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2-closure
We have seen that synchronization and related

properties are closed upwards (i.e. preserved on
passing to overgroups). They also have a limited
form of downward closure, as we will now see.

Let G be a permutation group on Ω.

• The 2-closure of G is the set of all permutations
of Ω which preserve the G-orbits on Ω2 (the
set of ordered pairs of elements of Ω). The
group G is 2-closed if it is equal to its 2-closure.

• The strong 2-closure of G is the set of all permu-
tations of Ω which preserve the G-orbits on
the set of 2-element subsets of Ω. The group
G is strongly 2-closed if it is equal to its strong
2-closure.

Note that

• the 2-closure of G is contained (possibly
strictly) in its strong 2-closure;

• the 2-closure of G is the symmetric group if
and only if G is 2-transitive;

• the strong 2-closure of G is the symmetric
group if and only if G is 2-set transitive.

Theorem 1. Let P denote one of the conditions “prim-
itive”, “synchronizing”, “separating”, “2-set transi-
tive”. Then the following are equivalent:

(a) G satisfies P;

(b) the 2-closure of G satisfies P;

(c) the strong 2-closure of G satisfies P.

Proof. In view of our earlier remarks, (a) implies
(b) implies (c); so it suffices to show that (c) implies
(a). But each property can be defined in terms of
G-invariant graphs, and G and its strong 2-closure
clearly preserve the same graphs.

Representation theory
We now turn to an algebraic approach to these

and related closure properties. Let F be a field. We
only consider the case F = C, R or Q. Certainly
there is an interesting theory waiting to be worked
out in the case where F is, say, a finite field, a p-
adic field, or even a ring!

Let G be a permutation group on Ω. The permu-
tation module is the FG-module FΩ which has the
elements of Ω as a basis, where G acts by permut-
ing the basis vectors.

Now the F-closure of G consists of all permuta-
tions which preserve all FG-submodules pf FΩ;
and G is F-closed if it is equal to its F-closure.

Consider the case where G is the symmetric
group Sym(Ω). The permutation module has just
two non-trivial submodules:

• the 1-dimensional module Ω spanned by the
sum of the elements of Ω;

• the n− 1-dimensional augmentation submodule
consisting of the vectors with coordinate sum
zero.
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For, if W is a submodule containing a vector x
with xv 6= xw, and g is the transposition (v, w),
then W contains x − xg = λ(v − w). By 2-
transitivity, W contains all differences between ba-
sis vectors; but these span the augmentation mod-
ule.

Theorem 2. The C-closure of a permutation group G
is equal to its 2-closure.

The proof requires a little character theory; a
brief sketch follows.

Character theory
Any representation of a group by matrices over

the complex numbers is determined up to isomor-
phism by its character, the function φ which maps
each group element to the trace of the matrix rep-
resenting it. A character is a class function (constant
on conjugacy classes).

Any representation can be decomposed
uniquely (up to isomorphism) into irreducible
representations. An irreducible character is the
character of an irreducible representation.

The characters form an orthonormal basis for
the space of complex class functions, under the in-
ner product

〈φ, ψ〉 =
1
|G| ∑

g∈G
φ(g)ψ(g).

The trivial character 1G is the function mapping
every group element to 1.

The permutation character
Let G be a permutation group on Ω, where

|Ω| = n. Then we have an action of G on CΩ by
permutation matrices. Its character is the permuta-
tion character π, where π(g) is the number of fixed
points of g.

The Orbit-Counting Lemma states that

1
|G| ∑

g∈G
π(g) = # orbits of G.

The sum on the left is just 〈1G, π; so the multiplic-
ity of the trivial character in π is equal to the num-
ber of orbits of G.

Applying the preceding result to the action of G
on Ω×Ω (whose permutation character is π2), we
see that

〈π, π〉 = 〈π2, 1G〉 = # orbits of G on Ω2.

This number is called the rank of G.

The rank is equal to the sum of squares of the
multiplicities of the irreducible characters in π
(since if π = ∑ aiφi, with φi irreducible, then or-
thonormality gives

〈π, π〉 = ∑ a2
i .

In particular, G is 2-transitive if and only if π =
1G + φ for some irreducible character φ. (The char-
acter φ is afforded by the action of G on the aug-
mentation submodule of the permutation module:
so G is 2-transitive if and only if the augmentation
submodule is irreducible.)

2-closure = C-closure
Let Ḡ be the 2-closure of G. Then Ḡ has the same

sum of squares of multiplicities of irreducibles as
G, which implies that the decomposition of the
permutation character is the same for Ḡ as for G.
Hence Ḡ is contained in the C-closure of G.

Conversely, let Ĝ be the C-closure of G. Then
Ĝ preserves the isotypic components of the per-
mutation module (one of these consists of the sum
of all copies of a particular isomorphism type of
irreducible module). The lattice of submodules of
the sum of r isomorphic irreducible modules is iso-
morphic to the (r − 1)-dimensional complex pro-
jective space; all these submodules are preserved
by Ĝ. So the isomorphic G-modules remain iso-
morphic as Ĝ-modules. Thus the multiplicities are
the same for Ĝ as for G, and so the ranks of these
groups are equal. Since G ≤ Ĝ, it follows that Ĝ
preserves the G-orbits, and so is contained in the
2-closure Ḡ.

Hence Ĝ = Ḡ.

A problem
Is it true that the R-closure of a permutation

group coincides with its strong 2-closure?

This is not known in general, but it is
true for groups whose permutation character is
multiplicity-free.
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FI groups
We say that the permutation group G on Ω is FI

if its F-closure is the symmetric group; that is, if
the only G-submodules of FΩ are Ω and the aug-
mentation module.

Theorem 3. Let G be a permutation group on Ω.

• G is CI if and only if it is 2-transitive.

• G is RI if and only if it is 2-set transitive.

This naturally suggests looking at QI groups, to
which we now turn.

Theorem 4. Let G be a transitive permutation group
on Ω, and F a field of characteristic zero. Then G is
primitive (resp. synchronizing, separating, spreading,
or QI) if and only if its F-closure is.

Three of these results are immediate from the
next lemma.

Theorem 5. Let G be a transitive permutation group
on Ω, and F a field of characteristic zero. Let A and
B be multisets such that |A ∗ Bg| = λ for all g ∈ G.
Then |A ∗ Bg| = λ for all g in the F-closure of G.

Let v1 and v2 be the characteristic functions of A
and B respectively. Setting wi = vi − (vi · j)j/n
for i = 1, 2, where j is the all-1 vector, we find
that j, w1 and w2g are pairwise orthogonal for any
g ∈ G. So the G-submodules generated by j, w1
and w2 are pairwise orthogonal. These modules
are invariant under the F-closure Ĝ; reversing the
argument gives the result.

This immediately proves the earlier theorem for
separating, spreading and QI groups.

Suppose that G is imprimitive, and let π be a G-
invariant partition. Then the characteristic func-
tions of the parts of π form an orthogonal basis for
a submodule of FΩ, which is fixed by Ĝ. The par-
tition can be recovered from the submodule, since
it is the coarsest partition on the parts of which the
elements of the submodule are constant. So Ĝ is
imprimitive.

Finally, suppose that G is not synchronizing,
and let the partition π and section S witness this.
Let v be the characteristic function of S, and w =
v − (v.j)j/n. Then wg is orthogonal to the charac-
teristic functions of the parts of π for all g ∈ G, so

every vector in the submodule generated by w is
orthogonal to these vectors. Since this submodule
is fixed by Ĝ, every Ĝ-image of S is a section for π,
and Ĝ is non-synchronizing.

The hierarchy revisited
If G is QI, then its Q-closure is the symmetric

group, which is spreading; so G is spreading.

So our hierarchy finally looks like this:

transitive ⇐ primitive ⇐ basic
⇐ synchronizing ⇐ separating ⇐ spreading
⇐ QI ⇐ 2-set transitive ⇐ 2-transitive.

We will see that there are groups which are QI
but not 2-set transitive; indeed, these groups have
recently been classified. But no examples are cur-
rently known of groups which are spreading but
not QI.

Affine groups
Recall that an affine group is a permutation group

G on the d-dimensional vector space over Fp
(where p is prime) generated by the translation
group T and an irreducible linear group H. Thus
G is the semidirect product of T by H; and H is the
stabiliser of the zero vector.

Theorem 6. Let G be an affine permutation group on
V, with H = G0 as above. Then the following are
equivalent:

• G is spreading;

• G is QI;

• H is transitive on the set of 1-dimensional sub-
spaces of V;

• the group generated by G and the scalars in GF(p)
is 2-transitive.

The affine groups described in the Theorem can
be completely classified, using the classification of
affine 2-transitive groups.

Proof. It is clear that (c) and (d) are equivalent. Let
us suppose that they do not hold. Then H is not
transitive on 1-dimensional spaces of V, and hence
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not transitive on (d− 1)-dimensional subspaces ei-
ther (by Brauer’s lemma). Choose hyperplanes A
and B in different orbits of H. Then no image of B
under G is parallel to A, so |A ∩ Bg| = pd−2 for all
g ∈ G. Thus G is not spreading. So (a) implies (c)
and (d). It is clear that (b) implies (a); so it remains
to prove that (c) and (d) imply that G is QI.

The scalars in Fp act on V, and hence on the
characters of V; and their action is precisely that
of the Galois group of the field of pth roots of
unity. Now assuming that (d) holds, this group
permutes the non-principal irreducibles in the per-
mutation character transitively, and so G is QI, as
required.

3/2-transitive groups
A permutation group G on Ω is said to be 3/2-

transitive if it is transitive, and the stabiliser of a
point v has all its orbits except {v} of the same
size. (If there is just one such orbit then G is 2-
transitive.)

Example 7. Let q be a power of 2. The group
PSL(2, q) has dihedral subgroups of order 2(q + 1);
it acts transitively on the set of cosets of such a sub-
group, and the stabiliser has q/2− 1 orbits each of
size q + 1 on the remaining points.

Example 8. There is a “sporadic” example: the
symmetric group S7 acting on 2-subsets of
{1, . . . , 7}. This works because 2 · 5 = (5

2).

Using the Classification of Finite Simple
Groups, John Bamberg, Michael Giudici, Mar-
tin Liebeck, Cheryl Praeger and Jan Saxl have
determined all the 3/2-transitive groups. Any
such group is affine, or one of the two examples
described above.

Although the class of 3/2-transitive groups is
not closed upwards, this classification gives us the
QI-groups:

Theorem 9. Any QI group is 3/2-transitive.

The reason is that the permutation character is
the sum of the trivial character and a family of al-
gebraically conjugate characters; an old result of
Frame now applies.

The QI groups
The group S7 acting on 2-sets is not QI.

Careful analysis of the character values of
PSL(2, q) show that the 3/2-transitive action of
this group described earlier is QI if and only if
q − 1 is a Mersenne prime.

So there are probably infinitely many examples
of this form, though nobody knows for sure.

Any other QI group is affine.

QI versus spreading
We don’t know any examples of groups which

are spreading but not QI. Moreover, there are very
few QI groups, and there are plenty of places to
look for spreading groups.

We saw above that

• G is not QI if and only if there are non-trivial
multisets A and B satisfying (1)λ,

whereas, by definition,

• G is not spreading if and only if there are non-
trivial multisets A and B satisfying (1)λ, (3)
and (4).

Condition (3) says that B is a set. In combinatorial
problems of this kind, there is usually a big differ-
ence between asking for a multiset with a certain
property and asking for a set. For this reason and
others, I suspect that such groups will exist.
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