2} occursp+1 times.

Solutions are known forp = 2n±1, p = 6·2n−1 and finitely many other values.

Editor’s Note:This problem has been solved by Richard Stong.

Problem BCC17.17 (DM359): Evaluating inversion numbers. Proposed by Timothy R.
Walsh. Correspondent: Timothy R. Walsh.

The numberM(n, r) of permutations of{1,2, . . . ,n} with r inversions is the coefficient ofxr in

(1+x)(1+x+x2) · · ·(1+x+x2 + · · ·+xn−1).

To find a single value ofM(n, r) by evaluatingM(n′, r ′) for all n′≤nandr ′≤ r takesO(nr) = O(n3)
arithmetic operations.

Problem: Find a non-recursive formula forM(n, r) which can be evaluated in at most the same
time.

Donald E. Knuth [70], page 16 gave a simple formula in the caser ≤ n. The proposer has given
a monstrously complicated formula for the general case.
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Problem BCC17.18 (DM360): Sets of permutations with given minimum distance.Proposed
by Wendy Myrvold. Correspondent: Wendy Myrvold.

What is the largest number of permutations ofn symbols in a set with the property that any two
agree in at mostr columns? This number is at mostn!/(n− r−1)!, with equality if and only if the
set is sharply(r +1)-transitive.

For further details on this problem, see Section 5 of the survey [26].

Problem BCC17.19 (DM361): Covering radius and Tutte polynomial.Proposed by Carrie G.
Rutherford, Fuad Shareef. Correspondent: Peter J. Cameron.

Associated with any matrixA over a fieldF , there is a matroid representable overF (whose
elements are the columns ofA, and in which dependence is linear dependence) and a linear code
(spanned by the rows ofF . Greene [53] showed that the weight enumerator of the code is a
specialisation of the Tutte polynomial of the matroid.

Do there exist two binary linear codes which have the same Tutte polynomials but different
covering radii? (There are codes with the same weight enumerators but different covering radii.)

Editor’s Note: At the conference, the following problem was presented:

Problem BCC17.20: Derangements in the alternating group.Proposed bÿOmer Ecĕglioğlu.
Correspondent:̈Omer Ecĕglioğlu.

Let dn be the number of derangements (fixed-point-free permutations) in the symmetric group
Sn, andan the number of derangements in the alternating groupAn. It is known that

an =
(

n
2

)
dn−2 +(−1)n−1(n−1).

Problem:Find a bijective proof of this fact.

The problem is equivalent to the statement that the numbersd+
n = an andd−n of derangements

which are even and odd permutations satisfy

d+
n −d−n = (−1)n−1(n−1).

This was subsequently solved by Robin Chapman. His elegant solution follows.
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Let Dn the be set of derangements. We can split this set inton− 1 equal parts according to
where the permutation sendsn. We look therefore only atD′n = {σ ∈ Dn : σ(n) = n−1}. Define
a sign-reversing involution on the setD′n \ {(1 2 3 . . . n−2 n n−1)}. This will give us what we
want.

For σ ∈ D′n let a(σ) be the least numbera with σ(a) < a. Thena(σ) < n− 1 with the sole
exceptionσ = (1 2 3 . . . n−2 n n−1). For allσ ∈D′n apart from this one permutation, letf (σ) =
(a(σ) n)◦σ.

It suffices to show thatτ = f (σ) satisfiesτ ∈ D′n anda(τ) = a(σ).
First of all σ(n) = n−1 which is not in{a,n}, soτ(n) = n−1. Supposeτ( j) = j for some j.

Thenτ( j) 6= σ( j), so thatσ( j) = a or n andτ( j) = j = n or a respectively. Butσ(a)< a, so j = a
andσ( j) = n is impossible. Alsoτ(n) = n−1> a, so thatj = n andσ( j) = a is impossible. Hence
τ lies inD′n.

If j < a, then σ( j) > j and τ( j) equals one ofσ( j), a and n, all of which exceedj. But
σ(a)< a< n and soτ(a) = σ(a)< a. Hencea(τ) = a.

7 BCC18

BCC18 was held at the University of Sussex, 2-6 July 2001.

Problem BCC18.1: Freese–Nation numbers of posets.Proposed by D. H. Fremlin and
D. B. Penman. Correspondent: D. B. Penman.

Let (P,�) be a poset. A functionf : P 7→PP (wherePP is the power set ofP) is aFreese–Nation
functionif, wheneverp� q, we have

f (p)∩ f (q)∩ [p,q] 6= /0.

TheFreese–Nation numberFN(P) is the smallestr for which there is a Freese–Nation functionf
with | f (p)|< r for all p∈ P. Observe thatp∈ f (p) for all p∈ P.

For example,

1. if P is an antichain, then FN(P) = 2;

2. if P is ann-element chain, then FN(P) = 2+ blog2nc;

3. if P = A∪B with |A|= 2r−5, |B|= 2r−6, anda� b for all a∈ A, b∈ B, then FN(P) = r;

4. If P is selected from the uniform distribution onn-element posets, then FN(P) = (n/8)(1+
o(1) with high probability.
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Problem: Find
lim

m→∞
(FN(Pm))1/m,

wherem denotes anm-element set. (It is known that the limit exists and lies in the interval
[2/
√

3, 3
√

3]≈ [1.1547,1.4422].)

Problem BCC18.2: Matching roots of vertex-transitive graphs. Proposed by Bojan Mohar.
Correspondent: Bojan Mohar.

Let p(G,k) be the number of matchings of the graphG with k edges. Then thematching poly-
nomialof G is

µ(G,x) =
bn/2c

∑
k=0

(−1)kp(G,k)xn−2k.

It is known thatµ(G,k) has only real roots.
Conjecture: For every integerr there exists a connected vertex-transitive graph whose matching

polynomial has a root of multiplicity at leastr.
Even examples of vertex-transitive graphs with at least one non-simple root would be of great

interest, since such graphs cannot contain a Hamiltonian path (see [51, 59]).
Editor’s note: This was the proposer’s “Problem of the month” for July 2001: see

http://www.fmf.uni-lj.si/ ˜ mohar/Problems.html

Problem BCC18.3: Strongly distance-regular graphs.Proposed by M. A. Fiol. Correspon-
dent: M. A. Fiol.

For the definition of a distance-regular graph and related concepts, we refer to
Brouweret al. [19].

A graphΓ with diameterd is calledstrongly distance-regularif Γ is distance-regular and the
distance-d graphΓd (in which vertices are adjacent if they have distanced in Γ) is strongly regular.
Examples include

1. any strongly regular graph;

2. any distance-regular graph withd = 3 and third-largest eigenvalue−1;

3. any antipodal distance-regular graph.

Problem: Prove or disprove that these examples exhaust all possibilities.
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Problem BCC18.4: Some configurations in polar spaces.Proposed by Harm Pralle. Corre-
spondent: Harm Pralle.

For which polar spacesΠ of rank 3, other than the Klein quadric, does there exist a setH of
planes such that

(i) there exists a unique planeδ ∈ H such that any plane ofΠ intersectingδ in a line belongs to
H, and

(ii) every line ofΠ not contained inδ is covered uniquely by a plane ofH?

The only known example forH lives in the symplectic varietyS5(R) in PG(5,R); it is a hyperplane
of the dual ofS5(R) arising from an embedding in PG(13,R). (All examples in the Klein quadric
are obtained by takingδ to be a plane and including also all the planes of the opposite ruling.)

Problem BCC18.5: Projective space analogues of Steiner systems.Proposed by “Folklore”
(possibly Ph. Delsarte). Correspondent: Peter J. Cameron.

Does there exist a collectionSof planes in the projective space PG(n,q), wheren> 2, such that
any line lies in a unique member ofS? (This would be the analogue for projective spaces of a
Steiner triple system.) No examples are known.

One can easily define analogues of arbitraryt-designs in projective spaces (probably Del-
sarte [37] was the first to do so), but very few examples are known. However, infinite examples
exist in great profusion!

Problem BCC18.6: “Problem 6”. Proposed by Harald Gropp. Correspondent: Harald Gropp.

Is there a bipartite 6-regular graph with 66 vertices having girth 6?
Equivalently, is there a 336 configuration? (This is a configuration with 33 points and 33 lines,

each point on 6 lines and each line containing 6 points, such that two points lie on at most one
line.)

Problem BCC18.7: Multiplication group of a Latin square. Proposed by Alěs Dŕapal. Corre-
spondent: Alěs Dŕapal.

Consider a Latin squareL of ordern whose first row and column are normalised to have the
entries 1, . . . ,n in order. Each row and column ofL is a permutation of{1, . . . ,n}; the group
generated by these permutations is themultiplication groupof L, denoted byM(L).
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Givenk≥ 3 and a prime powerq, does there exist a Latin squareL such that

PSL(k,q)≤M(L)≤ PΓL(k,q)?

The proposer has shown recently [41, 42] that, if k = 2, there is only one such squareL, with
M(L) = PΓL(k,q) = S5.

For the next two problems, we introduce a Markov chain method for choosing Latin squares
uniformly at random, due to Jacobson and Matthews [63].

We represent a Latin square of ordern by a function f : N3→ {0,1} (whereN = {1, . . . ,n})
satisfying

∑
x∈N

f (x,y,z) = 1

for given y,z∈ N, and two similar equations for the other coordinates. We allow alsoimproper
Latin squares, which are functions satisfying these constraints but which take the value−1 exactly
once. Now to take one step in the Markov chain starting at a functionf , do the following:

(a) If f is proper, choose any(x,y,z) with f (x,y,z) = 0; if f is improper, use the unique triple
with f (x,y,z) =−1.

(b) Letx′,y′,z′ ∈ N satisfy

f (x′,y,z) = f (x,y′,z) = f (x,y,z′) = 1.

(If f is proper, these points are unique; iff is improper, there are two choices for each of
them.)

(c) Now increase the value off by one on the triples(x,y,z), (x,y′,z′), (x′,y,z′) and(x′,y′,z), and
decrease it by one on the triples(x′,y,z), (x,y′,z), (x,y,z′) and(x′,y′,z′). We obtain another
proper or improper Latin square, according asf (x′,y′,z′) = 1 or 0.

Jacobson and Matthews show that the limiting distribution gives the same probability to each Latin
square.

Problem BCC18.8: Choosing Latin squares uniformly at random.Proposed by M. T. Jacob-
son and P. Matthews; J. Møller; J. Besag. Correspondent: R. A. Bailey.

Problem: How fast does the Jacobson–Matthews Markov chain converge to the uniform distri-
bution?
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Problem BCC18.9: A Markov chain for Steiner triple systems.Proposed by Peter J. Cameron.
Correspondent: Peter J. Cameron.

A slight modification of the method of Jacobson and Matthews should work for Steiner triple
systems. We simply replace “ordered triples” by “unordered triples of distinct elements” in the
definition; then a STS is a function from unordered triples to{0,1} which satisfies

∑
z6=x,y

f ({x,y,z}) = 1

for all distinct pointsx,y, and an improper STS is allowed to take the value−1 exactly once. Now
the moves are defined as before. However, before we know that the limiting distribution is uniform,
we have to solve the following

Problem: Is the chain connected? That is, is it possible to get from any STS to any other by a
sequence of moves?

Problem BCC18.10: Perfect Steiner triple systems. Proposed by M. J. Grannell and
T. S. Griggs. Correspondent: T. S. Griggs.

Let S= (V,B) be a Steiner triple system of orderv, and leta andb be any two points, and
c the third point of the block containing them. Define a graphGab as follows: the vertex set is
V \{a,b,c}, and two verticesx andy are adjacent if and only if either{a,x,y} ∈ B or {b,x,y} ∈ B.
ClearlyGab is a union of disjoint even cycles. IfGab is a single cycle forall choices ofa,b∈V,
thenS is said to beperfect.

Perfect STS of orders 7, 9, 25 and 33 have been known for some time. More recently Grannell,
Griggs and Murphy [52] added nine new values to the list of orders:

79, 139, 367, 811, 1531, 25771, 50923, 61339, 69991.

These are all primes of the form 12s+7.
Problem: What number-theroretic property distinguishes these nine primes from the other

primes of this form less than 100000 (where the search terminated)?

The next two problems refer to circular chromatic number, which is defined as follows. For a
hypergraphH, and positive integersp,q with 2q≤ p, we define a(p,q)-colouringto be a function
c : V(H)→ {0,1, . . . , p−1} such that each edgee of H contains two verticesa andb with q≤
|c(x)−c(y)| ≤ p−q. Thecircular chromatic numberof H, writtenχc(H), is the infimum of the set
of valuesp/q for which there exists a(p,q)-colouring ofH. (We can replace “inf” by “min” here.)
Alternatively, it is the smallest circumference of a circleSsuch that the vertices of the graphs can
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be mapped to points ofS such that adjacent points are at distance at least 1. The definition of
circular chromatic number of a graph is just the specialisation of this definition.

Since everyp-colouring is a(p,1)-colouring, we haveχc(H)≤ χ(H), whereχ(H) is the chro-
matic number ofH.

See Zhu [111] for a survey, and also the paper by Mohar [82] presented at the meeting.

Problem BCC18.11: Circular chromatic number of Steiner triple systems. Proposed by
Changiz Eslahchi, Arash Rafiey. Correspondent: Changiz Eslahchi.

Conjecture: For every Steiner triple systemSof order at least 13, we haveχc(S) = χ(S).
Editor’s note: The conjecture is false for order 7. I am grateful to Fred Holroyd for pointing

out to me that the usual cyclic representation of the STS of order 7 shows thatχc(S)≤ 7/3, while
of courseχ(S) = 3.

Problem BCC18.12: Bounding the circular chromatic number of a graph. Proposed by
Bojan Mohar. Correspondent: Bojan Mohar.

Let PG(x) be the chromatic polynomial of the graphG and letk be the chromatic number ofG.
Let c0≤ k be the largest real number such thatPG(c0) = k! .

Problem: Is it true thatχc(G)≤ c0, whereχc(G) is the circular chromatic number ofG?

Problem BCC18.13: Two list colouring conjectures.Proposed by S. Akbari, V. S. Mirrokni,
B. S. Sadjad. Correspondent: S. Akbari.

1. A list edge-colouring conjecture.Let G be a graph withmedges and maximum degree∆≥ 2.
Suppose thatL = {L1, . . . ,Lm} is an assignment of lists of colours to the edges ofG such that
|Li |= ∆ for i = 1, . . . ,m. Show thatG is not uniquelyL-colourable.

This is known to be true ifG is not regular, or ifG is regular and bipartite (see [15]).

2. A list vertex-colouring conjecture.Suppose thatG is a graph andf : V(G)→N is a function,
whereN is the set of natural numbers. LetL be a list assignment to the vertices ofG, such that
|Lv| = f (v) for any v ∈ V(G), and assume thatG is uniquelyL-colourable. Suppose thatG is a
maximal uniquelyf -colorable graph (that is, for any list assignmentL′ of G, if f (v)≤ |L′v| for all
v∈V(G) and there exists a vertexv0 such thatf (v0)< |L′v0

|, thenG is not uniquelyL′-colorable).
ThenG is f -choosable.
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Problem BCC18.14: Colouring and degeneracy of random graphs.Proposed by Bojan Mo-
har. Correspondent: Bojan Mohar.

HereGn,p denotes the random graph model in which edges are selected from then-vertex set
independently with probabilityp (see Molloy’s paper [83] presented at the conference). A graph
is k-degenerate if every induced subgraph has a vertex of degree smaller thank. Clearly ak-
degenerate graph isk-colourable. Ak-core of a graph is an induced subgraph with minimum
degree at leastk.

Let p = p(n,k) be the smallest probability such that almost no graphs inGn,p are (k logk)-
degenerate.

Conjecture: Almost all graphs inGn,p have chromatic number at leastk. (In other words, the
threshold for a(k logk)-core is at least that fork-colourability.)

Problem BCC18.15: Odd holes in planar graphs.Proposed by Colin McDiarmid. Correspon-
dent: Colin McDiarmid.

An odd holein a graph is an induced subgraph which is an odd circuit of length at least 5.
Does every planar graph have 3-colouring (not necessarily proper) of the vertices such that every

odd hole receives all three colours?
This question is related to measuring how imperfect a planar graph can be.

Problem BCC18.16: Chord diagrams and Vassiliev invariants.Proposed by Leonid Plachta.
Correspondent: Leonid Plachta.

The following combinatorial problem arises in the study of Vassiliev knot invariants. To formu-
late it let us first recall that eachn-singular knot (C1-immersion ofS1 intoR3) with exactlyn double
transverse points (called singularities) can be represented (though not uniquely) by itschord dia-
gram (for short, CD), in which the preimages of each singular point inS1 are the endpoints of a
chord in the CD.

Let K denote the set of knots inR3. Any isotopy invariant of knotsv:K →Q can be extended in
a natural way to the setL of singular knots with a finite number of singularities (see, for example,
[11]). An isotopy invariantv:L →Q is called aVassiliev invariantof ordern if v vanishes on any
(n+ 1)-singular knot andn is the smallest number with this property. It turns out (see [11]) that
any Vassiliev invariantv of ordern has equal values on all singular knots having the same CDs
with n chords.

Let Dn denote the set of chord diagrams withn chords, the CDs being considered up to the obvi-
ous equivalence relation, and let span(Dn) be the vector space overQ generated byDn. It follows
anyQ-valued Vassiliev invariantv of ordern determines a functionw(v):Dn→ Q satisfying the
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axioms 1T (framing independence) and 4T (the four term relation) described, for example, in [11].
Such a function is called aweight systemof degreen. In other words, a weight system of degreen
is an element of the dual space of the vector space

An = span(Dn)/span({4T and 1T relations}).

For anyD ∈ Dn, let G(D) denote theintersection graph(or interplay graph, in the terminology
of [1]) of D. Note that not every abstract intersection graph withn vertices is realizable as an
intersection graph of some chord diagram of ordern. Rosenstiehl’s theorem characrerizes the
class of all realizable abstract intersection graphs (see [1]).

The Intersection Graph Conjecture, formulated by Chmutovet al. [32], asserts that a weight
systemw:Dn→Q has equal values on any two chord diagrams with the same intersection graphs,
so its values on CDs are determined uniquely by their intersection graphs. They proved the con-
jecture in the case when the intersection graphs of chord diagrams are trees. It follows that the
conjecture is true if the intersection graphs are forests. Recently B. Mellor [80] showed that the
conjecture is true for chord diagrams whose intersection graphs have exactly one loop.

T. Q. T. Le showed however that, in general, the conjecture is false, since it implies that Vas-
siliev knot invariants cannot detect mutation, contradicting the Morton/Cromwell examples. More
precisely, Morton and Cromwell [84] showed that there exists a framed Vassiliev invariantv of de-
gree 11 with values inZ[u] which takes different values on Kinoshita-Teresaka/Conway mutants.
This implies that there exists a (framing independent)Q-valued Vassiliev invariant of order 11
distinguishing both the mutants (see [102]). This example yields two singular knots representing
by CDsD1 andD2 of order 11, with the same intersection graphsG(D1) andG(D2), and such that
[D1] 6= [D2] in A11.

Problem: Describe the class of all (realizable) intersection graphs for which the Intersection
Graph Conjecture is true.

Problem BCC18.17: Fragmentability of graphs of bounded degree.Proposed by Keith Ed-
wards, Graham Farr. Correspondent: Graham Farr.

Let C be a positive integer andα a real number in(0,1). A graphG on n vertices is(C,α)-
fragmentableif there exists a setX of at mostαn vertices such that each component ofG−X has
at mostC vertices.

Problem: Does there existα < 1 and a sequenceC1,C2, . . . of constants such that every graph
G of maximum degree∆ is (C∆,α)-fragmentable?

It is known that such anα must be at least 1/2: see [43].
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Problem BCC18.18: Monotone paths in edge-ordered graphs.Proposed by Yehuda Roditty.
Correspondent: Yehuda Roditty.

An edge-ordered graphis an ordered pair(G, f ), whereG = G(V,E) is a finite undirected
simple graph andf is a bijection fromE(G) to {1,2, . . . , |E(G)|}, called anedge-orderingof G. A
monotone path of length kin (G, f ) is a simple pathPk+1 : v1,v2...,vk+1 in G such that the values
f ((vi ,vi+1)), for i = 1,2, . . . ,k− 1, are strictly monotonic (either increasing or decreasing). All
definitions and updated results can be found in [93].

Given a graphG, denote byα(G) the minimum (over all edge orderings ofG) of the maximum
length of a monotone path.

Problems:

1. Prove thatα(Kn) = (1
2 + o(1))n. (The right-hand side is known to be an upper bound for

α(Kn).)

2. Determineα(G) for G a planar graph. (It is known that 5≤ α(G) ≤ 9, and ifG is bipartite
then 4≤ α(G)≤ 6 ).

Problem BCC18.19: Decomposing complete multipartite graphs.Proposed by Keith Ed-
wards. Correspondent: Keith Edwards.

A graphH decomposesa graphG if there is a setSof subgraphs ofG, each isomorphic toH,
such that each edge ofG is contained in exactly one of the graphs inS.

Problem: Is it true that, for anyλ-partite graphH, there is an integern such thatH decomposes
the completeλ-partite graph with all parts of sizen?

The answer is “yes” forλ = 2 andλ = 3.

Problem BCC18.20: Graphs isomorphic to their neighbourhoods and non-neighbourhoods.
Proposed by Anthony Bonato. Correspondent: Anthony Bonato.

Let N(x) and Nc(x) denote the sets of neighbours and non-neighbours of the vertexx of a
graphG, respectively. We say thatG hasproperty (N) if, for every vertexx, the subgraph in-
duced byN(x) is isomorphic toG; property(Nc) is defined similarly.

Problem Which countable simple graphs havebothproperty(N) and property(Nc)?
The only known example of such a graph is the countablerandom graph, or Rado’s graph,

the unique countable existentially closed graph. However, there are 2ℵ0 non-isomorphic graphs
having one of these properties.
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