Laplacian eigenvalues and optimality: III. The Levi and concurrence graphs. Optimality

R. A. Bailey and Peter J. Cameron

London Taught Courses Centre, June 2012

Laplacian matrix of the concurrence graph	Laplacian matrix of the Levi graph
The Laplacian matrix <i>L</i> of the concurrence graph <i>G</i> is a $v \times v$ matrix with (i, j) -entry as follows: • if $i \neq j$ then $L_{ij} = -(\text{number of edges between } i \text{ and } j) = -\lambda_{ij};$ • $L_{ii} = \text{valency of } i = \sum_{j \neq i} \lambda_{ij}.$ The off-diagonal entries are the same as those of $-\Lambda$. The diagonal entries make each row sum to zero. So the graph-theoretic definition of Laplacian matrix gives us exactly the Laplacian matrix <i>L</i> that we defined before.	The Laplacian matrix \tilde{L} of the Levi graph \tilde{G} is a $(v+b) \times (v+b)$ matrix with (i,j) -entry as follows: • \tilde{L}_{ii} = valency of i $=\begin{cases} k & \text{if } i \text{ is a block} \\ \text{replication } r_i \text{ of } i & \text{if } i \text{ is a treatment} \end{cases}$ • if $i \neq j$ then $L_{ij} = -(\text{number of edges between } i \text{ and } j)$ $=\begin{cases} 0 & \text{if } i \text{ and } j \text{ are both treatments}} \\ 0 & \text{if } i \text{ and } j \text{ are both blocks}} \\ -N_{ij} & \text{if } i \text{ is a treatment and } j \text{ is a block, or vice versa.} \end{cases}$ So $\tilde{L} = \begin{bmatrix} R & -N \\ -N^{\top} & kI_b \end{bmatrix}$, which is exactly the same as our previous definition of \tilde{L} .

Connectivity	Variance: why does it matter?
 All row-sums of <i>L</i> and of <i>L</i> are zero, so both matrices have 0 as eigenvalue on the appropriate all-1 vector. Theorem The following are equivalent. 0 is a simple eigenvalue of <i>L</i>; G is a connected graph; 0 is a simple eigenvalue of <i>L</i>; the design Δ is connected in the sense that all differences between treatments can be estimated. 	We want to estimate all the simple differences $\tau_i - \tau_j$. Put V_{ij} = variance of the best linear unbiased estimator for $\tau_i - \tau_j$. The length of the 95% confidence interval for $\tau_i - \tau_j$ is proportional to $\sqrt{V_{ij}}$. (If we always present results using a 95% confidence interval, then our interval will contain the true value in 19 cases out of 20.) The smaller the value of V_{ij} , the smaller is the confidence interval, the closer is the estimate to the true value (on average), and the more likely are we to detect correctly which of τ_1 and τ_2 is bigger.
From now on, assume connectivity. Call the remaining eigenvalues <i>non-trivial</i> . They are all non-negative.	We can make better decisions about new drugs, about new varieties of wheat, about new engineering materials if we make all the V_{ij} small.

How do we calculate variance?

Or we can use the Levi graph

Theorem Assume that all the noise is independent, with variance σ^2 . If $\sum_i x_i = 0$, then the variance of the best linear unbiased estimator of $\sum_i x_i \tau_i$ is equal to $(x^\top L^- x) k \sigma^2$.

In particular, the variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is

$$V_{ij} = \left(L_{ii}^{-} + L_{ij}^{-} - 2L_{ij}^{-}\right)k\sigma^{2}.$$

Theorem *The variance of the best linear unbiased estimator of the simple difference* $\tau_i - \tau_j$ *is*

$$V_{ij} = \left(\tilde{L}_{ii}^{-} + \tilde{L}_{ij}^{-} - 2\tilde{L}_{ij}^{-}\right)\sigma^2.$$

Concurrence graph or Levi graph?	Spanning trees in the two graphs
For hand calculation when the graphs are sparse, or for calculations for 'general' graphs with variable v , it may be simpler to use the Levi graph rather than the concurrence graph if $k \ge 3$.	Theorem Let G and \tilde{G} be the concurrence graph and Levi graph for a connected incomplete-block design for v treatments in b blocks of size k. Then the number of spanning trees for \tilde{G} is equal to k^{b-v+1} times the number of spanning trees for G.
	2// A

Spanning trees in the two graphs: proof		Spanning trees in the two graphs: strategy
Proof. Let <i>t</i> and \tilde{t} be the number of spanning trees for <i>G</i> and \tilde{G} respectively. Then $t = \det L_1 = \det(kR_1 - N_1N_1^{\top})$ and $\tilde{t} = \det \tilde{L}_1$, where the subscript 1 denotes the removal of the row and column corresponding to treatment 1. $\det \tilde{L}_1 = \det \begin{bmatrix} R_1 & -N_1 \\ -N_1^{\top} & kI_b \end{bmatrix} = \det \begin{bmatrix} R_1 - k^{-1}(N_1)N_1^{\top} \\ -N_1^{\top} + k^{-1}(kI_b)N_1^{\top} \end{bmatrix}$ $= \det \begin{bmatrix} k^{-1}L_1 & -N_1 \\ 0 & kI_b \end{bmatrix} = k^{-(v-1)} \det L_1 \times k^b$ so $\tilde{t} = \det \tilde{L}_1 = k^{b-v+1} \det L_1 = k^{b-v+1}t$.	$\begin{bmatrix} -N_1\\kI_b \end{bmatrix}$	If $v \ge b + 2$ then count the number of spanning trees for the Levi graph, then multiply by k^{v-b-1} to obtain the number of spanning trees for the concurrence graph. If $v \le b$ then do it the other way round.
	22/1	23/1

Optimality: Average pairwise variance

The variance of the best linear unbiased estimator of the simple difference $\tau_i - \tau_j$ is

$$V_{ij} = \left(L_{ii}^{-} + L_{jj}^{-} - 2L_{ij}^{-}\right)k\sigma^{2} = R_{ij}k\sigma^{2}.$$

We want all of the V_{ij} to be small.

Put $\bar{V} =$ average value of the V_{ij} . Then

$$\bar{V} = \frac{2k\sigma^2 \operatorname{Tr}(L^-)}{v-1} = 2k\sigma^2 \times \frac{1}{\operatorname{harmonic mean of } \theta_1, \dots, \theta_{v-1}}$$

where $\theta_1, \ldots, \theta_{v-1}$ are the nontrivial eigenvalues of *L*.

A-Optimality

Optimality: Confidence region

A block design is called A-optimal if it minimizes the average of the variances V_{ij} ;

—equivalently, it maximizes the harmonic mean of the non-trivial eigenvalues of the Laplacian matrix L; over all block designs with block size k and the given v and b.

When v > 2 the generalization of confidence interval is the confidence ellipsoid around the point $(\hat{\tau}_1, \dots, \hat{\tau}_v)$ in the hyperplane in \mathbb{R}^v with $\sum_i \tau_i = 0$. The volume of this confidence ellipsoid is proportional to

$$\sqrt{\prod_{i=1}^{v-1} \frac{1}{\theta_i}} = (\text{geometric mean of } \theta_1, \dots, \theta_{v-1})^{-(v-1)/2}$$
1

 $\sqrt{v \times \text{number of spanning trees for } G}$

D-Optimality	Optimality: Worst case
 A block design is called D-optimal if it minimizes the volume of the confidence ellipsoid for (î₁,, î_v); —equivalently, it maximizes the geometric mean of the non-trivial eigenvalues of the Laplacian matrix <i>L</i>; —equivalently, it maximizes the number of spanning trees for the concurrence graph <i>G</i>; —equivalently, it maximizes the number of spanning trees for the Levi graph <i>G</i>; over all block designs with block size <i>k</i> and the given <i>v</i> and <i>b</i>. 	If x is a contrast in \mathbb{R}^v then the variance of the estimator of $x^\top \tau$ is $(x^\top L^- x)k\sigma^2$. If we multiply every entry in x by a constant c then this variance is multiplied by c^2 ; and so is $x^\top x$. The worst case is for contrasts x giving the maximum value of $\frac{x^\top L^- x}{x^\top x}$. These are precisely the eigenvectors corresponding to θ_1 , where θ_1 is the smallest non-trivial eigenvalue of L.

E-Optimality	BIBDs are optimal
A block design is called E-optimal if it maximizes the smallest non-trivial eigenvalue of the Laplacian matrix L ; over all block designs with block size k and the given v and b .	Theorem (Kshirsagar, 1958; Kiefer, 1975) <i>If there is a balanced incomplete-block design (BIBD) (2-design)</i> <i>for v treatments in b blocks of size k,</i> <i>then it is A-, D- and E-optimal.</i> <i>Moreover, no non-BIBD is A-, D- or E-optimal.</i> Proof. Let $T = \text{Trace}(L)$. For any given value of T , the harmonic mean of $\theta_1, \ldots, \theta_{v-1}$, the geometric mean of $\theta_1, \ldots, \theta_{v-1}$, and the minimum of $\theta_1, \ldots, \theta_{v-1}$ are all maximized at $T/(v-1)$ when $\theta_1 = \cdots = \theta_{v-1} = T/(v-1)$. This occurs if and only if L is a scalar multiple of $I_v - v^{-1}J_v$. Since $T = \sum_i (kr_i - \lambda_{ii}) = bk^2 - \sum_i \lambda_{ii}$, the trace is maximized if and only if the design is binary. Among binary designs, the off-diagonal elements of L are equal if and only if the design is balanced.
30/1	31/1

Very low replication

The Levi graph has v + b vertices and bk edges.

For connectivity, $bk \ge v + b - 1$.

The extreme case is v - 1 = b(k - 1).

Then all connected Levi graphs are trees, so the D-criterion does not distinguish them.

In a tree, pairwise resistance is just distance apart, so the A-optimal designs have Levi graphs which are stars with a treatment-vertex at the centre: these are just the queen-bee designs.

The E-optimal designs are also queen-bee designs: proof coming up.

E-optimal designs when the Levi graph is a tree

eigenvalues 1 (between block), *k* (within block), *v* (queen vs rest)

The only E-optimal designs are the queen-bee designs.

nly slightly less extreme	A- and E-optimal designs when the Levi graph has 1 cycle
The Levi graph has $v + b$ vertices and bk edges. If it is connected and is not a tree then $bk \ge v + b$. The next case to consider is $v = b(k-1)$. Then every Levi graph has a single cycle. The number of spanning trees for the Levi graph is equal to the length of the cycle, so the D-optimal designs have a cycle of length 2b. Like this $8 \int_{-4}^{-4} \int_{-6}^{-5} \int_{-4}^{-5} \int_{-4}^{-6} \int_{-6}^{-5} \int_{-6}^{-6} \int_{-7}^{-6} \int_{-7}^{-6} \int_{-7}^{-6} \int_{-7}^{-7} \int_{-7}^{-7}$	Arguments using resistance in the Levi graph show that the A-optimal designs have a Levi graph with a short cycle, and one special treatment in the cycle occurs in every block which is not in the cycle. Arguments using the Cutset Lemma in the concurrence graph show that the E-optimal designs have similar structure, usually with an even shorter cycle in the Levi graph.