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Block designs

A block design ∆ consists of
I a set of bk experimental units (also called plots),

partitioned into b blocks of size k;
I a set of v treatments;
I a function f from the experimental units onto the set of

treatments, so that f (ω) denotes the treatment applied to
experimental unit ω.

g(ω) denotes the block containing ω.

Nij denotes the number of occurrences of treatment i in block j.

For treatments i and l, the concurrence of i and l is

λil =
b

∑
j=1

NijNlj.
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Levi graph

The Levi graph G̃ of a block design ∆ has

I one vertex for each treatment,
I one vertex for each block,
I one edge for each experimental unit,

with edge ω joining vertex f (ω) to vertex g(ω).

It is a bipartite graph,
with Nij edges between treatment-vertex i and block-vertex j.

3/1

Example 1: v = 4, b = k = 3
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Example 2: v = 8, b = 4, k = 3
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Concurrence graph

The concurrence graph G of a block design ∆ has

I one vertex for each treatment,
I one edge for each unordered pair α, ω, with α 6= ω,

g(α) = g(ω) and f (α) 6= f (ω):
this edge joins vertices f (α) and f (ω).

There are no loops.

If i 6= j then the number of edges between vertices i and j is

λij =
b

∑
s=1

NisNjs;

this is called the concurrence of i and j,
and is the (i, j)-entry of Λ = NN>.
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Example 1: v = 4, b = k = 3
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more vertices
more edges if k = 2 more edges if k ≥ 4
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Example 2: v = 8, b = 4, k = 3
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Example 3: v = 15, b = 7, k = 3
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Laplacian matrix of the concurrence graph

The Laplacian matrix L of the concurrence graph G is a
v× v matrix with (i, j)-entry as follows:
I if i 6= j then

Lij = −(number of edges between i and j) = −λij;
I Lii = valency of i = ∑

j 6=i
λij.

The off-diagonal entries are the same as those of −Λ.
The diagonal entries make each row sum to zero.

So the graph-theoretic definition of Laplacian matrix gives us
exactly the Laplacian matrix L that we defined before.
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Laplacian matrix of the Levi graph

The Laplacian matrix L̃ of the Levi graph G̃ is a
(v + b)× (v + b) matrix with (i, j)-entry as follows:
I L̃ii = valency of i

=

{
k if i is a block
replication ri of i if i is a treatment

I if i 6= j then Lij = −(number of edges between i and j)

=





0 if i and j are both treatments
0 if i and j are both blocks
−Nij if i is a treatment and j is a block, or vice versa.

So L̃ =

[
R −N
−N> kIb

]
,

which is exactly the same as our previous definition of L̃.
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Connectivity

All row-sums of L and of L̃ are zero,
so both matrices have 0 as eigenvalue
on the appropriate all-1 vector.

Theorem
The following are equivalent.
1. 0 is a simple eigenvalue of L;
2. G is a connected graph;
3. G̃ is a connected graph;
4. 0 is a simple eigenvalue of L̃;
5. the design ∆ is connected in the sense that all differences between

treatments can be estimated.

From now on, assume connectivity.

Call the remaining eigenvalues non-trivial.
They are all non-negative.
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Variance: why does it matter?

We want to estimate all the simple differences τi − τj.

Put Vij = variance of the best linear unbiased estimator for
τi − τj.

The length of the 95% confidence interval for τi − τj is
proportional to

√
Vij. (If we always present results using a

95% confidence interval, then our interval will contain the true
value in 19 cases out of 20.)

The smaller the value of Vij, the smaller is the confidence
interval, the closer is the estimate to the true value (on
average), and the more likely are we to detect correctly which
of τ1 and τ2 is bigger.

We can make better decisions about new drugs, about new
varieties of wheat, about new engineering materials . . . if we
make all the Vij small.
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How do we calculate variance?

Theorem
Assume that all the noise is independent, with variance σ2.
If ∑i xi = 0, then the variance of the best linear unbiased estimator of
∑i xiτi is equal to

(x>L−x)kσ2.

In particular, the variance of the best linear unbiased estimator of the
simple difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2.
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. . . Or we can use the Levi graph

Theorem
The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L̃−ii + L̃−jj − 2L̃−ij
)

σ2.
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Electrical networks: variance and resistance

We can consider the concurrence graph G as an electrical
network, and define the effective resistance Rij between any
pair of distinct vertices i and j.

Theorem
The effective resistance Rij between vertices i and j in G is

Rij =
(

L−ii + L−jj − 2L−ij
)

.

So
Vij = Rij × kσ2.

Effective resistances are easy to calculate without
matrix inversion if the graph is sparse.
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Example calculation: v = 12, b = 6, k = 3
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. . . Or we can use the Levi graph

If i and j are treatment vertices in the Levi graph G̃
and R̃ij is the effective resistance between them in G̃ then

Vij = R̃ij × σ2.
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Example 2 yet again: v = 8, b = 4, k = 3

V = 23 I = 8 R =
23
8
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Concurrence graph or Levi graph?

For hand calculation when the graphs are sparse,
or for calculations for ‘general’ graphs with variable v,
it may be simpler to use the Levi graph rather than the
concurrence graph if k ≥ 3.
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Spanning trees in the two graphs

Theorem
Let G and G̃ be the concurrence graph and Levi graph for a connected
incomplete-block design for v treatments in b blocks of size k.
Then the number of spanning trees for G̃ is equal to
kb−v+1 times the number of spanning trees for G.
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Spanning trees in the two graphs: proof

Proof.
Let t and t̃ be the number of spanning trees for G and G̃
respectively. Then

t = det L1 = det(kR1 −N1N>1 ) and t̃ = det L̃1,

where the subscript 1 denotes the removal of the row and
column corresponding to treatment 1.

det L̃1 = det
[

R1 −N1
−N>1 kIb

]
= det

[
R1 − k−1(N1)N>1 −N1

−N>1 + k−1(kIb)N>1 kIb

]

= det
[

k−1L1 −N1
0 kIb

]
= k−(v−1) det L1 × kb

so t̃ = det L̃1 = kb−v+1 det L1 = kb−v+1t.
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Spanning trees in the two graphs: strategy

If v ≥ b + 2 then count the number of spanning trees for the
Levi graph, then multiply by kv−b−1 to obtain the number of
spanning trees for the concurrence graph.

If v ≤ b then do it the other way round.
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Example 2: v = 8, b = 4, k = 3, spanning trees
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Optimality: Average pairwise variance

The variance of the best linear unbiased estimator of the simple
difference τi − τj is

Vij =
(

L−ii + L−jj − 2L−ij
)

kσ2 = Rijkσ2.

We want all of the Vij to be small.

Put V̄ = average value of the Vij. Then

V̄ =
2kσ2 Tr(L−)

v− 1
= 2kσ2 × 1

harmonic mean of θ1, . . . , θv−1
,

where θ1, . . . , θv−1 are the nontrivial eigenvalues of L.
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A-Optimality

A block design is called A-optimal if it minimizes the average
of the variances Vij;
—equivalently, it maximizes the harmonic mean of the
non-trivial eigenvalues of the Laplacian matrix L;
over all block designs with block size k and the given v and b.
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Optimality: Confidence region

When v > 2 the generalization of confidence interval is the
confidence ellipsoid around the point (τ̂1, . . . , τ̂v) in the
hyperplane in Rv with ∑i τi = 0. The volume of this confidence
ellipsoid is proportional to

√√√√v−1

∏
i=1

1
θi

= (geometric mean of θ1, . . . , θv−1)
−(v−1)/2

=
1√

v× number of spanning trees for G
.
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D-Optimality

A block design is called D-optimal if it minimizes the volume
of the confidence ellipsoid for (τ̂1, . . . , τ̂v) ;
—equivalently, it maximizes the geometric mean of the
non-trivial eigenvalues of the Laplacian matrix L;
—equivalently, it maximizes the number of spanning trees for
the concurrence graph G;
—equivalently, it maximizes the number of spanning trees for
the Levi graph G̃;
over all block designs with block size k and the given v and b.
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Optimality: Worst case

If x is a contrast in Rv then the variance of the estimator of x>τ
is (x>L−x)kσ2.

If we multiply every entry in x by a constant c then this
variance is multiplied by c2; and so is x>x.

The worst case is for contrasts x giving the maximum value of

x>L−x
x>x

.

These are precisely the eigenvectors corresponding to θ1,
where θ1 is the smallest non-trivial eigenvalue of L.
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E-Optimality

A block design is called E-optimal if it maximizes the
smallest non-trivial eigenvalue of the Laplacian matrix L;
over all block designs with block size k and the given v and b.
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BIBDs are optimal

Theorem (Kshirsagar, 1958; Kiefer, 1975)

If there is a balanced incomplete-block design (BIBD) (2-design)
for v treatments in b blocks of size k,
then it is A-, D- and E-optimal.
Moreover, no non-BIBD is A-, D- or E-optimal.

Proof.
Let T = Trace(L). For any given value of T, the harmonic mean
of θ1, . . . , θv−1, the geometric mean of θ1, . . . , θv−1, and the
minimum of θ1, . . . , θv−1 are all maximized at T/(v− 1) when
θ1 = · · · = θv−1 = T/(v− 1). This occurs if and only if L is a
scalar multiple of Iv − v−1Jv.
Since T = ∑i(kri − λii) = bk2 −∑i λii, the trace is maximized if
and only if the design is binary. Among binary designs, the
off-diagonal elements of L are equal if and only if the design is
balanced.
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Example 4: v = 5, b = 7, k = 3

1 1 1 1 2 2 2
2 3 3 4 3 3 4
3 4 5 5 4 5 5

1 1 1 1 2 2 2
1 3 3 4 3 3 4
2 4 5 5 4 5 5




8 −1 −3 −2 −2
−1 8 −3 −2 −2
−3 −3 10 −2 −2
−2 −2 −2 8 −2
−2 −2 −2 −2 8







8 −2 −2 −2 −2
−2 8 −2 −2 −2
−2 −2 8 −2 −2
−2 −2 −2 8 −2
−2 −2 −2 −2 8




w w
w ww
��
��

HH
HH

�
�
�
�
�
�

�
�
�
�
�
�

B
B
B
B
B
B

B
B
B
B
B
B

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

��
��

��
��

�
�
�
�
�
�

�
�
�
�
�
�

Q
Q
Q

Q
Q
Q

Q
Q

Q
Q
Q
Q

HH
HH

HH
HH

3

2

5

1

4 w w
w ww

�
�
�
�
�
�

�
�
�
�
�
�

B
B
B
B
B
B

B
B
B
B
B
B

A
A
A
A

A
A
A
A

�
�
�
�

�
�
�
�

��
��

��
��

HH
HH

HH
HH

�
�
�
�
�
�

�
�
�
�
�
�

Q
Q

Q
Q
Q
Q

Q
Q

Q
Q

Q
Q

3

2

5

1

4

maximal trace eigenvalues equal
32/1

Some other classes of optimal design

Theorem (Cheng, 1981)

Group-divisible designs with two groups in which
the between-group concurrence is one more than the within-group
concurrence are A-, D- and E-optimal.

Theorem (Cheng, 1981)

Group-divisible designs in which the between-group concurrence is
one more than the within-group concurrence
are A-, D- and E-optimal among equireplicate designs whose
concurrences differ by at most one.

Theorem (Cheng and Bailey, 1991)

Square-lattice designs are A-, D- and E-optimal among binary
equireplicate designs.
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Very low replication

The Levi graph has v + b vertices and bk edges.

For connectivity, bk ≥ v + b− 1.

The extreme case is v− 1 = b(k− 1).

Then all connected Levi graphs are trees,
so the D-criterion does not distinguish them.

In a tree, pairwise resistance is just distance apart,
so the A-optimal designs have Levi graphs which are stars
with a treatment-vertex at the centre:
these are just the queen-bee designs.

The E-optimal designs are also queen-bee designs:
proof coming up.
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E-optimal designs when the Levi graph is a tree
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The only E-optimal designs are the queen-bee designs.
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Only slightly less extreme

The Levi graph has v + b vertices and bk edges.

If it is connected and is not a tree then bk ≥ v + b.
The next case to consider is v = b(k− 1).

Then every Levi graph has a single cycle.

The number of spanning trees for the Levi graph is equal to the
length of the cycle, so the D-optimal designs have a cycle of
length 2b. Like this . . .
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A- and E-optimal designs when the Levi graph has 1 cycle

Arguments using resistance in the Levi graph show that the
A-optimal designs have a Levi graph with a short cycle,
and one special treatment in the cycle occurs in every block
which is not in the cycle.

Arguments using the Cutset Lemma in the concurrence graph
show that the E-optimal designs have similar structure,
usually with an even shorter cycle in the Levi graph.
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