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Homomorphisms of relational structures

A homomorphism of an algebraic structure is a
map which preserves the operations of the alge-
bra: for example, a group homomorphism satisfies

flay) = f(x)f(y)-

Similarly, a homomorphism of a relational struc-
ture preserves the relations of the structure: if
R is an n-ary relation, then R(xy,...,x,) implies

R(f(x1),-- -, f (xn))-

For example, a homomorphism of an ordered
set (X, <) is an order-preserving map, while a
homomorphism of a strict order (X, <) is strictly
order-preserving.

Endomorphisms and automorphisms

A homomorphism from a structure X to itself
is an endomorphism of X. If it is a bijection, and
its inverse is also an endomorphism, then it is an
automorphism of X.

The set End(X) of endomorphisms of X is
closed under composition, and contains the iden-
tity map; in other words it is a transformation
monoid on X (a submonoid of the full transforma-
tion monoid).

Similarly, the set Aut(X) of automorphisms of
X is a permutation group on X, a subgroup of the
symmetric group.

Graphs
We are mostly concerned with graphs.

A graph consists of a set of vertices, with a col-
lection of edges, each edge being a 2-element set
of vertices. In other words, unlike the digraphs
which represent automata, our graphs are undi-
rected and have no loops and no multiple edges.
Until the last lecture, all graphs are finite.

We write v ~ w to denote that {v, w} is an edge.

Graph homomorphisms

A homomorphism from a graph X to a graph Y is
thus a map f from the vertex set of X to the vertex
set of Y such that, if {v,w} is an edge of X, then
{f(v), f(w)} is an edge of Y. Note that, if {v, w}
is not an edge, then we do not specify what its im-
age is; it may be a non-edge, or an edge, or even a
single vertex.

An endomorphism of a graph X is a homomor-
phism from X to X.

An automorphism is a bijective endomorphism
which also maps non-edges to non-edges; that is,
whose inverse is also an endomorphism.

Theorem 1. An endomophism of a (finite) graph is an
automorphism if and only if it is a bijection.

Proof. The forward implication is clear. Con-
versely, a bijective homomorphism cannot de-
crease the number of edges; so, if it maps a
graph to itself, then non-edges must map to non-
edges, else the number of edges would strictly in-
crease. O



Hom-equivalence and hom-order
We write X — Y to denote that there exists a
homomorphism from X to Y.

Let X and Y be graphs. We say that X and Y are
hom-equivalent if X — Y and Y — X hold; we write
this as X = Y. We denote the hom-equivalence
class of X by [X].

Now we set [X] < [Y] if there is a homo-
morphism from X to Y. (This is independent of
the choice of representatives of the equivalence
classes.) This relation is a partial order on the set
of hom-equivalence classes, called the hom-order.

Homomorphisms, cliques and colourings

Let K;;; denote the complete graph on m vertices,
the graph in which every 2-element subset of the
vertex set is an edge.

If f is a homomorphism from K;; to X, then the
image of f is a set of m vertices of X, any two of
which are joined by an edge (that is, the induced
subgraph is a complete graph). Such a set of ver-
tices is called a clique of size m in X. The clique
number w(X) of a graph X is the size of the largest
clique in X.

Thus,
Ky, — X if and only if w(X) > m.

A (proper) colouring of a graph is an assignment
of colours to the vertices so that adjacent vertices
get different colours. The chromatic number x(X)
of X is the smallest number of colours required for
a proper colouring.

A homomorphism f from X to K,, satisfies (v ~
w) = (f(v) # f(w)), sois a proper colouring with
m colours, and conversely.

Thus,
X — Ky, if and only if x(X) < m.

Now any graph X satisfies w(X) < x(X),
since the vertices of a clique must all get different
colours in a proper colouring. Hence:

Theorem 2. A graph X satisfies X = Ky if and only
if w(X) = x(X) = m.

This class of graphs will be very important in
what follows.

Timetabling

Suppose that we have a set C of classes to
timetable. Let R be the set of classrooms, and S
the set of timetable slots. A timetable consists of
amap f from C to R x S (assigning a room and
time to each class). If some rooms are pre-booked
at certain times, we use a subset of R x S instead.

Give both C and R x S the structure of complete
graphs. Now requiring that f is a homomorphism
ensures that we do not put two classes in the same
room at the same time.

Now form a graph (in a different colour) on the
vertex set C by joining two classes c; and c; by an
edge if either some student is in both classes, or
both classes are to be taught by the same teacher.
We form the graph on R x S, in which (r1,s1) and
(rp,s2) are joined if and only if s # s. The homo-
morphism requirement ensures that no student or
teacher is expected to be in different classes at the
same time.

Other requirements can be included. For exam-
ple, if some rooms are too small to accommodate
some classes, we take a unary relation which holds
on all the large classes and on all the pairs (7,s)
where 7 is a large room.

Constraint satisfaction

Let R be a relational structure with a fixed sig-
nature (that is, with named relations of prescribed
arities). The constraint satisfaction problem or CSP
based on R is the following decision problem:

Instance: A relational structure X of the same sig-
nature as R.

Problem: Is there a homomorphism from X to R?

We see that CSP includes graph colouring and
timetabling problems among many other things.

The Feder—Vardy conjecture asserts that, for any
R, either the CSP based on R is in P, or it is NP-
complete. Several instances of this are known to
be true.

This contrasts with the similar-looking problem
where we require an isomorphism. The graph iso-
morphism problem is thought by some to be of com-
plexity intermediate between P and NP-complete.

Of course, if P = NP, then all these conjectures
collapse!



The core of a graph

Let X be a graph. A core of X, written Core(X), is
defined to be a graph Y with the smallest number
of vertices subject to X = Y.

Note that, if Y is a core of X, then it is a core of
any graph in [X]. In particular, Y = Core(Y) is its
own core. (We will say that a graph Y is a core if
Core(Y) =Y))

We now show that the core of a graph is unique
up to isomorphism, and give a test to recognise a
core.

Theorem 3. o Any endomorphism of a core is an
automorphism.

o Two cores which are hom-equivalent are isomor-

phic.

Proof. (a) Let Y be a core and f an endomorphism
of Y. Then there is a homomorphism from f(Y)
to Y, namely, the identity map on the vertices of
f(Y); so0Y = f(Y). Since Y is a core, f must be
onto, hence an automorphism.

(b) Similar. O
So now we can talk about the core of a graph.

Theorem 4. The core of a graph X is Ky, if and only if
w(X) = x(X) = m.

This is immediate from the theory developed
above.

The class of graphs whose core is complete
(those whose clique number and chromatic num-
ber are equal) is important in the theory of syn-
chronization, as we will see.

In particular, for m = 2, we have the class of
bipartite graphs (containing at least one edge).

Induced subgraphs and retractions

Y is an induced subgraph of X if its vertices are
some of the vertices of X, and its edges are all the
edges of X contained within the vertex set of Y.

A retraction of X is a homomorphism from X to
a induced subgraph Y which acts as the identity
onY.

Theorem 5. Let Y = Core(X). Then, up to isomor-
phism, Y is an induced subgraph of X, and there is a
retraction of X onto Y.

Proof. Let Y = Core(X). There is a homomor-
phism from Y to X, which is an isomorphism to
its image; so we can identify Y with this image.

Now let f be a homomorphism from X to Y. The
restriction of f to Y is an automorphism of Y; fol-
lowing f by the inverse of this automorphism, we
get a retraction of X onto Y. O

Recognising cores

A graph X is a core if and only if all its endo-
morphisms are automorphisms. (We saw the for-
ward implication. In the reverse direction, if X is
not a core, then its core is a proper induced sub-
graph, and there is an endomorphism onto this
subgraph.)

But this is hard to test. The decision problem for
cores is:

Instance: A graph X.

Problem: Is X a core?

This is known to be NP-complete.

Cores of vertex-transitive graphs
A graph is vertex-transitive if its automorphism
group acts transitively on its vertex set.

Theorem 6. The core of a vertex-transitive graph is
vertex-transitive.

Proof. Let X be vertex-transitive. Let i be the em-
bedding of Y = Core(X) into X, and p the retrac-
tion of X onto Y. Let v and w be vertices of Y, and
choose an automorphism g of X mapping v to w.
Then :gp is a homomorphism from Y to Y (nec-
essarily an automorphism of Y, since Y is a core)
which maps v to w. O

Other kinds of transitivity

Analogously, we can say that a graph is edge-
transitive, or non-edge transitive, or indeed transi-
tive on any kind of configuration we choose.

The same proof as above shows that if X
possesses any kind of transitivity, then so does
Core(X) (provided only that Core(X) possesses
configurations of the appropriate type — for exam-
ple, X might be a non-edge transitive graph whose
core is complete).



In the next lecture, we will see that a much
stronger result holds for non-edge transitive
graphs: either such a graph is itself a core, or its
core is complete.



