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From graphs to monoids and back
In this section of the notes we describe a pair

of maps between graphs on the vertex set Ω and
transformation monoids on Ω. These maps do not
form a ‘Galois correspondence’ but have some nice
properties relevant to the synchronization project.

Since G will always be a group, we use X to de-
note a graph.

From graphs to monoids
The map in this direction is simple: to a graph

X on Ω we associate the transformation monoid
End(X).

We note the following observation from the pre-
ceding chapter:

Theorem 1. The graph X is a core if and only if
End(X) = Aut(X).

From monoids to graphs
Let M be a transformation monoid on Ω. Define

a graph Gr(M) on Ω by the rule that, for any two
distinct vertices v, w ∈ Ω, we put v ∼ w if and
only if there does not exist f ∈ M with v f = w f .

A transformation monoid is synchronizing if it
contains an element whose image has cardinal-
ity 1.

Theorem 2. • Gr(M) is complete if and only if M
is a permutation group (that is, contained in the
symmetric group).

• Gr(M) is null if and only if M is synchronizing.

Proof. (a) Gr(M) is complete if and only if no ele-
ment of M ever maps two points to the same place.

(b) Let f ∈ M be an element whose image is
as small as possible. Then no two elements of the
image of f can be mapped to the same place; so
they are pairwise adjacent. So, if Gr(M) is null,
then the image of f has cardinality 1. The converse
is clear.

Theorem 3. For any transformation monoid M, the
graph Gr(M) has core a complete graph.

Proof. The argument in (b) above shows that the
image of an element of M of minimal rank is a
complete subgraph of Gr(M). It is hom-equivalent
to Gr(M) (the homomorphism in the other di-
rection is just the embedding), and it is clearly a
core.

Both ways

Theorem 4. For any transformation monoid M,

• M ≤ End(Gr(M));

• Gr(End(Gr(M))) = Gr(M).

Proof. (a) Let f be an endomorphism of M, and let
v and w be adjacent in Gr(M). By definition, v f 6=
w f . Could v f and w f be non-adjacent in Gr(M)?
if so, then there is an element h ∈ End(M) with
(v f )h = w f (h). But this contradicts the adjacency
of v and w, since f h ∈ M by closure.
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Conversely, suppose that v and w are not adja-
cent in Gr(M). Then there is an element f ∈ M sat-
isfying v f = w f . By (a), f ∈ End(Gr(M)), and so
v and w are non-adjacent in Gr(End(Gr(M))).

Theorem 5. The maps M 7→ End(Gr(M)) and X 7→
Gr(End(X)) are idempotent.

Proof. This follows immediately from part (b) of
the preceding theorem.

Write Cl(M) = End(Gr(M)). Then M ≤
Cl(M) and Cl(Cl(M)) = Cl(M), so Cl is an idem-
potent operator on transformation monoids on
{1, . . . , n}. I don’t have a satisfactory description
of the “closed” objects (those with Cl(M) = M);
more on this below.

Hulls
In the other direction, let Hull(X) =

Gr(End(X)), so that Hull(Hull(X)) = Hull(X).
The hull of a graph has the following properties:

Theorem 6. • X is a spanning subgraph of
Hull(X) (that is, these graphs have the same ver-
tex set, and every edge of X is an edge of Hull(X)).

• End(X) ≤ End(Hull(X)) and Aut(X) ≤
Aut(Hull(X)).

• Core(Hull(X)) is a complete graph on the vertex
set of Core(X).

Proof. (a) If v and w are adjacent in X, then no en-
domorphism of X can collapse v and w, so they are
adjacent in Gr(End(X)).

(b) End(Hull(X)) = End(Gr(End(X))) ≥
End(X). Now an endomorphism is an automor-
phism if and only if it is a permutation.

(c) The vertex set of Core(X) cannot be col-
lapsed by endomorphisms, so is a complete sub-
graph of Gr(End(X)) = Hull(X).

By (c), if X is a hull, then Core(X) is complete;
but the converse is false. If X is the path of length
3, then Core(X) is a complete graph on two ver-
tices, but Hull(X) is the 4-cycle, by our previous
argument.

Example 7.

u u

u u

x y

No homomorphism can identify x and y, so they
are joined in the hull.

Note the increase in symmetry: |Aut(X)| = 2
but |Aut(Hull(X))| = 8.

Closure revisited

Theorem 8. A transformation monoid M is closed
(that is, satisfies M = Cl(M)) if and only if M =
End(X) for some graph X which is a hull (and in par-
ticular, whose core is complete).

Proof. Suppose that M is closed. Then M =
End(X), where X = Gr(M); so X =
Gr(End(X)) = Hull(X).

Conversely, if X = Hull(X), then End(X) =
End(Gr(End(X))) = Cl(End(X)).

A theorem
Recall that a graph is non-trivial if it is not com-

plete or null.

Theorem 9. Let M be a submonoid of Tn which is not
contained in the symmetric group Sn. Then the follow-
ing are equivalent:

• M is not synchronizing (that is, contains no con-
stant function);

• M ≤ End(X), where X is a non-trivial graph
which is not a core;

• M ≤ End(X), where X is a non-trivial graph
whose core is complete.

Note that the third condition on X is much
stronger than the second. We will return to this!

Proof of the theorem
The implications from bottom to top are trivial.

We show that the first condition implies the last.
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Let M be a submonoid of Tn which is not con-
tained in Sn and contains no constant function. Let
X = Gr(M); recall that v ∼ w if and only if there
is no f ∈ M with v f = w f .

If v ∼ w and f ∈ M, then v f 6= w f by defini-
tion. Moreover, if v f 6∼ w f then (v f )h = (w f )h
for some h, contradicting the fact that v ∼ w (since
f h ∈ M). So M ≤ End(X).

Finally, if f ∈ M has minimum rank, then the
image of f carries a complete graph Y (since it can-
not be made smaller by any element of M), and so
Y is the core of X.

Synchronizing groups
The consequence of the preceding theorem for

synchronizing groups is:

Theorem 10. Let G be a permutation group on Ω.
Then G is non-synchronizing if and only if there is a
non-trivial graph X on Ω with G ≤ Aut(X) such that
Core(X) is complete (that is, ω(X) = χ(X)).

Proof. If such an X exists, then choose f to be
any endomorphism of X which is not an automor-
phism; then 〈G, X〉 ≤ End(X), so this monoid con-
tains no constant function.

Conversely, if f is a witness that G is not
synchronizing, let M = 〈G, f 〉, and let X =
Gr(M).

An algorithm
Given a permutation group G on Ω, is it syn-

chronizing?

• Check whether G is primitive (this can be
done efficiently); if not, then G is not synchro-
nizing.

• Construct all the non-trivial G-invariant
graphs on Ω. (There are 2r − 2 of these, where
r is the number of G-orbits on 2-subsets of Ω.)

• If any of these graphs X has ω(X) = χ(X),
then G is not synchronizing. If none has this
property, then G is synchronizing.

Note that we have to solve two “hard” problems
(clique number and chromatic number) for graphs
with a large amount of symmetry.

Although both problems are NP-hard, in prac-
tice they can be solved for permutation groups
with degrees in the hundreds without too much
difficulty.

In the computer algebra system GAP, the pack-
age GRAPE will find all cliques of given size, or
of maximum size, in a graph, up to the action of
a specified group of automorphisms of the graph;
the larger the group, the more efficient the compu-
tation.

Primitive and 2-set transitive groups
Let us note here that there is a similar, but eas-

ier, graph-theoretic test for other properties in our
hierarchy.

Theorem 11. Let G be a permutation group on Ω.

• G is imprimitive if and only if there is a non-trivial
disconnected graph X on Ω with G ≤ Aut(X).

• G is not 2-set transitive if and only if there is a
non-trivial graph X on Ω with G ≤ Aut(X).

Proof. (a) If X exists, then its connected compo-
nents are blocks of imprimitivity. Conversely,
if G is imprimitive, the disjoint union of com-
plete graphs on the blocks of imprimitivity is G-
invariant.

(b) Clear.

This test for primitivity is due to Donald Hig-
man. There is an algorithmic version, though
things are much simpler than for synchronization:

• instead of checking all 2r − 2 G-invariant
graphs (where r is the number of orbits on 2-
sets), we only need to check r graphs, those
whose edges form G-orbits;

• instead of solving hard problems (clique size,
chromatic number), we only need to solve the
easy problem of connectedness.

There is no point in turning the second part into
an algorithm for 2-set transitivity. The algorithm
would begin by finding the orbits on 2-sets; but
G is 2-set transitive if and only if there is just one
orbit.
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Separation
There is a similar test for separation, but we

need to assume that the group we are testing
is transitive. Recall that the independence number
α(X) of a graph X is the size of the largest set of
vertices containing no edges; that is, it is the clique
number of the complementary graph.

Theorem 12. Let G be a transitive permutation group
on Ω. Then G is non-separating if and only if there
is a non-trivial graph X on the vertex set Ω with G ≤
Aut(X), having the property that ω(X) · α(X) = |Ω|.

Proof. Suppose first that there is a G-invariant
graph X with ω(X)α(X) = |Ω|. A clique and
an independent set can meet in at most one point,
since two points in the intersection would have to
be both joined and not joined. So our earlier theo-
rem shows that any clique of size ω(X) and any in-
dependent set of size α(X) meet in one point, and
G is not separating.

Conversely, suppose that G is not separating; let
sets A and B be witnesses. Let X be the graph
whose edges are all images under G of pairs of
points in A. Then A is a clique and (since no pair
of points of B can be an image of a pair in A by g,
else |Ag ∩ B| ≥ 2) B is an independent set.

This theorem is the basis of an algorithmic test of
the separation property. Given a transitive permu-
tation graph G on Ω, let r be the number of orbits
of G on 2-element subsets of Ω. The 2r − 2 non-
trivial G-invariant graphs fall into 2r−1 − 1 com-
plementary pairs. Choose one graph X from each
pair and compute its clique number ω(X) and
its independence number α(X) = ω(X). Check
whether their product is |Ω|.

• This test is easier than testing whether G is
synchronizing. We have only half as many
graphs to test, and we replace finding the
chromatic number with the (easier) task of
finding the independence number. (This is
easier in the practical rather than the theoreti-
cal sense; both tasks are NP-hard.)

• For this reason, given G, it is better to test
first whether G is separating. If so, then we
know it is synchronizing. If not, we only have

to compute the chromatic number of those G-
invariant graphs X for which we already dis-
covered that ω(X)α(X) = |Ω| and their com-
plements.

Spreading groups
There is no such graph-theoretic test for the

spreading property.

Instead, I will describe an example of the com-
putation used to show that a certain permutation
group is not spreading. The group is the classi-
cal group G = PSp(4, 3), acting primitively on 40
points.

This group has rank 3, and so there are just two
non-trivial G-invariant graphs. The first has clique
size 4, the cliques being lines in a geometry called
a generalized quadrangle: this means that two adja-
cent vertices lie in a unique line, and a point v not
on a line L is collinear with a unique point of L.

The independence number of the graph is
smaller than 10 (as we will see); so G is separat-
ing.

We will attempt to take a line L of the geometry
as one of our sets.

As a first attempt, let B = L, and let A be the
multiset which consists of a vertex v with multi-
plicity 3 and all of its non-neighbours each with
multiplicity 1. Then it is easy to see that A = 30,
and |A ∗ Bg| = 3 for all g ∈ G (a line either con-
tains v or contains three non-neighbours of v).

So (1)3 and (3) hold, but not (4), since 30 does
not divide 40. (If we reverse the roles of A and B,
we satisfy (1)3, (2) and (4).)

So we sought a multiset of size 20 meeting ev-
ery line in 2 points. Using the integer program-
ming package in MAGMA, Pablo Spiga succeeded
in constructing such a multiset; it has two points
with multiplicity 2, and sixteen with multiplicity 1.

So the group PSp(4, 3) is non-spreading (though
it is separating).

The implication from spreading to separating
thus does not reverse.

The multiset does not obviously generalise.
Further computation shows that PSp(4, 5) and
PSp(4, 7) are also non-spreading; the general case
is unknown.
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Cores of symmetric graphs
This theorem began as a conjecture, when Cristy

Kazanidis and I were investigating cores of highly
symmetric graphs. This arose before the develop-
ment of the material in this lecture, and indeed
helped lead to this development.

We were considering rank-3 graphs, those whose
automorphism group is transitive on vertices, (or-
dered) edges, and (ordered) non-edges. The ter-
minology comes from permutation group theory,
where the rank of a permutation group G on Ω is
the number of G-orbits on Ω × Ω: in the case of
a rank 3 graph, these orbits are the sets of pairs
(v, w) where v and w are respectively equal, adja-
cent, and non-adjacent.

After considering a number of cases, we were
led to the conjecture that, for any rank 3 graph
X, either Core(X) = X, or Core(X) is a complete
graph. (Recall that the latter holds if and only if
the clique number and chromatic number of X are
equal.)

In fact a much stronger result is true:

Theorem 13. Let X be a graph whose automorphism
group is transitive on non-edges. Then either the core
of X is complete, or X is a core.

Proof. Let X′ be the hull of X. Recall that X′ con-
tains X as a spanning subgraph (that is, it is X with
possibly extra edges), and that Aut(X) ≤ Aut(X′)
(so that the extra edges form a union of Aut(X)-
orbits).

In our case, this implies that either X′ = X
(whence X is a hull, so its core is complete), or X′

is complete (whence no endomorphism of X col-
lapses vertices, so X is a core).

Here is another look at an example discussed
earlier.

The permutation group induced by Sn on the set
of 2-element subsets of {1, . . . , n} has rank 3 for
n ≥ 4. The two non-trivial graphs preserved by
this group are

• the graph where two 2-sets are adjacent if they
intersect (the line graph of the complete graph
Kn, also called the “triangular graph”);

• the graph where two 2-sets are adjacent if they
are disjoint. For n = 5, this is the celebrated
Petersen graph.
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Let X be the line graph of Kn. Then ω(X) =
n − 1: the pairs containing a fixed element of
{1, . . . , n} form a clique of maximum size. Also
χ(X) is the edge-chromatic number (or chromatic in-
dex) of Kn, which is welll known to be n − 1 if n is
even, or n if n is odd.

The complementary graph X has ω(X) = bn/2c
(this is the maximum number of pairwise disjoint
pairs); its chromatic number is χ(X) = n − 2 by
special case of a theorem of Lovász. (In fact it is
easy to see that it is greater than n/2).

So we conclude that, for X = L(Kn),

• X is a core if and only if n is odd (its core is
Kn−1 if n is even);

• X is a core for all n.

Non-synchronizing ranks
This is an attempt to quantify the fact that not

all primitive groups are synchronizing.

Let G be a transitive permutation group on Ω,
and m an integer with 1 < m < n. We say that
m is a non-synchronizing rank of G if there exists a
function f : Ω → Ω with image of cardinality m
such that 〈G, r〉 is not synchronizing.

Let NS(G) be the set of non-synchronizing
ranks of G.

Thus, G is synchronizing if and only if NS(G) =
∅.

Conjecture 14. An imprimitive group has very many
non-synchronizing ranks, while a primitive group has
very few.
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This conjecture is somewhat imprecise; I will
now present some evidence for it.

Note that NS(G) is the set of ranks (cardinal-
ities of images) of endomorphisms of non-trivial
G-invariant graphs.

Theorem 15. If G is imprimitive, with l blocks of im-
primitivity of size k (so that n = |Ω| = kl), then

{k, 2k, . . . , n − k} ∪ {l, l + 1, . . . , n − 1} ⊆ NS(G).

Proof. Among the G-invariant graphs we have

• the disjoint union of l complete graphs of
size k, which can be mapped onto any proper
subset of its connected components;

• the complete multipartite graph with l blocks
of size k, which can be mapped onto any set
containing a transversal for the blocks.

In particular, G has at least n/2 non-
synchronizing ranks.

Theorem 16. If either 2 ∈ NS(G) or n− 1 ∈ NS(G),
then G is imprimitive. In particular, if 2 ∈ NS(G),
then G has (possibly trivial) blocks B1 and B2 with
B1 ⊆ B2 and |B2| = 2|B1|.

Proof. Let f have rank n − 1 and not synchronize
G. There is a graph X, necessarily regular, with
G ≤ Aut(X) and f ∈ End(X). Suppose that f
maps x and y to z. Then x and y are non-adjacent;
and f maps the neighbour sets of both x and y bi-
jectively to the neighbour set of z. So x and y have
the same neighbour sets. Now the relation ≡ on Ω
defined by u ≡ v if u and v have the same neigh-
bour sets is a non-trivial congruence; so G is im-
primitive.

Let f have rank 2 and not synchronize G. There
is a graph X with G ≤ Aut(X), f ∈ End(X), and
Core(X) complete. Clearly Core(X) = K2, so X is
bipartite. Now let B2 be a connected component of
X and B1 a bipartite block of this component.

Example 17. Let G be the wreath product Sm Wr Sk,
with the power action, of degree n = mk. Then
{m, m2, . . . , mk−1} ⊆ NS(G).

For let H(k, m) be the k-dimensional hypercube
with edges of size m: that is, the vertices are the k-
tuples of elements of Z/(m), two vertices adjacent

if they agree in all but one coordinate. For any s
with 0 < s < k, the map

(x1, x2, . . . , xk) 7→ (x1, . . . , xs−1, xs + · · ·+ xk)

is a homomorphism from H(k, m) onto H(s, m).

In this example the number of non-
synchronizing ranks is the logarithm of the
number of vertices, while for an imprimitive
group it is at least a constant fraction of this
number.
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