
Chapter 2 solutions

2.1. (a)No; (b) No; (c) Yes;(d) Yes;(e)No; (f) Yes;(g) Yes;(h) No; (i) Yes;(j) No.
Herearesolutionsto thefirst few. Try therestyourself.

(a) N is not a ring, since(A3) fails: theadditive inverseof 1 is not in N. (In fact,if
yourconventionis thatzerois not anaturalnumber, it doesn’t satisfy(A2) either.)

(b) We adoptedtheconventionthat thezeropolynomialdoesn’t have a degree,in
whichcasethis setis not a ring since(A2) fails.

If, however, you decidethat 0 hasdegree � 1 (or somesuch),thenthe set is still
not a ring for n

� 0, sinceit containsxn andxn but not their productx2n: that is, (M0)
fails. For n � 0, we have just thesetof constantpolynomials,which doesform a ring
(isomorphicto R).

(Note that a questionwhosestatementis opento interpretationmay not have a
uniqueanswer!)

(c) Z � x� is a ring.

(d) This setR is a non-emptysubsetof Z � x� . Moreover, if two polynomials f and
g have constantterm0, thensodo f � g and f g. (You canshow this eitherby writing
out two generalpolynomialswith constantterm0 andchecking,or by showing thatthe
constanttermof f is just f � 0� , theresultof substituting0 for x.) SoR is a subringof
Z � x� , hencea ring.

(e)Not aring: asin (b), condition(M0) fails. (x4 andx4 arein thesetbut x8 is not.)

2.2. It is necessaryto verify the ring axiomsindividually. Not all the proofswill be
given in detail below. (A0) and(M0) aretrue by definition: the sumandproductof
2 � 2 matricesare2 � 2 matrices.(A1)�	�

a b
c d 
�� �

e f
g h 

�� �

i j
k l 
 � �

a � e b � f
c � g d � h 
�� �

i j
k l 
� � � a � e� � i � b � f � � j� c � g� � k � d � h� � l 
���

a b
c d 
�� ���

e f
g h 
�� �

i j
k l 

 � �

a b
c d 
�� �

e � i f � j
g � k h � l 
� �

a � � e � i � b � � f � j �
c � � g � k� d � � h � l ��
��

andthesematricesareequal,because� a � e� � i � a � � e � i � andthreesimilar equa-
tionshold in R (sinceR satisfies(A0)).

(A4), (M1) and(D) aresimilar.

(A2): Thezeromatrix is

�
0 0
0 0 
 , since�

a b
c d 
 � �

0 0
0 0 
 � �

a b
c d 
 � �

0 0
0 0 
 � �

a b
c d 
 �

where0 is thezeroelementof R.

(A3) Theinverseof

�
a b
c d 
 is

� � a � b� c � d 
 , by asimilar calculation.
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2.3. (a)Thematrix

�
a b
c d 
 is symmetricif andonly if�

a b
c d 
 � �

a c
b d 
 �

thatis, b � c. Now thematrices

�
0 1
1 2 
 and

�
1 1
1 0 
 aresymmetric,but their prod-

uct �
0 1
1 2 
 �

1 1
1 2 
 � �

1 2
3 5 


is not; so(M0) fails.

(b) Thematrix

�
a b
c d 
 is symmetricif andonly if�

a b
c d 
 � � � a � c� b � d 
 �

that is, b � � c anda � d � 0. Now thematrix

�
0 1� 1 0 
 is skew-symmetric,but its

square

� � 1 0
0 � 1 
 is not; so(M0) fails.

(c) Apply theSecondSubringTest:�
a b
0 c 
 � �

d e
0 f 
 � �

a � d b � e
0 c � f 
 ��

a b
0 c 
 �

d e
0 f 
 � �

ad ae � bf
0 cf 
��

Bothof theseareuppertriangular, sothetestsucceeds.

(d) and(e): Bothof thesearesubrings;this is againshown by applyingtheSecond
SubringTest.

2.4. We showed that an expressionlike a1 � a2 ��������� an is meaningfulin a ring,
becauseof theassociativelaw. (Thequestionmakesnosensewithoutthisobservation.)

Now, weshow by inductionthata � b1 ��������� bn ��� ab1 ��������� abn. This is truefor
n � 1 trivially, andfor n � 2 by thedistributive law. Assumingtheresultfor n � m, we
have

a � b1 ��������� bm� 1 ��� a ��� b1 ��������� bm� � bm� 1 �� a � b1 ��������� bm� � ab � m � 1 by (D)� ab1 ��������� abm � abm� 1 by theinductivehypothesis.

Sotheresultis provedfor n � m � 1. Thus,it holdsfor all n by induction.
Similarly, � a1 ��������� an � b � a1b ������� � anb for all n.
Now we provetheresultin theproblemasfollows:� a1 ��������� am�!� b1 ��������� bn ��� a1 � b1 ��������� bn � ��������� am � b1 ��������� bn � �

by thesecondresultabove(with b � b1 �"�����#� bn). Thenexpandeachtermontheright
usingthefirst result.
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2.5. (a) � m � n� � x meansx ��������� x (m � n times).Breakthis sumup into thesumof
mxs andthesumof n xs,which is m � x � n � x.

Similarly, � mn� � x is thesumof mnxs. Breakthissuminto thesumof mgroupseach
consistingof n xs. Thenthesumof eachgroupis y � n � x, andsothetotal expression
is m � y � m � � n � x� .

[Theseresultslook like associative anddistributive laws,but they arenot, sincem
andn arepositive integers,not ring elements.]

(b) Supposethatn � 1 � 0, andlet x beany element.Usingtheresultwe provedin
Question2, we have

n � x � x ��������� x (n terms)� 1x ��������� 1x (n terms)� � 1 ��������� 1� x (n termsin bracket)� � n � 1� x � 0x � 0 �
2.6. We prove this resultby inductionon n. For n � 1, since $ 10 % �&$ 11 % � 1, theright-
handsideis x � y, andtheresultis true.

Supposethatit holdsfor agivenvaluen. Then

� x � y� n� 1 �'� x � y� n � x � y���)( n

∑
i * 0

�
n
i 
�� xn + iyi , � x � y� �

Now thetermin xn� 1 + i in thisexpressionis madeupof two parts:��
n
i 
 xn + iyi 
 x � ���

n
i � 1
 xn +.- i + 1/ yi + 1 
 y�

Usingthefactthatx andy commute,wecanmovex overyi in thefirst termandobtain��
n
i 
 � �

n
i � 1
	
 xn� 1 + iyi � �

n � 1
i 
 xn� 1 + iyi �

usinga standardidentity for binomialcoefficients.

2.7 (a) Since � x is theuniqueadditive inverseof x, it is enoughto show that � � 1� x is
alsoaninverseof x, thatis, thatx � � � 1� x � 0. Thisholdsbecause

x � � � 1� x � 1x � � � 1� x �'� 1 � � � 1��� x � 0x � 0 �
(b) Again, it sufficesto show that � y � x is aninverseof x � y:� x � y� � � � y � x�0� x � � y � y� � x � x � 0 � x � x � x � 0 �
(c) Supposethatall theaxiomsholdexceptpossiblythecommutativelaw for addi-

tion. Checkthat the propertiesof inverses,andin particularthe resultsof (a) and(b)
above,bothhold. (Thereis a bit moreto bedonehere:for example,in (a), aswell as
showing thatx � � � 1� x � 0, wehavealsoto show that � � 1� x � x � 0; but theargument
is quitesimilar.) Now wehave� x � y �1� � 1�!� x � y�.� � � x � y�.� � y � x �
Soadditionof � x and � y is commutative, for any x andy. Sinceany elementhasan
inverse,this actuallyshows thatadditionof arbitraryelementsis commutative.
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2.8. (a)We have � x � x� 2 � x � x. But, by Exercise2.4,� x � x� 2 �'� x � x�!� x � x�.� x2 � x2 � x2 � x2 � x � x � x � x �
Cancellingtwo of thexsgivesx � x � 0, or x � � x.

(b) Similarly,

x � y �'� x � y� 2 � x2 � xy � yx � y2 � x � xy � yx � y�
Cancellingxandy givesxy � yx � 0, soxy � � yx. But � yx � yxby part(a),soxy � yx.

2.9. To show that R � S is a ring, it is necessaryto checkthe ring axioms. Every-
thing is very straightforward,sinceif we evaluateanything in R � S, we just get the
correspondingexpressionsin thetwo coordinates.For a simplecase,consider(A4):� r1 � s1 � � � r2 � s2 ���'� r1 � r2 � s1 � s2 �2�1� r2 � r1 � s2 � s1 �3�'� r2 � s2 � � � r1 � s1 � �

Onepoint shouldbe noted. Whenwe write � r1 � r2 � s1 � s2 � or � r1r2 � s1s2 � , the
additionandmultiplication in thefirst coordinatearethoseof the ring R, while those
in thesecondcoordinatearethoseof S. So,for example,thezeroelementof thering
R � S is � 0R � 0S� , where0R is the zeroof R and0S is the zeroof S. If you just write� 0 � 0� , youmustmakeclearthat0 meanstwo differentthingsin thetwo positions.

Theproof of thecommutative law for R � S, assumingthecommutative law for R
andfor S, is muchlike theproofsof theotheraxioms.To provetheconverse(the‘only
if ’ part),argueby contradiction.If r1r2 4� r2r1, then � r1 � 0�!� r2 � 0� 4�5� r2 � 0�!� r1 � 0� . So,
if R is not commutative,thenR � S is not commutative. Similarly for S. So,if R � S is
commutative,thenbothRandSarecommutative.

The argumentfor the identity is similar. If 1R and 1S are identitiesin R and S
respectively, then � 1R � 1S� is theidentity of R � S. Conversely, if � u � v� is anidentity of
R � S, thenu andv areidentitiesin RandSrespectively.

Theanswerto thelastpartis: R � Sis afield if andonly if oneof RandSconsistsof
justoneelement(namely, 0), andtheotheris afield. For theforwardimplication,argue
by contradiction.Supposethat bothR andS have morethanoneelement.Let r and
s be non-zeroelementsof R andS respectively. Then � r � 0S� and � 0R � s� arenon-zero
elementsof R � S; but their productis zero,soR � Shasdivisorsof zero,andcannot
bea field. If, say, R is zero,thenR � S is isomorphicto S (by meansof themappingθ
definedby � 0R � s� θ � s); soR � S is a field if andonly if S is a field.

2.10.This is givenat theendof Chapter2.

2.11.Thisexerciserequirestheverificationof a wholelist of axioms.
Thedisplayedidentity is easilychecked:� a � 1 � bi � cj � dk �!� a � 1 � bi � cj � dk ��'� a2 � b2 � c2 � d2 � � 1 � � ab � ba � cd � dc� i� � ac � ca � bd � db� j � � ad � da � bc � cb� k �
Now, lettingN � a2 � b2 � c2 � d2, wehave� a � 1 � bi � cj � dk �6�7� a 8 N � � 1 � � b 8 N � i � � c8 N � j � � d 8 N � k �6� 1

if N 4� 0; sonon-zeroelementshavemultiplicative inverses.
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2.12.Thestandardway to show thata subsetof a ring is anidealandto find thefactor
ring is to find a homomorphismhaving thegivensubsetasits kernel. In this case,the
homomorphismis not farto seek.If wedenoteby a thecosetI � a (anelementof R8 I ),
thenwe definea mapθ on Mn � R� by therule: if A �5� ai j �:9 Mn � R� , thenAθ �5� ai j � .
(That is, we replaceeachentry in thematrix by thecosetcontainingit.) Theresultis
a matrix whoseentriesbelongto R8 I , that is, anelementof R8 I . Soθ mapsMn � R� to
Mn � R8 I � , andit is clearthatit is onto.

Now θ is a homomorphism.For example,the � i � j � entryin � AB� θ is

n

∑
k* 1

aikbkj � n

∑
k* 1

aikbkj �
the equalityholding sincethe mapa ; a is a homomorphism(in fact, the canonical
homomorphismfrom R to R8 I ). Addition is similarbut easier.

Finally, the kernel of θ consistsof all matrices � ai j � for which ai j � 0 (that is,
ai j 9 I ) for all i and j: this is just Mn � I � .

We concludefrom theFirst IsomorphismTheoremthatMn � I � is anideal if Mn � R�
andthatMn � R��8 Mn � I �3<� Mn � R8 I � .
2.13.As in 2.12,we usetheFirst IsomorphismTheorem.We definea functionθ from
R� x� to � R8 I ��� x� by therule that � ∑anxn � θ � ∑anxn �
wherea � I � a 9 R8 I ; thatis, θ replaceseachcoefficientof apolynomialby its image
underthe canonicalhomomorphismfrom R to R8 I . Now θ is a homomorphism:for
example,if f � ∑anxn andg � ∑bnxn, then� f g� θ � ∑

n
� ∑

k

akbn + k � xn � ∑
n

� ∑
k

akbn + k � xn �1� f θ �!� gθ � �
with a similar but easiercalculationfor addition. Thekernelof θ consistsof all poly-
nomials∑anxn 9 R� x� for whichan � 0 (thatis, an 9 I ) for all n; this is just I � x� .

So I � x� is anidealof R� x� andR� x�78 I � x�=<� � R8 I �!� x� .
2.14. As in theHint, let Ei j be thematrix with entry1 in the ith row and jth column
andentries0 elsewhere.If A �'� ai j � is any matrix, thenwehaveA � ∑n

i * 1 ∑n
b* 1ai jEi j .

Now it is easyto checkthat

Ei jEkl �5> Eil if j � k,
O otherwise.

Fromthis it follows thatEkiAEj l is asclaimed.
Now let J beanidealof Mn � R� , andlet I bethesetof elementsof Rwhichappearin

thefirst row andcolumnof somematrixin J. Now, if A 9 J, thenE11AE11 � a11E11 9 J;
soI hasanalternativedescription:

I �@? a : aE11 9 J A �
5



Fromthis andthefactsthat

aE11 � bE11 � � a � b� E11 �� aE11 �!� bE11��� abE11 �
weseethatI isanideal.Moreover, for any i and j, andany a 9 I , wehaveEi1 � aE11 � E1 j �
aEi j 9 J. Taking the sumover i and j of suitablematricesof this form, we seethat
Mn � I �CB J.

Conversely, if A �'� ai j �C9 J, thenfor any i and j wehave

E1iAEj1 � ai jE11 9 J �
sothatai j 9 I . ThusJ B Mn � I � , andwe haveJ � Mn � I � asrequired.

2.15. (a) Recall that � m� is the setof all multiplesof m. If � m� contains� n� then,in
particular, n 9�� m� , son is a multiple of m, or m dividesn. Conversely, if m dividesn,
sayn � mk, thennx � m� kx� for all x; soeveryelementof � n� is in � m� , or � m� contains
n.

(b) The SecondIsomorphismTheoremsaysthat thereis a bijectionbetweenide-
als of Z 8D� 60� andidealsof Z containing � 60� . SinceZ is a PID, every ideal hasthe
form � m� . By (a), � m� contains� 60� if andonly if mdivides60. Sothereare12idealsof
Z 8D� 60� , correspondingto thetwelvedivisorsof 60,viz. 1 � 2 � 3 � 4 � 5 � 6 � 10� 12� 15� 20� 30� 60.

Again it follows from theSecondIsomorphismTheoremthatmaximalidealscor-
respond. We proved in lecturesthat an ideal of a PID is maximal if andonly if its
generatoris irreducible.Sotherearethreemaximalidealsof Z 86� 60� , correspondingto
theprimedivisors2 � 3 � 5.

(c) By exactly thesameargument,thenumberof idealsof Z 86� n� is thenumberof
divisorsof n, andthenumberof maximalidealsis thenumberof primedivisors.

Any divisor of n � pa1
1 ����� par

r hastheform pb1
1 ����� pbr

r , wherebi lies between0 and
ai inclusive. Sothereareai � 1 choicesof bi for eachi. Thesechoicesareindependent,
sowe multiply themtogetherto getthenumberof divisors,which is� a1 � 1� ����� � ar � 1� �
(For n � 60 � 22 � 31 � 51, this formulagives � 2 � 1�!� 1 � 1��� 1 � 1�3� 12, in agreement
with (b) above.)

Thenumberof primedivisorsis clearlyr.

2.16.(a)Let R �E? a � bi : a � b 9 Z A . ThenR is non-emptyand,for any a � bi � c � di 9 R,
wehave � a � bi � � � c � di �F� � a � c� � � b � d � i 9 R�� a � bi �!� c � di �G� � ac � bd� � � ad � bc� i 9 R�
sincea � c � b � d � ac � bd � ad � bc 9 Z for all a � b � c � d 9 Z. SoR is a subringof C.

(b) The easiestway to prove this requiressomecase-by-caseargument. Let R
denotethe setof Eisensteinintegersas in the question. Take two elementsx � a �
bH � 3 andy � c � d H � 3 in R. Therearefour cases:
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(1) a � b � c � d 9 Z;

(2) a � b � c � 1
2 � d � 1

2 9 Z;

(3) a � 1
2 � b � 1

2 � c � d 9 Z; and

(4) a � 1
2 � b � 1

2 � c � 1
2 � d � 1

2 9 Z.

Theargumentsaresimilar in all cases;I will considercase3. Wehave � a � c� � 1
2 � � b �

d � � 1
2 9 Z, sox � y 9 R. For theproduct,let a � m � 1

2 � b � n � 1
2, wherem andn are

integers.Then

xy �1��� m � 1
2 � c � 3 � n � 1

2 � d � � ��� m � 1
2 � d � � n � 1

2 � d � H 3 �
Let p �I� m � 1

2 � c � 3 � n � 1
2 � d andq �5� m � 1

2 � d � � n � 1
2 � c. It is clearthateachof p

andq is eitheranintegeror anintegerplus 1
2. Soit is enoughto prove that p � q is an

integer. But
p � q �1� m � n�!� c � d � � 4 � n � 1

2 � d 9 Z �
asrequired.

2.17. This questionreally asksus to prove that the formulaefor additionandmul-
tiplication of polynomialswork also when we think of a polynomial as a function
on the ring R, so that, letting f � u� denotethe resultof substitutingu for x, we have� f � g�!� u�J� f � u� � g � u� and � f g�!� u�J� f � u� g � u� . Both follow easily from the ax-
ioms (but note that the secondequationdoesrequire(M4), the commutative law for
multiplication!)

2.18. This is an algebraist’s constructionof the complex numbers:we defineC �
R � x�78D� x2 � 1� R � x� . SeeSections2.4and6.1of thebook.

Thefactthatθ is ahomomorphismfollows,eitherby thesameargumentsthatwere
usedin Question2.17,or by theresultof thatquestion(takingR asasubringof C, and
takingu � i in theresultof thequestion).

Theimageis clearlyC, since � a � bx� θ � a � bi.
Thekernelof θ consistsof all realpolynomialsf suchthat f � i �3� 0. Now, if f is a

multipleof x2 � 1, say f � x�3�1� x2 � 1� g � x� , thenclearly f � i �3� 0. Conversely, suppose
that f � i �K� 0. Let f � x�K� a0 � a1x � a2x2 � ����� . Then

f � i �K� a0 � a1i � a2i
2 � ����� � 0 �

Takingthecomplex conjugate,andusingthefactthatall thecoefficientsa0, a1, a2, . . .
arereal,wehave

f � � i �3� a0
� a1i � a2i2 � ����� � 0 �

Thus both i and � i are roots of f . By the RemainderTheorem, f is divisible by� x � i ��� x � i �.� x2 � 1, asrequired.
Note: we have usedvariouspropertiesof thecomplex numbersin theproof. Does

thismatterif weareintendingto usethis resultasadefinitionof C?
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2.19.Thehomomorphismis givenby� mnZ � x� θ � nZ � x �
It is notclearthatit is well defined(independentof thechoiceof cosetrepresentative).
To show this, supposethatmnZ � x � mnZ � y. Thenx � y is divisible by mn, andso
certainlyby n; thusnZ � x � nZ � y, asrequired.

Checkingthatθ is ahomomorphismis straightforward.It is clearlyonto.

2.20. Rememberthat LM� X � meansthe setof all subsetsof X; additionis symmetric
difference,andmultiplicationis intersection.

To show thatθ is a homomorphism,we haveto show that� A � B� θ � Aθ � Bθ �� AB� θ � AθBθ �
If we translatethering operations,andalsoput in thefact thatAθ � A N Y, thenwhat
wehave to show is � A O B�=N Y � � A N Y �DOP� B N Y � �� A N B�=N Y � � A N Y �=NQ� B N Y � �
Thesecondis clearfrom propertiesof intersection;thefirst canbeprovedby anargu-
mentlike this. Theleft-handsideconsistsof all elementswhich lie in eitherA or B but
not both,andalsolie in Y. Thesearepreciselytheelementswhich lie eitherin A and
Y or in B andY but not in both. But this is just thedescriptionof theright-handside.
(Draw a Venndiagramandmarkthetwo setsin.)

2.21.We showedin Exercise2.3(c)thatR is a ring.
We aregoing to prove the whole thing in oneblow, usingthe First Isomorphism

Theorem.You canprove parts(a) and(b) directly without too muchdifficulty, but a
direct proof of (c) is harder. A useful tip is that, if you areever asked to prove that
R8 I <� S, find ahomomorphismθ : R ; Swhosekernelis I andwhoseimageis S. This
is usuallymucheasierthanfiddling roundwith cosets;theonly problemis in finding
thehomomorphism.

Defineθ : R ; R by �
a b
0 c 
 θ � �

a 0
0 c 
 �

(Thisappearsto betheonly reasonabledefinition.)Now��
a b
0 c 
 � �

d e
0 f 
	
 θ � �

a � d b � e
0 c � f 
 θ � �

a � d 0
0 c � f 
���

a b
0 c 
 θ � �

d e
0 f 
 θ � �

a 0
0 c 
 � �

d 0
0 f 
 � �

a � d 0
0 c � f 
��

Similarly �	�
a b
0 c 
 �

d e
0 f 

 θ � �

ad ae � bf
0 cf 
 θ � �

ad 0
0 cf 
 ��

a b
0 c 
 θ

�
d e
0 f 
 θ � �

a 0
0 c 
 �

d 0
0 f 
 � �

ad 0
0 cf 
 �
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Soθ is a homomorphism.
Theimageof θ clearlyis S, thesetof all diagonalmatrices.Its kernelisRS�

a b
0 c 
 :

�
a 0
0 c 
 � O T�� I �

Thus,by the threepartsof the First IsomorphismTheorem,we concludethat S is a
subringof R; thatI is anidealof R; andthatR8 I <� S.

2.22. Let R bea commutativering with identity. If x is botha zero-divisor anda unit,
thenthereexist y andzsuchthatyx � 1 andxz � 0, with z 4� 0. But wehave

z � 1z �1� yx� z � y � xz�2� y0 � 0 �
contraryto assumption.

2.23.Usingx to denotethecoset12Z � x, theunitsof Z 8 12Z are1 � 5 � 7 � 11(thecosets
whoserepresentativesarecoprimeto 12),andsotheassociateclassesare? 0 A � ? 1 � 5 � 7 � 11A � ? 2 � 10A � ? 3 � 9 A � ? 4 � 8 A � ? 6 A �
2.24 If R is an integral domain, then deg � f g�U� deg � f � � deg � g� for any two non-
zeropolynomials f andg in R� x� . For if f andg have leadingtermsamxm andbnxn

respectively, with am � bn 4� 0, then f g hasleadingtermambnxm� n, andambn 4� 0 since
R is anintegral domain.

Since1 hasdegreezero,it follows thatany unit u musthave degreezero,andso
mustbea non-zeroconstantpolynomial.And, if uv � 1, thenu is aunit in R.

2.25. This dependson somefactsaboutdeterminants;if you do not know thesefacts,
you maywish to deferthis questionuntil Chapter4. A solutionis givenfor (b), since
(a) is aspecialcaseof (b).

Sincedet� AB�V� det� A� det� B� anddet� I �0� 1,weseethat,if A is aunit, thendet� A�
is aunit. Conversely, supposethatdet� A� is aunit. If AW denotesthetransposedmatrix
of cofactorsof A, then

AAW � AW A � det� A� I �
sothematrix � det� A��� + 1AW is aninverseof A.

2.26.We have � 1 � x�!� 1 � x � x2 � ������� � � 1� n + 1xn + 1�'� 1 � x� � � x � x2� ��������� � � 1� n + 1 � xn + 1 � xn �� 1 � � � 1� n + 1xn � 1 �
2.27. (a) This can be doneby the Euclideanalgorithm, but thereis an easierway.
x2 � 3x � 2 �5� x � 1�!� x � 2� is a factorisationinto irreducibles.Using theRemainder
Theorem,we seethat neitherx � 1 nor x � 2 dividesx5 � 2x4 � 5x3 � 6x � 2. So the
greatestcommondivisor is 1.
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2.28.(a) If a � x � yi andb � s � t i 4� 0, then

a
b

� � x � yi ��� s � t i �
s2 � t2 � xs � yt

s2 � t2 � ys � xt
s2 � t2 i � u � vi �

asclaimed. Now let m andn be the integersnearestto u andv respectively. ThenX
u � m

XZY 1
2 and

X
v � n

X[Y 1
2, soX � u � vi � � � m � ni

X\Y^] 1
2

2 � 1
2

2 � 1 8 H 2 �
asclaimed.Thismeansthata � bq � r, whereq � m � ni andr � b ��� u � m� � � v � n� i � ;
wehave X

r
X_Y^X

b
X 8 H 2 ` X

b
X �

andtheEuclideanpropertyis verified.
(b) Thepointof thisproof is thatthereis anelementof Rwhosedistancefrom any

givencomplex numberis strictly lessthan1, in factat most1 8 H 2. This canbeseen
geometricallyby noticing that the pointsof R arethe verticesof the squarelattice in
thecomplex plane,andany point is at distanceat most1 8 H 2 from somecornerof the
squarecontainingit. Now the Eisensteinintegersarethe pointsof theunit triangular
latticein theplane,andany point is atdistancelessthan1 (in fact,atmost1 8 H 3) from
somecornerof thetrianglecontainingit. Therestof theproofproceedsasbefore.

2.29. (a) Supposethat the Gaussianintegerx � yi is a unit: say � x � yi ��� u � vi �3� 1.
Taking the complex conjugate, � x � yi �!� u � vi �a� 1. Multiplying, we obtain � x2 �
y2 ��� u2 � v2 �b� 1. Sincex and y are integers,this implies that x2 � y2 � 1, whence
eitherx �dc 1, y � 0, or x � 0, y ��c 1. Sotherearefour units,namely1 � � 1 � i � � i.

(b) SupposethattheGaussianintegerx � yi is irreducible.If y � 0, thenx mustbe
anintegerprime,sayx � p; and,moreover, p cannotbea sumof two squares,sinceif
p � a2 � b2 thenwe would have thefactorisationp �'� a � bi �!� a � bi � in theGaussian
integers,with neitherfactora unit (by part(a)).

On the otherhand,supposethat 4� 0. Thenx � yi is alsoirreducible,sinceif we
hada factorisationof it thentaking thecomplex conjugatewould give a factorisation
of x � i. We claim that p � x2 � y2 is anintegerprime. If it hada properfactorisation
in theintegers,say

p � x2 � y2 � q1q2 ����� qr �
thenwe could factoriseeachqi into irreduciblesin the Gaussianintegersandobtain
two differentfactorisationsof p, contraryto thefact that theGaussianintegersform a
Euclideandomain(by Problem2.28(a)).

FromthefactthatR � x� is a principal idealdomain,we know thattheideal � f � g� is
equalto � d � , whered is thegreatestcommondivisor of f andg. Sinced � 1, we see
that � f � g� consistsof all multiplesof 1; thatis, it is thewholering R � x� .
2.30. Since9 � 32, we have to startwith a field F with 3 elements(which we take to
betheintegersmod3, say ? 0 � 1 � 2 A ), andanirreduciblepolynomialof degree2 overF
(which you canfind by trial anderror: therearethreeirreduciblepolynomials,oneof
which is x2 � 1, but any onewould do.) [How to check?If a quadraticpolynomialis
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reducible,it mustbeaproductof two factorsof degree1, andhenceit musthavearoot
in F . Sowecancheckthatx2 � 1 is irreducibleby notingthat

02 � 1 � 1 4� 0 � 12 � 1 � 2 4� 0 � 22 � 1 � 2 4� 0 � �
Now let α be a root of the polynomial x2 � 1 � 0. Then the elementsof K �

F � x�78D� x2 � 1� havetheform c0 � c1α, wherec0 � c1 9 F : thereare32 � 9 suchelements.
We addandmultiply themin theusualway, usingthefactthatα2 � � 1 to ensurethat
no powerof α higherthanthefirst occurs.

2.31 If eitherpolynomialcould be factorised,thenit would have a linear factor, and
hencea root in F � Z 8 2Z. But neither0 nor 1 is a rootof eitherpolynomial.

Thecorrespondingfieldsareisomorphic.Indeed,we claim that, in thefield F � α �
whereα3 � α � 1 � 0, the elementβ � α3 satisfiesβ3 � β2 � 1 � 0. To seethis, we
calculatethepowersof α to form a ‘tableof logarithms’for thefield:

α3 � α � 1

α4 � α2 � α
α5 � α2 � α � 1

α6 � α2 � 1

α7 � 1 � α0

Hence
β3 � β2 � 1 � α9 � α6 � 1 � α2 � � α2 � 1� � 1 � 0 �

2.32. Eachcosethasa uniquerepresentative of degreelessthann, of the form a0 �
a1α �E�����\� an + 1αn + 1, whereα �5� f � � x. Eachof then coefficientsa0 ��������� an + 1 can
bechosento beany of theq elementsof F . Sothereareqn cosets.

2.33.(a)This is trueby definition: R is anintegraldomainif andonly if theproductof
non-zeroelementscannotbezero.

(b) The proof is almost identical to that for the field of fractionsof an integral
domain. The ring axiomsareeasilychecked; theembeddingof R is by themapa e;� a � 1� ; and � a � b�=� ab+ 1, since � b � 1� � 1 � b���@� 1 � 1� .
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