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Homomorphisms of relational structures
A homomorphism of an algebraic structure is a

map which preserves the operations of the alge-
bra: for example, a group homomorphism satisfies
f (xy) = f (x) f (y).

Similarly, a homomorphism of a relational struc-
ture preserves the relations of the structure: if
R is an n-ary relation, then R(x1, . . . , xn) implies
R( f (x1), . . . , f (xn)).

For example, a homomorphism of an ordered
set (X,≤) is an order-preserving map, while a
homomorphism of a strict order (X, <) is strictly
order-preserving.

Endomorphisms and automorphisms
A homomorphism from a structure X to itself

is an endomorphism of X. If it is a bijection, and
its inverse is also an endomorphism, then it is an
automorphism of X.

The set End(X) of endomorphisms of X is
closed under composition, and contains the iden-
tity map; in other words it is a transformation
monoid on X (a submonoid of the full transforma-
tion monoid).

Similarly, the set Aut(X) of automorphisms of
X is a permutation group on X, a subgroup of the
symmetric group.

Graphs
We are mostly concerned with graphs.

A graph consists of a set of vertices, with a col-
lection of edges, each edge being a 2-element set
of vertices. In other words, unlike the digraphs
which represent automata, our graphs are undi-
rected and have no loops and no multiple edges.
Until the last lecture, all graphs are finite.

We write v ∼ w to denote that {v, w} is an edge.

Graph homomorphisms
A homomorphism from a graph X to a graph Y is

thus a map f from the vertex set of X to the vertex
set of Y such that, if {v, w} is an edge of X, then
{ f (v), f (w)} is an edge of Y. Note that, if {v, w}
is not an edge, then we do not specify what its im-
age is; it may be a non-edge, or an edge, or even a
single vertex.

An endomorphism of a graph X is a homomor-
phism from X to X.

An automorphism is a bijective endomorphism
which also maps non-edges to non-edges; that is,
whose inverse is also an endomorphism.

Theorem 1. An endomophism of a (finite) graph is an
automorphism if and only if it is a bijection.

Proof. The forward implication is clear. Con-
versely, a bijective homomorphism cannot de-
crease the number of edges; so, if it maps a
graph to itself, then non-edges must map to non-
edges, else the number of edges would strictly in-
crease.
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Hom-equivalence and hom-order
We write X → Y to denote that there exists a

homomorphism from X to Y.

Let X and Y be graphs. We say that X and Y are
hom-equivalent if X → Y and Y → X hold; we write
this as X ≡ Y. We denote the hom-equivalence
class of X by [X].

Now we set [X] ≤ [Y] if there is a homo-
morphism from X to Y. (This is independent of
the choice of representatives of the equivalence
classes.) This relation is a partial order on the set
of hom-equivalence classes, called the hom-order.

Homomorphisms, cliques and colourings
Let Km denote the complete graph on m vertices,

the graph in which every 2-element subset of the
vertex set is an edge.

If f is a homomorphism from Km to X, then the
image of f is a set of m vertices of X, any two of
which are joined by an edge (that is, the induced
subgraph is a complete graph). Such a set of ver-
tices is called a clique of size m in X. The clique
number ω(X) of a graph X is the size of the largest
clique in X.

Thus,

Km → X if and only if ω(X) ≥ m.

A (proper) colouring of a graph is an assignment
of colours to the vertices so that adjacent vertices
get different colours. The chromatic number χ(X)
of X is the smallest number of colours required for
a proper colouring.

A homomorphism f from X to Km satisfies (v ∼
w) ⇒ ( f (v) 6= f (w)), so is a proper colouring with
m colours, and conversely.

Thus,

X → Km if and only if χ(X) ≤ m.

Now any graph X satisfies ω(X) ≤ χ(X),
since the vertices of a clique must all get different
colours in a proper colouring. Hence:

Theorem 2. A graph X satisfies X ≡ Km if and only
if ω(X) = χ(X) = m.

This class of graphs will be very important in
what follows.

Timetabling
Suppose that we have a set C of classes to

timetable. Let R be the set of classrooms, and S
the set of timetable slots. A timetable consists of
a map f from C to R × S (assigning a room and
time to each class). If some rooms are pre-booked
at certain times, we use a subset of R× S instead.

Give both C and R× S the structure of complete
graphs. Now requiring that f is a homomorphism
ensures that we do not put two classes in the same
room at the same time.

Now form a graph (in a different colour) on the
vertex set C by joining two classes c1 and c2 by an
edge if either some student is in both classes, or
both classes are to be taught by the same teacher.
We form the graph on R× S, in which (r1, s1) and
(r2, s2) are joined if and only if s1 6= s2. The homo-
morphism requirement ensures that no student or
teacher is expected to be in different classes at the
same time.

Other requirements can be included. For exam-
ple, if some rooms are too small to accommodate
some classes, we take a unary relation which holds
on all the large classes and on all the pairs (r, s)
where r is a large room.

Constraint satisfaction
Let R be a relational structure with a fixed sig-

nature (that is, with named relations of prescribed
arities). The constraint satisfaction problem or CSP
based on R is the following decision problem:

Instance: A relational structure X of the same sig-
nature as R.

Problem: Is there a homomorphism from X to R?

We see that CSP includes graph colouring and
timetabling problems among many other things.

The Feder–Vardy conjecture asserts that, for any
R, either the CSP based on R is in P, or it is NP-
complete. Several instances of this are known to
be true.

This contrasts with the similar-looking problem
where we require an isomorphism. The graph iso-
morphism problem is thought by some to be of com-
plexity intermediate between P and NP-complete.

Of course, if P = NP, then all these conjectures
collapse!
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The core of a graph
Let X be a graph. A core of X, written Core(X), is

defined to be a graph Y with the smallest number
of vertices subject to X ≡ Y.

Note that, if Y is a core of X, then it is a core of
any graph in [X]. In particular, Y = Core(Y) is its
own core. (We will say that a graph Y is a core if
Core(Y) = Y.)

We now show that the core of a graph is unique
up to isomorphism, and give a test to recognise a
core.

Theorem 3. • Any endomorphism of a core is an
automorphism.

• Two cores which are hom-equivalent are isomor-
phic.

Proof. (a) Let Y be a core and f an endomorphism
of Y. Then there is a homomorphism from f (Y)
to Y, namely, the identity map on the vertices of
f (Y); so Y ≡ f (Y). Since Y is a core, f must be
onto, hence an automorphism.

(b) Similar.

So now we can talk about the core of a graph.

Theorem 4. The core of a graph X is Km if and only if
ω(X) = χ(X) = m.

This is immediate from the theory developed
above.

The class of graphs whose core is complete
(those whose clique number and chromatic num-
ber are equal) is important in the theory of syn-
chronization, as we will see.

In particular, for m = 2, we have the class of
bipartite graphs (containing at least one edge).

Induced subgraphs and retractions
Y is an induced subgraph of X if its vertices are

some of the vertices of X, and its edges are all the
edges of X contained within the vertex set of Y.

A retraction of X is a homomorphism from X to
a induced subgraph Y which acts as the identity
on Y.

Theorem 5. Let Y = Core(X). Then, up to isomor-
phism, Y is an induced subgraph of X, and there is a
retraction of X onto Y.

Proof. Let Y = Core(X). There is a homomor-
phism from Y to X, which is an isomorphism to
its image; so we can identify Y with this image.

Now let f be a homomorphism from X to Y. The
restriction of f to Y is an automorphism of Y; fol-
lowing f by the inverse of this automorphism, we
get a retraction of X onto Y.

Recognising cores
A graph X is a core if and only if all its endo-

morphisms are automorphisms. (We saw the for-
ward implication. In the reverse direction, if X is
not a core, then its core is a proper induced sub-
graph, and there is an endomorphism onto this
subgraph.)

But this is hard to test. The decision problem for
cores is:

Instance: A graph X.

Problem: Is X a core?

This is known to be NP-complete.

Cores of vertex-transitive graphs
A graph is vertex-transitive if its automorphism

group acts transitively on its vertex set.

Theorem 6. The core of a vertex-transitive graph is
vertex-transitive.

Proof. Let X be vertex-transitive. Let ι be the em-
bedding of Y = Core(X) into X, and ρ the retrac-
tion of X onto Y. Let v and w be vertices of Y, and
choose an automorphism g of X mapping v to w.
Then ιgρ is a homomorphism from Y to Y (nec-
essarily an automorphism of Y, since Y is a core)
which maps v to w.

Other kinds of transitivity
Analogously, we can say that a graph is edge-

transitive, or non-edge transitive, or indeed transi-
tive on any kind of configuration we choose.

The same proof as above shows that if X
possesses any kind of transitivity, then so does
Core(X) (provided only that Core(X) possesses
configurations of the appropriate type – for exam-
ple, X might be a non-edge transitive graph whose
core is complete).
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In the next lecture, we will see that a much
stronger result holds for non-edge transitive
graphs: either such a graph is itself a core, or its
core is complete.
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