Chapter 2 solutions

2.1.(a)No; (b) No; (c) Yes;(d) Yes;(e) No; (f) Yes;(g) Yes;(h) No; (i) Yes;(j) No.

Herearesolutionsto thefirst few. Try therestyourself.

(8) N is notaring, since(A3) fails: theadditive inverseof 1 is notin N. (In fact, if
your corventionis thatzerois notanaturalnumberit doesnt satisfy(A2) either)

(b) We adoptedthe cornventionthatthe zeropolynomialdoesnt have a degree,in
which casethis setis notaring since(A2) fails.

If, however, you decidethat O hasdegree—1 (or somesuch),thenthe setis still
notaring for n > 0, sinceit containsx” andx" but not their productx?": thatis, (MO)
fails. For n= 0, we have just the setof constanpolynomials,which doesform aring
(isomorphicto R).

(Note that a questionwhosestatemenis opento interpretationmay not have a
unigueanswer')

(c) Z[¥] is aring.

(d) This setR is a non-emptysubsebf Z[x]. Moreover, if two polynomialsf and
g have constantermO, thensodo f — g and fg. (You canshaw this eitherby writing
outtwo generapolynomialswith constanterm0 andchecking.or by shaving thatthe
constantermof f is just f(0), theresultof substituting0 for x.) SoR is a subringof
Z[x], hencearing.

(e)Notaring: asin (b), condition(MO) fails. (x* andx* arein thesetbut x® is not.)

2.2. It is necessaryo verify thering axiomsindividually. Not all the proofswill be
givenin detail below. (A0) and(MO) aretrue by definition: the sumand productof
2 x 2 matricesare2 x 2 matrices.(Al)

(96 D) - (530
((a+e)+i (b+f)+j)7
(c+g)+k (d+h)+I

(896 (D) - (2 i
(a+(e+i) b+(f+j)>’
c+(g+k) d+(h+1)

andthesematricesareequal becauséa+e) +i = a+ (e+i) andthreesimilar equa-
tionsholdin R (sinceR satisfiegAQ)).
(A4), (M1) and(D) aresimilar.

(A2): Thezeromatrixis (8 8) , since

a b 00 a b 0 0 a b
(€ 6)+(o)=(ta)=(0 o)+ &)
where0 is the zeroelemenof R.

(A3) Theinverseof (a b) is (—a
c d c

:g) , by asimilar calculation.



2.3. (a) Thematrix (2 3) is symmetricif andonly if

(2 6)=(53)

thatis,b=c. Nowthematrices(cl) ;) and (i é) aresymmetric but their prod-

0 1\ /1 1\ [1 2
1 2/)\1 2) \3 5
(b) The matrix (2 3) is symmetricif andonly if

29-3 )

thatis, b = —c anda = d = 0. Now the matrix (_01 é‘) is skew-symmetric,but its

uct

is not; so(MO) fails.

_0 _01 is not; so (MO) fails.
(c) Apply the SecondSubringTest:

(60)-(F) = (%" &)
) - (2 )

Both of theseareuppertriangular sothetestsucceeds.

(d) and(e): Both of thesearesubringsthisis againshavn by applyingthe Second
SubringTest.

square

2.4. We shaved that an expressionlike a; + az + --- + a, is meaningfulin a ring,
becausef theassociatie law. (Thequestiormakesno sensavithoutthisobsenation.)

Now, we shav by inductionthata(b; + - -- + b,) = aby + - - - + aby,. Thisis truefor
n = 1trivially, andfor n = 2 by thedistributive law. Assumingtheresultfor n=m, we
have

a(b1+---+bm+1) = a((b1+---+bm)+bm+1)
= a(bi+---+bny) +ab+m+1by (D)
= aby +---+aby+ abye1 by theinductive hypothesis.

Sotheresultis provedfor n = m+ 1. Thus,it holdsfor all n by induction.
Similarly, (ag +---+an)b=4aib+---+a,b for all n.
Now we prove theresultin the problemasfollows:
(ar+---+am)(br+---4+bn) =ag(by+---+bn) + -+ am(by + - -- + bn),

by thesecondesultabove (with b= by +- - - + bn). Thenexpandeachtermontheright
usingthefirst result.



2.5. (@) (m+n)-x means<+ - - - + X (Mm+ n times). Breakthis sumup into the sumof
m xs andthe sumof n xs, whichis m-x+n-x.

Similarly, (mn) -x is thesumof mnxs. Breakthis suminto thesumof mgroupseach
consistingof n xs. Thenthe sumof eachgroupis y = n-x, andsothetotal expression
ism-y=m-(n-x).

[Theseresultslook like associatie anddistributive laws, but they arenot, sincem
andn arepositive integers,notring elements.]

(b) Supposéhatn-1 = 0, andlet x bearny element.Usingtheresultwe provedin
Question2, we have

n-x = X+---+x(nterms)
IX+---+ Ix(nterms)
(1+---+ 1)x (n termsin braclet)
= (n-1)x=0x=0.
2.6. We prove this resultby inductiononn. For n= 1, since(3) = () = 1, theright-

handsideis x+ y, andtheresultis true.
Supposehatit holdsfor agivenvaluen. Then

(Y™ = () (x+y) = <; () -xW’) (c+y).

Now thetermin x"*1-1 in this expressioris madeup of two parts:

() (2

Usingthefactthatx andy commutewe canmove x overy' in thefirst termandobtain

(0)-(2)r-()e

usinga standarddentity for binomialcoeficients.

2.7 (a) Since—x is the uniqueadditive inverseof x, it is enoughto shav that(—1)x is
alsoaninverseof x, thatis, thatx+ (—1)x= 0. This holdsbecause

X+ (=1)x=1x+ (—1)x= (1 + (—1))x=0x=0.
(b) Again, it sufficesto shawv that —y — x is aninverseof X+ y:
X+yY)+(=y—x)=x+(y—y) —x=x+0—x=x—x=0.

(c) Supposeéhatall theaxiomshold exceptpossiblythe commutatve law for addi-
tion. Checkthatthe propertiesof inversesandin particularthe resultsof (a) and(b)
above, bothhold. (Thereis a bit moreto be donehere:for example,in (a), aswell as
shaving thatx+ (—1)x = 0, we have alsoto shav that(—1)x+ x = 0; buttheargument
is quite similar.) Now we have

—X=y=(=1)x+y) = =(x+y) = -y-x.

Soadditionof —x and—y is commutatve, for ary x andy. Sinceary elementhasan
inverse this actuallyshavs thatadditionof arbitraryelementss commutatve.



2.8.(a) We have (x+x)? = x+ x. But, by Exercise2.4,
(X+X)% = (X+X) (X+X) = X2+ X2+ X2 4+ 3% = X+ X+ X+ X.

Cancellingtwo of thexs givesx+x= 0, or x= —x.
(b) Similarly,

X+y= (X+Y)% =X 4+ XY+ yX+ Y% = X+ Xy + yx+V.
Cancellingkandy givesxy+ yx= 0, soxy= —yx. But —yx= yxby part(a), soxy = yx.

2.9. To shav thatR x Sis aring, it is necessaryo checkthe ring axioms. Every-
thing is very straightforvard, sinceif we evaluateanything in R x S, we just getthe
correspondingxpressionsn thetwo coordinatesFor a simplecase consider(A4):

(r1,81) +(r2, ) = (r1+r2,51+ %) = (r2+r1,%+51) = (r2,%) + (r1,1).

One point shouldbe noted. Whenwe write (r1+rz,51 + ) or (rirz,s19), the
additionandmultiplicationin thefirst coordinatearethoseof thering R, while those
in the secondcoordinatearethoseof S. So,for example,the zeroelementof thering
R x Sis (0g,0s), whereOg is the zeroof R andOs is the zeroof S. If you just write
(0,0), youmustmalke clearthat0 meanswo differentthingsin thetwo positions.

The proof of the commutatve law for R x S, assuminghe commutatve law for R
andfor S, is muchlik e the proofsof theotheraxioms.To provethecorverse(the ‘only
if” part),argueby contradiction.If rira # rorg, then(r1,0)(r2,0) # (r2,0)(r1,0). So,
if Ris notcommutatve,thenR x Sis notcommutatve. Similarly for S. So,if Rx Sis
commutatve, thenboth R andS arecommutatve.

The argumentfor the identity is similar. If 1z and 1s areidentitiesin R and S
respectiely, then(1g, 1s) is theidentity of Rx S. Converselyif (u,v) is anidentity of
R x S, thenu andv areidentitiesin R andSrespectiely.

Theansweto thelastpartis: Rx Sis afield if andonly if oneof R andS consistof
justoneelemeninamely0), andtheotheris afield. For theforwardimplication,argue
by contradiction. Supposehat both R and S have morethanoneelement.Let r and
s be non-zeroelementof R and Srespectiely. Then(r,0s) and (Ogr,s) arenon-zero
elementof R x S; but their productis zero,so R x Shasdivisorsof zero,andcannot
beafield. If, say Ris zero,thenR x Sis isomorphicto S (by meansof the mappingé
definedby (Og,s)8 = s); SOR x Sis afield if andonly if Sis afield.

2.10.Thisis givenattheendof Chapter2.

2.11.Thisexerciserequiresthe verificationof awholelist of axioms.
Thedisplayeddentity is easilychecled:

(a-1+bi+cj+dk)(a-1—bi —cj—dk)
= (a®+b?+ c?+d?)- 1+ (ab—ba+ cd— do)i
+ (ac— ca— bd+ db)j + (ad— da+ bc— cb)k.
Now, letting N = a2 4 b? + ¢ 4 d?, we have
(a-1+bi+cj+dk)((a/N)-1— (b/N)i — (c/N)j — (d/N)k) =1

if N # 0; sonon-zercelementdave multiplicative inverses.



2.12. The standardvay to shav thata subsebf aring is anidealandto find thefactor
ring is to find a homomorphisnmhaving the givensubsetsits kernel. In this case the
homomorphisnis notfarto seek.If we denoteby athecoset +a(anelemenbf R/1),
thenwe definea map® on Mn(R) by therule: if A= (aj) € Mn(R), thenA8 = (&y).
(Thatis, we replaceeachentryin the matrix by the cosetcontainingit.) Theresultis
amatrix whoseentriesbelongto R/I, thatis, anelementof R/l. S06 mapsM,(R) to
Mn(R/1), andit is clearthatit is onto.
Now 6 is ahomomorphismFor example,the(i, j) entryin (AB)6 is

T n
> akhg =) by,
=1 =1

the equality holding sincethe mapa — a is a homomorphisn(in fact, the canonical
homomorphisnfrom Rto R/I). Addition is similar but easier

Finally, the kernelof 8 consistsof all matrices(a;j) for which @j = 0 (that s,
aj € 1) foralli andj: thisis justMu(l).

We concludefrom the First IsomorphismTheoremthatM (1) is anidealif M, (R)
andthatMu(R)/Mp(1) = Mp(R/1).

2.13.Asin 2.12,we usetheFirstIsomorphismrheorem We definea function® from
R[X] to (R/I)[X] by therule that

(Y a8 =3 e

wherea = | +a € R/I; thatis, 6 replacesachcoeficientof apolynomialby itsimage
underthe canonicalhomomorphisnfrom R to R/I. Now 6 is a homomorphism:ifor
example|if f =Y ax"andg =3 byx", then

(fg)o=73% (Zakbn—k)xn = Z(ZW@)X" = (18)(ge),

with a similar but easiercalculationfor addition. The kernelof 8 consistsof all poly-
nomialsy a,x" € R[] for whichan = 0 (thatis, a, € 1) for all n; thisis just|[x].
Sol[x] is anidealof R[X] andR[x]/I[X] = (R/I)[X].

2.14. As in the Hint, let E;; be the matrix with entry 1 in theith row and jth column
andentriesO elsavhere.If A= (&) is ary matrix,thenwehave A=y, S0, ajjEij.
Now it is easyto checkthat

Ei if j=Kk,

EiiEy = ’
i {O otherwise.

Fromthisit follows thatE4AEj is asclaimed.

Now letJ beanidealof My (R), andlet | bethesetof elementof Rwhichappeain
thefirst row andcolumnof somematrixin J. Now, if A€ J, thenE11AE1 1 = a11E11 € J;
sol hasanalternatve description:

| ={a:aE;; € J}.



Fromthis andthefactsthat

aEj1+bE;; = (a+b)Eig,
(aEll)(bEll) = abEj_]_,

weseethatl is anideal. Moreover, for ary i andj, andary a€ |, wehaveEj1 (aE11)E1j =
aEjj; € J. Takingthesumoveri and j of suitablematricesof this form, we seethat
Ma(1) CJ.

Corverselyif A= (&j) € J, thenfor ary i andj we have

E1AEj1 = ajE11 € J,
sothata;j € I. ThusJ C Mp(l), andwe have J = Mn(1) asrequired.

2.15. (a) Recallthat (m) is the setof all multiplesof m. If (m) contains(n) then,in
particular n € (m), son is amultiple of m, or mdividesn. Corversely if mdividesn,
sayn = mk, thennx= m(kx) for all x; soeveryelemenbf (n) isin (m), or (m) contains
n.

(b) The SecondisomorphismTheoremsaysthat thereis a bijection betweenide-
alsof Z/(60) andidealsof Z containing(60). SinceZ is a PID, every ideal hasthe
form (m). By (a),(m) containg60) if andonly if mdivides60. Sothereare12idealsof
Z/(60), correspondingp thetwelvedivisorsof 60,viz. 1,2, 3,4,5,6,10,12,15, 20, 30, 60.

Againit follows from the Secondsomorphismrheoremthat maximalidealscor
respond. We proved in lecturesthat anideal of a PID is maximalif andonly if its
generatois irreducible.Sotherearethreemaximalidealsof Z /(60), correspondingo
theprimedivisors2,3,5.

(c) By exactly the sameargument,the numberof idealsof Z/(n) is the numberof
divisorsof n, andthe numberof maximalidealsis the numberof primedivisors.

Any divisor of n= pi*--- p& hastheform p?l--- Pr, whereb; lies betweerD and
g; inclusive. Sotherearea; + 1 choicesof b for eachi. Thesechoicesareindependent,
sowe multiply themtogetherto getthe numberof divisors,whichis

(aa+1)---(ar +1).
(Forn=60=22.3!.51, thisformulagives(2+1)(1+1)(1+1) = 12, in agreement
with (b) above.)
Thenumberof primedivisorsis clearlyr.

2.16.(a)LetR={a+bi:a,be Z}. ThenRis non-emptyand,for ary a+bi,c+di € R,
we have

(a+bi)—(c+di) = (a—c)+(b—d)ieR,
(a+bi)(c+di) = (ac—bd)+ (ad+bc)i e R,

sincea— c,b—d,ac—bd,ad+bce Z for all a,b,c,d € Z. SoRis asubringof C.

(b) The easiestway to prove this requiressomecase-by-casargument. Let R
denotethe setof Eisensteinintegersasin the question. Take two elementsx = a+
bv/—3andy = c+dv/—3in R Therearefour cases:



(1) a,b,c,d e Z;
(2)a,b,c—3,d-3ez;
(3)a—3,b—1,cdez;and
(4)a-3b-3c-3d-3€Z.

Theargumentsaresimilarin all cases| will considercase3. We have (a—c) — %, (b—
d) - 1 €z, sox—ye R Fortheproductleta=m+ %,b=n+ 3, wheremandn are
integers.Then

xy= ((Mm+2)c—3(n+2)d) + (M+ 2)d + (n+3)d)v/3.

Let p= (m+ 3)c—3(n+2)d andg= (m+ 3)d + (n+ 3)c. It is clearthateachof p
andgq is eitheranintegeror anintegerplus % Soit is enoughto prove thatp— qis an
integer. But

p—qg=(m-n)(c—d)+4(n+3)d ez,

asrequired.

2.17. This questionreally asksus to prove that the formulaefor addition and mul-
tiplication of polynomialswork also when we think of a polynomial as a function
onthering R, sothat, letting f(u) denotethe resultof substitutingu for x, we have
(f +9)(u) = f(u) +g(u) and (fg)(u) = f(u)g(u). Both follow easily from the ax-
ioms (but note that the secondequationdoesrequire(M4), the commutatve law for
multiplication!)

2.18. This is an algebraist constructionof the complex numbers: we defineC =
R[X]/ (¥ + 1)R[x]. SeeSection2.4 and6.1 of the book.

Thefactthatf is ahomomorphisniollows, eitherby the sameargumentghatwere
usedin Question2.17,or by theresultof thatquestion(takingR asasubringof C, and
takingu =i in theresultof the question).

Theimageis clearlyC, since(a+ bx)8 = a+ bi.

Thekernelof 8 consistwf all realpolynomialsf suchthat f(i) = 0. Now, if f isa
multiple of X2 + 1, say f (x) = (X2 + 1)g(x), thenclearly f (i) = 0. Corversely suppose
thatf(i) = 0. Let f(X) = ap+ aix+axx*+.... Then

f(i) = ag+azi+api’+... = 0.

Takingthe complex conjugateandusingthefactthatall the coeficientsag, a3, ay, ...
arereal,we have
f(—i)=ap—agi +a2i2—... =0.

Thusbothi and —i arerootsof f. By the RemainderTheorem,f is divisible by
(x—i)(x+1) = x2+ 1, asrequired.

Note: we have usedvariouspropertiesof the complex numbersn the proof. Does
this matterif we areintendingto usethis resultasadefinitionof C?



2.19. Thehomomorphisnis givenby
(mnZ +x)0 = nZ + x.

It is notclearthatit is well defined(independendf the choiceof cosetrepresentatie).
To show this, supposgéhatmnZ +x = mnZ +y. Thenx—y is divisible by mn, andso
certainlyby n; thusnZ + x = nZ +y, asrequired.

Checkingthat8 is ahomomorphismis straightforvard. It is clearlyonto.

2.20. Remembethat 2(X) meansthe setof all subsetof X; additionis symmetric
differenceandmultiplicationis intersection.
To shaw that8 is ahomomorphismwe have to shav that

(A+B)6 A8 + B8,
(AB)® ABBS.

If we translatethering operationsandalsoput in the factthatAB = ANY, thenwhat
we haveto shaw is

(AAB)NY = (ANY)A(BNY),

(ANB)NY = (ANY)N(BNY).
The seconds clearfrom propertiesof intersectionthefirst canbe provedby anargu-
mentlik e this. Theleft-handsideconsistf all elementsvhichlie in eitherA or B but
not both,andalsolie in Y. Thesearepreciselythe elementswvhich lie eitherin A and

Y orin B andY but notin both But this is just the descriptionof the right-handside.
(Draw aVenndiagramandmarkthetwo setsin.)

2.21.We shavedin Exercise2.3(c)thatRis aring.

We aregoing to prove the whole thing in oneblow, usingthe First Isomorphism
Theorem. You canprove parts(a) and (b) directly without too muchdifficulty, but a
direct proof of (c) is harder A usefultip is that, if you are ever askedto prove that
R/1 = S, find ahomomorphisn® : R — Swhosekernelis | andwhoseimageis S. This
is usuallymucheasierthanfiddling roundwith cosetsthe only problemis in finding

thehomomorphism.
a b a o
(6 0)o-(5 o)

Define6: R— Rby
(This appeardo betheonly reasonablelefinition.) Now
b d e _ (a+d b+e\, (a+d O
(( c>+(o f))e = (o c+f>e_( 0 c+f)’
b d e a o0
(6 c)o (o ©)e = (62)+ (0 7)

6 ) - ()
905 o - G-

8

oo

i)

oo

(5
(3 3)
x2)



So06 is ahomomorphism.
Theimageof 6 clearlyis S, thesetof all diagonalmatrices.Its kernelis

(96 9o

Thus, by the threepartsof the First IsomorphismTheorem,we concludethatSis a
subringof R; thatl is anidealof R; andthatR/l = S,

2.22. Let R bea commutatve ring with identity. If x is botha zero-dvisoranda unit,
thenthereexisty andz suchthatyx = 1 andxz= 0, with z# 0. But we have

2=12= (yYz=y(x) =y0=0,
contraryto assumption.

2.23.Usingx to denotethecosetl2Z + x, theunitsof Z /127 arel,5,7,11 (thecosets
whoserepresentatiesarecoprimeto 12),andsotheassociatelassesare

{0},{1,5,7,11},{2,10},{3,9},{4,8},{6}.

2.241f Ris anintegral domain,thendeg(fg) = deg(f) + deg(g) for ary two non-
zeropolynomialsf andg in R[X]. Forif f andg have leadingtermsanx™ and b,x"
respectiely, with am, b, # 0, then fg hasleadingterm amb,x™™", andanby # 0 since
Ris anintegral domain.

Sincel hasdegreezero, it follows thatary unit u musthave degreezero,andso
mustbea non-zeroconstanpolynomial. And, if uv=1,thenuisaunitin R.

2.25. This dependsn somefactsaboutdeterminantsif you do not know thesefacts,
you maywish to deferthis questionuntil Chapterd. A solutionis givenfor (b), since
(a)is aspecialcaseof (b).

SincedetAB) = det(A) det(B) anddet(l) = 1, we seethat,if Ais aunit, thendet(A)
is aunit. Corversely supposeahatdet(A) is aunit. If A* denoteghetransposednatrix
of cofactorsof A, then

AA" = A"A=det(A)l,

sothe matrix (det(A)) ~1A* is aninverseof A.
2.26.We have

(1+X)(1—X—|—x2_...+(_1)n—1xn—1
= (14+X) — (X+X%) + -+ (=) 1L X0
=1+ (_1)n—1xn -1

2.27. (a) This canbe doneby the Euclideanalgorithm, but thereis an easierway.
X2 +3x+2 = (x+ 1)(x+ 2) is afactorisatiorinto irreducibles.Using the Remainder
Theoremwe seethatneitherx+ 1 nor x+ 2 dividesx® + 2x* + 5x3 + 6x + 2. Sothe
greatestommondivisoris 1.



2.28.(a)If a=x+yi andb = s+ti # 0, then

a_ (x+yi)(s—ti) _ xs+yt  ys—xt. .
b~ e+z e+ gt UV

asclaimed. Now let m andn be the integersnearesto u andv respectrely. Then
lu—m|< 3 andjv—n| < 3, s0

|(uvi) — (m+ni| </ 32+ 32 =1/v2,

asclaimed.Thismeanghata= bqg+r, whereq= m+ ni andr = b((u—m) + (v—n)i);
we have

Ir < Ibl/v2< b,

andthe Euclideanpropertyis verified.

(b) Thepointof this proofis thatthereis anelementof R whosedistancerom ary
given complex numberis strictly lessthan1, in factat most1/y/2. This canbe seen
geometricallyby noticing that the pointsof R arethe verticesof the squarelatticein
the complex plane,andary pointis at distanceat most1/+/2 from somecornerof the
squarecontainingit. Now the Eisensteirintegersarethe pointsof the unit triangular
latticein the plane,andary pointis atdistancdessthan1 (in fact,atmost1/+/3) from
somecornerof thetrianglecontainingit. Therestof the proof proceedsasbefore.

2.29. (a) Supposehatthe Gaussiarinteger x+ yi is a unit: say (x+ yi)(u+vi) = 1.
Taking the complex conjugate,(x —yi)(u—vi) = 1. Multiplying, we obtain (x* +
y?)(u? +V?) = 1. Sincex andy areintegers, this implies that x* + y? = 1, whence
eitherx=+1,y=0,0rx=0,y= +1. Sotherearefour units,namelyl, —1,i, —i.

(b) Supposeghatthe Gaussiarintegerx+ i is irreducible.If y = 0, thenx mustbe
anintegerprime,sayx = p; and,moreoer, p cannotbe a sumof two squaressinceif
p = a2 + b? thenwe would have the factorisationp = (a+ bi)(a— bi) in the Gaussian
integers,with neitherfactora unit (by part(a)).

On the otherhand,supposehat # 0. Thenx — i is alsoirreducible,sinceif we
hada factorisationof it thentaking the complex conjugatewould give a factorisation
of x+i. We claimthat p = x* 4+ y? is aninteger prime. If it hada properfactorisation
in theintegers,say

p=>+y =G,

thenwe could factoriseeachq; into irreduciblesin the Gaussiarintegersandobtain
two differentfactorisation®f p, contraryto the factthatthe Gaussiarnntegersform a
Euclideandomain(by Problem2.28(a)).

FromthefactthatR[x] is a principalidealdomain,we know thattheideal (f,g) is
equalto (d), whered is the greatestommondivisor of f andg. Sinced = 1, we see
that(f,g) consistof all multiplesof 1; thatis, it is thewholering R[X].

2.30. Since9 = 32, we have to startwith afield F with 3 elementgwhich we take to
betheintegersmod3, say{0,1,2}), andanirreduciblepolynomialof degree2 over F
(which you canfind by trial anderror: therearethreeirreduciblepolynomials,oneof
which s x? + 1, but any onewould do.) [How to check?If a quadraticpolynomialis

10



reduciblejt mustbea productof two factorsof degreel, andhenceit musthave aroot
in F. Sowe cancheckthatx? + 1 is irreducibleby notingthat

0’+1=1#0, 1241=2#0, 2°41=2#0]

Now let o be a root of the polynomialx? + 1 = 0. Thenthe elementsof K =
F[X/(x?+ 1) havetheform co + 10, whereco, ¢; € F: thereare3? = 9 suchelements.
We addandmultiply themin the usualway, usingthefactthata? = —1 to ensurethat
no power of a higherthanthefirst occurs.

2.311f eitherpolynomial could be factorised thenit would have a linear factor, and
hencearootin F = Z/2Z. But neither0 nor 1 is aroot of eitherpolynomial.

The correspondindields areisomorphic.Indeed,we claim that, in thefield F (a)
wherea3 + o + 1 = 0, the elementp = o satisfies3® + B2+ 1 = 0. To seethis, we
calculatethe powersof a to form a ‘table of logarithms’for thefield:

a®=a+1
a*=0’+a
a®=a’+a+1
a®=a?+1
a’=1=qa°

Hence
BB+p+1=0a+0b+1=02+(a’+1)+1=0.

2.32. Eachcosethasa uniquerepresentatie of degreelessthann, of the form ag +
a10 4 --- 4+ ap_10"1, wherea = (f) 4+ x. Eachof then coeficientsay, ...,an_1 can
bechoserto beary of theq elementof F. Sothereareq"” cosets.

2.33.(a) Thisis true by definition: Ris anintegral domainif andonly if the productof
non-zercelementcannotbe zero.

(b) The proof is almostidenticalto that for the field of fractionsof an integral
domain. The ring axiomsareeasilychecled; the embeddingf R is by the mapa —
[a,1]; and[a, b] = ab™?, since[b, 1][1,b] = [1,1].
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