Laplacian eigenvalues and optimality: III. The Levi and concurrence graphs. Optimality

R. A. Bailey and Peter J. Cameron
, University of London

London Taught Courses Centre, June 2012

Block designs

A block design Δ consists of

- a set of $b k$ experimental units (also called plots), partitioned into b blocks of size k;
- a set of v treatments;
- a function f from the experimental units onto the set of treatments, so that $f(\omega)$ denotes the treatment applied to experimental unit ω.
$g(\omega)$ denotes the block containing ω.
$N_{i j}$ denotes the number of occurrences of treatment i in block j.
For treatments i and l, the concurrence of i and l is

$$
\lambda_{i l}=\sum_{j=1}^{b} N_{i j} N_{l j} .
$$

Levi graph

The Levi graph \tilde{G} of a block design Δ has

- one vertex for each treatment,
- one vertex for each block,
- one edge for each experimental unit, with edge ω joining vertex $f(\omega)$ to vertex $g(\omega)$.

It is a bipartite graph,
with $N_{i j}$ edges between treatment-vertex i and block-vertex j.
Example $1: v=4, b=k=3$

Concurrence graph

The concurrence graph G of a block design Δ has

- one vertex for each treatment,
- one edge for each unordered pair α, ω, with $\alpha \neq \omega$, $g(\alpha)=g(\omega)$ and $f(\alpha) \neq f(\omega)$: this edge joins vertices $f(\alpha)$ and $f(\omega)$.

There are no loops.
If $i \neq j$ then the number of edges between vertices i and j is

$$
\lambda_{i j}=\sum_{s=1}^{b} N_{i s} N_{j s}
$$

this is called the concurrence of i and j, and is the (i, j)-entry of $\Lambda=N N^{\top}$.

Example 1: $v=4, b=k=3$

1	2	1
3	3	2
4	4	2

Levi graph can recover design more vertices
more edges if $k=2$

concurrence graph may have more symmetry more edges if $k \geq 4$

Example 2: $v=8, b=4, k=3$

1	2	3	4
2	3	4	1
5	6	7	8

Levi graph

concurrence graph

Example 3: $v=15, b=7, k=3$

1	1	2	3	4	5	6								
2	4	5	6	10	11	12								
3	7	8	9	13	14	15	\quad	1	1	1	1	1	1	1
:---	:---	:---	:---	:---:	:---:	:---:								
2	4	6	8	10	12	14								
3	5	7	9	11	13	15								

Laplacian matrix of the concurrence graph

The Laplacian matrix L of the concurrence graph G is a
$v \times v$ matrix with (i, j)-entry as follows:

- if $i \neq j$ then
$L_{i j}=-($ number of edges between i and $j)=-\lambda_{i j}$;
- $L_{i i}=$ valency of $i=\sum_{j \neq i} \lambda_{i j}$.

The off-diagonal entries are the same as those of $-\Lambda$.
The diagonal entries make each row sum to zero.
So the graph-theoretic definition of Laplacian matrix gives us exactly the Laplacian matrix L that we defined before.

Laplacian matrix of the Levi graph

The Laplacian matrix \tilde{L} of the Levi graph \tilde{G} is a
$(v+b) \times(v+b)$ matrix with (i, j)-entry as follows:

- $\tilde{L}_{i i}=$ valency of i

$$
= \begin{cases}k & \text { if } i \text { is a block } \\ \text { replication } r_{i} \text { of } i & \text { if } i \text { is a treatment }\end{cases}
$$

- if $i \neq j$ then $L_{i j}=-($ number of edges between i and j)

$$
= \begin{cases}0 & \text { if } i \text { and } j \text { are both treatments } \\ 0 & \text { if } i \text { and } j \text { are both blocks } \\ -N_{i j} & \text { if } i \text { is a treatment and } j \text { is a block, or vice versa. }\end{cases}
$$

$$
\text { So } \quad \tilde{L}=\left[\begin{array}{cc}
R & -N \\
-N^{\top} & k I_{b}
\end{array}\right] \text {, }
$$

which is exactly the same as our previous definition of \tilde{L}.

Connectivity

All row-sums of L and of \tilde{L} are zero, so both matrices have 0 as eigenvalue on the appropriate all- 1 vector.

Theorem

The following are equivalent.

1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. \tilde{G} is a connected graph;
4. 0 is a simple eigenvalue of \tilde{L};
5. the design Δ is connected in the sense that all differences between treatments can be estimated.

From now on, assume connectivity.
Call the remaining eigenvalues non-trivial.
They are all non-negative.

Variance: why does it matter?

We want to estimate all the simple differences $\tau_{i}-\tau_{j}$.
Put $V_{i j}=$ variance of the best linear unbiased estimator for $\tau_{i}-\tau_{j}$.

The length of the 95% confidence interval for $\tau_{i}-\tau_{j}$ is proportional to $\sqrt{V_{i j}}$. (If we always present results using a 95% confidence interval, then our interval will contain the true value in 19 cases out of 20.)

The smaller the value of $V_{i j}$, the smaller is the confidence interval, the closer is the estimate to the true value (on average), and the more likely are we to detect correctly which of τ_{1} and τ_{2} is bigger.
We can make better decisions about new drugs, about new varieties of wheat, about new engineering materials ... if we make all the $V_{i j}$ small.

How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance σ^{2} If $\sum_{i} x_{i}=0$, then the variance of the best linear unbiased estimator of $\sum_{i} x_{i} \tau_{i}$ is equal to

$$
\left(x^{\top} L^{-} x\right) k \sigma^{2} .
$$

In particular, the variance of the best linear unbiased estimator of the simple difference $\tau_{i}-\tau_{j}$ is

$$
V_{i j}=\left(L_{i i}^{-}+L_{i j}^{-}-2 L_{i j}^{-}\right) k \sigma^{2} .
$$

Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple difference $\tau_{i}-\tau_{j}$ is

$$
V_{i j}=\left(\tilde{L}_{i i}^{-}+\tilde{L}_{j j}^{-}-2 \tilde{L}_{i j}^{-}\right) \sigma^{2}
$$

Electrical networks: variance and resistance

We can consider the concurrence graph G as an electrical
network, and define the effective resistance $R_{i j}$ between any
pair of distinct vertices i and j.
Theorem The effective resistance $R_{i j}$ between vertices i and j in G is
$R_{i j}=\left(L_{i i}^{-}+L_{i j}^{-}-2 L_{i j}^{-}\right)$.
Sffective resistances are easy to calculate without
matrix inversion if the graph is sparse.

Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph \tilde{G} and $\tilde{R}_{i j}$ is the effective resistance between them in \tilde{G} then

$$
V_{i j}=\tilde{R}_{i j} \times \sigma^{2} .
$$

Example 2 yet again: $v=8, b=4, k=3$

$$
V=23 \quad I=8 \quad R=\frac{23}{8} \quad \begin{array}{|l|l|l|l|}
\hline 1 & 2 & 3 & 4 \\
2 & 3 & 4 & 1 \\
5 & 6 & 7 & 8 \\
\hline
\end{array}
$$

Levi graph

concurrence graph

For hand calculation when the graphs are sparse, or for calculations for 'general' graphs with variable v, it may be simpler to use the Levi graph rather than the concurrence graph if $k \geq 3$.

Theorem
Let G and \tilde{G} be the concurrence graph and Levi graph for a connected incomplete-block design for v treatments in blocks of size k.
Then the number of spanning trees for \tilde{G} is equal to
k^{b-v+1} times the number of spanning trees for G.

Spanning trees in the two graphs: proof
Proof.
Let t and \tilde{t} be the number of spanning trees for G and \tilde{G} respectively. Then

$$
t=\operatorname{det} L_{1}=\operatorname{det}\left(k R_{1}-N_{1} N_{1}^{\top}\right) \quad \text { and } \quad \tilde{t}=\operatorname{det} \tilde{L}_{1},
$$

where the subscript 1 denotes the removal of the row and column corresponding to treatment 1 .

$$
\begin{aligned}
\operatorname{det} \tilde{L}_{1}= & \operatorname{det}\left[\begin{array}{rr}
R_{1} & -N_{1} \\
-N_{1}^{\top} & k I_{b}
\end{array}\right]=\operatorname{det}\left[\begin{array}{rr}
R_{1}-k^{-1}\left(N_{1}\right) N_{1}^{\top} & -N_{1} \\
-N_{1}^{\top}+k^{-1}\left(k I_{b}\right) N_{1}^{\top} & k I_{b}
\end{array}\right] \\
= & \operatorname{det}\left[\begin{array}{rr}
k^{-1} L_{1} & -N_{1} \\
0 & k I_{b}
\end{array}\right]=k^{-(v-1)} \operatorname{det} L_{1} \times k^{b} \\
& \text { so } \tilde{t}=\operatorname{det} \tilde{L}_{1}=k^{b-v+1} \operatorname{det} L_{1}=k^{b-v+1} t .
\end{aligned}
$$

Spanning trees in the two graphs: strategy

If $v \geq b+2$ then count the number of spanning trees for the Levi graph, then multiply by k^{v-b-1} to obtain the number of spanning trees for the concurrence graph.
If $v \leq b$ then do it the other way round.

Example 2: $v=8, b=4, k=3$, spanning trees

1	2	3	4
2	3	4	1
5	6	7	8

Levi graph
8 spanning trees

concurrence graph 216 spanning trees

Optimality: Average pairwise variance

The variance of the best linear unbiased estimator of the simple difference $\tau_{i}-\tau_{j}$ is

$$
V_{i j}=\left(L_{i i}^{-}+L_{i j}^{-}-2 L_{i j}^{-}\right) k \sigma^{2}=R_{i j} k \sigma^{2} .
$$

We want all of the $V_{i j}$ to be small.
Put $\bar{V}=$ average value of the $V_{i j}$. Then

$$
\bar{V}=\frac{2 k \sigma^{2} \operatorname{Tr}\left(L^{-}\right)}{v-1}=2 k \sigma^{2} \times \frac{1}{\text { harmonic mean of } \theta_{1}, \ldots, \theta_{v-1}},
$$

where $\theta_{1}, \ldots, \theta_{v-1}$ are the nontrivial eigenvalues of L.

A-Optimality	Optimality: Confidence region
A block design is called A-optimal if it minimizes the average of the variances $V_{i j}$; -equivalently, it maximizes the harmonic mean of the non-trivial eigenvalues of the Laplacian matrix L; over all block designs with block size k and the given v and b.	When $v>2$ the generalization of confidence interval is the confidence ellipsoid around the point $\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{v}\right)$ in the hyperplane in \mathbb{R}^{v} with $\sum_{i} \tau_{i}=0$. The volume of this confidence ellipsoid is proportional to $\begin{aligned} \sqrt{\prod_{i=1}^{v-1} \frac{1}{\theta_{i}}} & =\left(\text { geometric mean of } \theta_{1}, \ldots, \theta_{v-1}\right)^{-(v-1) / 2} \\ & =\frac{1}{\sqrt{v \times \text { number of spanning trees for } G}} \end{aligned}$

D-Optimality	Optimality: Worst case
A block design is called D-optimal if it minimizes the volume of the confidence ellipsoid for $\left(\hat{\tau}_{1}, \ldots, \hat{\tau}_{v}\right)$; -equivalently, it maximizes the geometric mean of the non-trivial eigenvalues of the Laplacian matrix L; -equivalently, it maximizes the number of spanning trees for the concurrence graph G; -equivalently, it maximizes the number of spanning trees for the Levi graph \tilde{G}; over all block designs with block size k and the given v and b.	If x is a contrast in \mathbb{R}^{v} then the variance of the estimator of $x^{\top} \tau$ is $\left(x^{\top} L^{-} x\right) k \sigma^{2}$. If we multiply every entry in x by a constant c then this variance is multiplied by c^{2}; and so is $x^{\top} x$. The worst case is for contrasts x giving the maximum value of $\frac{x^{\top} L^{-} x}{x^{\top} x} .$ These are precisely the eigenvectors corresponding to θ_{1}, where θ_{1} is the smallest non-trivial eigenvalue of L.

E-Optimality	BIBDs are optimal
A block design is called E-optimal if it maximizes the smallest non-trivial eigenvalue of the Laplacian matrix L; over all block designs with block size k and the given v and b.	Theorem (Kshirsagar, 1958; Kiefer, 1975) If there is a balanced incomplete-block design (BIBD) (2-design) for v treatments in b blocks of size k, then it is A-, D - and E-optimal. Moreover, no non-BIBD is A-, D - or E-optimal. Proof. Let $T=\operatorname{Trace}(L)$. For any given value of T, the harmonic mean of $\theta_{1}, \ldots, \theta_{v-1}$, the geometric mean of $\theta_{1}, \ldots, \theta_{v-1}$, and the minimum of $\theta_{1}, \ldots, \theta_{v-1}$ are all maximized at $T /(v-1)$ when $\theta_{1}=\cdots=\theta_{v-1}=T /(v-1)$. This occurs if and only if L is a scalar multiple of $I_{v}-v^{-1} J_{v}$. Since $T=\sum_{i}\left(k r_{i}-\lambda_{i i}\right)=b k^{2}-\sum_{i} \lambda_{i i}$, the trace is maximized if and only if the design is binary. Among binary designs, the off-diagonal elements of L are equal if and only if the design is balanced.

Example 4: $v=5, b=7, k=3$

1	1	1	1	2	2	2
2	3	3	4	3	3	4
3	4	5	5	4	5	5

1	1	1	1	2	2	2
1	3	3	4	3	3	4
2	4	5	5	4	5	5

$\left[\begin{array}{rrrrr}8 & -1 & -3 & -2 & -2 \\ -1 & 8 & -3 & -2 & -2 \\ -3 & -3 & 10 & -2 & -2 \\ -2 & -2 & -2 & 8 & -2 \\ -2 & -2 & -2 & -2 & 8\end{array}\right]$

maximal trace

eigenvalues equal

Some other classes of optimal design

Theorem (Cheng, 1981)

Group-divisible designs with two groups in which
the between-group concurrence is one more than the within-group concurrence are A-, D - and E-optimal.

Theorem (Cheng, 1981)
Group-divisible designs in which the between-group concurrence is one more than the within-group concurrence
are A-, D - and E-optimal among equireplicate designs whose concurrences differ by at most one.

Theorem (Cheng and Bailey, 1991)
Square-lattice designs are A-, D- and E-optimal among binary equireplicate designs.

Very low replication

The Levi graph has $v+b$ vertices and $b k$ edges.
For connectivity, $b k \geq v+b-1$.
The extreme case is $v-1=b(k-1)$.
Then all connected Levi graphs are trees, so the D-criterion does not distinguish them.
In a tree, pairwise resistance is just distance apart, so the A-optimal designs have Levi graphs which are stars with a treatment-vertex at the centre: these are just the queen-bee designs.
The E-optimal designs are also queen-bee designs: proof coming up.

E-optimal designs when the Levi graph is a tree

$\theta_{1} \leq 2\left(\frac{1}{5}+\frac{1}{10}\right)<1$

eigenvalues 1 (between block),
k (within block), v (queen vs rest)

The only E-optimal designs are the queen-bee designs.

Only slightly less extreme

The Levi graph has $v+b$ vertices and $b k$ edges.
If it is connected and is not a tree then $b k \geq v+b$.
The next case to consider is $v=b(k-1)$.
Then every Levi graph has a single cycle.
The number of spanning trees for the Levi graph is equal to the length of the cycle, so the D-optimal designs have a cycle of length $2 b$. Like this...

A- and E-optimal designs when the Levi graph has 1 cycle

Arguments using resistance in the Levi graph show that the A-optimal designs have a Levi graph with a short cycle, and one special treatment in the cycle occurs in every block which is not in the cycle.

Arguments using the Cutset Lemma in the concurrence graph show that the E-optimal designs have similar structure, usually with an even shorter cycle in the Levi graph.

