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Notation
Ω will denote a set (often the set {1, . . . , n}).

The image of an element v ∈ Ω under a permu-
tation g of Ω will be denoted by vg.

So if g and h are permutations, and we define
composition by the rule that gh means “apply g,
then h”, then v(gh) = (vg)h.

With this operation, the set of permutations of
Ω is a group. We use Sym(Ω) for the group of
all permutations of Ω. If Ω = {1, . . . , n}, then we
write Sn for Sym(Ω).

Permutation groups and group actions
A permutation group is a subgroup of the sym-

metric group Sym(Ω) of all permutations on Ω.

An action of a group G on a set Ω is a homomor-
phism φ from G to Sym(Ω).

These are almost the same. The image of an ac-
tion is a permutation group. The only difference is
that an action may have a kernel. In particular, if
G acts on Ω, we write vg rather than v(gφ).

Example 1. Let G = S4. Then G acts on the set
of three partitions of {1, 2, 3, 4} into two parts of
size 2, namely A = 12|34, B = 13|24, C = 14|23.
Then the element (1, 2, 3) induces the permutation
(A, C, B) of the set {A, B, C}. We have a homomor-
phism from S4 to S3; its image is S3, and its kernel
is the Klein group.

Orbits and transitivity
Let G act on Ω. Define a relation ∼ on Ω by:

v ∼ w ⇔ (∃g ∈ G)(vg = w).

This is an equivalence relation: the reflexive, sym-
metric and transitive laws come immediately from
the identity, inverse and closure laws for G.

The equivalence classes are called orbits; and the
action is transitive if there is only one orbit.

Now suppose that G is a permutation group on
Ω. If Ω =

⋃
i∈I

Ωi, where Ωi are the orbits, then let

Gi be the transitive permutation group induced by
G on Ωi; then G is embeddable in the Cartesian
product ∏

i∈I
Gi.

Thus we have our first reduction theorem:

Theorem 2. • A set on which G acts is a disjoint
union of sets on which G acts transitively.

• Any permutation group is embeddable in the
Cartesian product of transitive permutation
groups.

Note that the first part of the theorem, describ-
ing the structure of Ω, is more precise than the sec-
ond part, describing the structure of G.

Transitive groups
Being a transitive permutation group is no re-

striction on the structure of a group, by Cayley’s
Theorem:
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Theorem 3. Every group is isomorphic to a transitive
permutation group.

Define a map ρ from G to Sym(G) (the right reg-
ular action) by the rule that gρ is the perutation
x 7→ xg.

Then ρ is an injective homomorphism; so its im-
age is a subgroup of Sym(G) (a permutation group
on G) isomorphic to G.

Imprimitivity
Suppose now that G acts transitively on Ω. A

congruence on Ω is a G-invariant equivalence rela-
tion on Ω; the equivalence classes are called blocks
of imprimitivity for G.

There are two trivial congruences (if |Ω| > 1):

• the relation of equality, whose blocks are sin-
gletons;

• the universal relation, with a single block Ω.

The action is imprimitive if there is a non-trivial
congruence, and is primitive if not.

The wreath product
Let H be a group, and K a permutation group

on a set ∆. We define the wreath product H Wr K to
be the semi-direct product of the “bottom group”
B by the “top group” T, where

• B is the Cartesian product of |∆| copies of H,
which we may regard as the set of functions
f : ∆ → H with componentwise product

( f1 f2)(d) = f1(d) f2(d) for d ∈ ∆;

• T is the group K, acting on B by permuting the
factors of the Cartesian product in the same
way that it permutes the elements of ∆:

( f k)(d) = f (dk−1) for d ∈ ∆.

The inverse in the last formula is just a technicality
to make the multiplication work correctly.

The imprimitive action
Now suppose that H is itself a permutation

group on a set Γ. There are two natural actions
of H Wr K.

The first is the imprimitive action on the set Γ ×
∆. We regard this as a covering of ∆ with fibres
indexed by Γ: that is,

Γ× ∆ =
⋃

d∈∆

Γd, where Γd = {(c, d) : c ∈ Γ}.

∆︷ ︸︸ ︷
Γd

d

Now G = H Wr K acts as follows:

• Each factor Hd of B in the Cartesian product
acts on the copy Γd of Γ:

(c, d) f = (c f (d), d).

• T permutes the fibres Γd like K acting on ∆:

(c, d)k = (c, dk).

The imprimitive action of the wreath product is
(as the name suggests) imprimitive if |Γ|, |∆| > 1;
the relation “belong to the same fibre Γd” is a con-
gruence whose blocks are the fibres.

Imprimitive groups and wreath products
Wreath products embed imprimitive groups in

a similar way that Cartesian products embed in-
transitive groups:

Theorem 4. Let G be a transitive but imprimitive per-
mutation group on Ω. Let Γ be a block of imprimitivity,
and H the permutation group induced on Γ by its set-
wise stabiliser; let ∆ be an index set for the set of blocks
of imprimitivity, and let K be the permutation group
induced on ∆ by G.

Then there is a bijection between Ω and Γ×∆ under
which G is embedded as a subgroup of H Wr K (with its
imprimitive action).
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The power action
Return to the situation where H and K are per-

mutation groups on sets Γ and ∆ respectively.
Another important action of the wreath product
H Wr K is the power action.

Let Γ∆ be the set of functions φ : ∆ → Γ. Now

• The base group acts coordinatewise:

(φ f )(d) = (φ(d)) f (d) for d ∈ ∆.

• The top group permutes the arguments:

(φk)(d) = φ(dk−1) for d ∈ ∆,

where as before the inverse is required for
technical reasons.

We can regard elements of Γ∆ as global sections
of the fibre space Γ× ∆: a function φ picks out one
point φ(d) from each fibre Γd.

∆︷ ︸︸ ︷
φ(d)

dre re re re re re. ................. ................ ............... ......... ....... ........... ..............
.................

........................
....................... ................ ............. .......... ....... ................ .................

.................
.

An example
Consider the wreath product S2 Wr Sn, other-

wise known as the Weyl group of type Bn. It has a
normal subgroup Sn

2 which is elementary abelian
of order 2n; the factor group is the symmetric
group Sn.

The imprimitive action is on the vertices of the
n-dimensional cross-polytope (or hyperoctahedron),
vectors with ±1 in one coordinate and 0 in all oth-
ers. The ith factor of the base group changes the
sign of the ith basis vector and fixes all others; the
top group permutes the coordinates.

The power action is on the vertices of the n-
dimensional hypercube, of the form (ε1, . . . , εn),
where εi = ±1 for i = 1, . . . , n. The base group
changes signs, while the top group permutes the
coordinates.

Note that the two actions are the same when re-
garded as acting on Rn.

Primitive groups
We noted that every group is isomorphic to a

transitive permutation group, by Cayley’s Theo-
rem. However, primitive groups are more special.

A permutation group G is semiregular if the sta-
biliser of any point is the identity, and is regular if
it is transitive and semiregular. Any regular action
of a group is just the right regular action ρ on itself
by right multiplication:

x(gρ) = xg.

There is also a left regular action λ:

x(gλ) = g−1x.

The resulting permutation groups are isomorphic,
but have an important property:

The centraliser of the right regular action of a
group G is the left regular action.

Curiously, the commutative law of left and right
actions is just a translation of the associative law
for the group:

(x(gρ))(hλ) = h−1(xg) = (h−1x)g = (x(hλ))(gρ)

for all x ∈ G, so

(gρ)(hλ) = (hλ)(gρ)

for all g, h ∈ G.

We need one more observation:

A non-trivial normal subgroup of a primitive
permutation group is transitive.

For the orbits of a normal sugroup of G form
blocks of imprimitivity for G.

Theorem 5. A primitive permutation group has at
most two minimal normal subgroups. If it has two, then
they are isomorphic and non-abelian.

For distinct minimal normal subgroups of a
group commute with each other. If there are two,
they are the left and right regular actions of a (nec-
essarily non-abelian) group; and then there cannot
be a third.

The socle of a group is the product of its mini-
mal normal subgroups. Any miminal normal sub-
group of a finite group is itself a direct product of
isomorphic finite simple groups. It follows from
the theorem above that:
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The socle of a primitive permutation group is the
direct product of isomorphic simple groups.

An example
Here is an example of a primitive group with

two minimal normal subgroups.

Example 6. Let S be a non-abelian simple group.
Let G = S × S act on S by the rule that the first
factor acts by left multiplication and the second by
right multiplication: that is,

(g, h) : x 7→ g−1xh.

Any congruence for the second factor is the rela-
tion “same coset of T” for some subgroup T of S;
and this congruence is preserved by the first factor
if and only if T is a normal subgroup. So, since T
is simple, G has only the trivial congruences.

Basic groups
A Cartesian structure or power structure on Ω is

a bijection between Ω and the set Γ∆ of functions
from ∆ to Γ, where |Γ|, |∆| > 1. This gives Ω the
structure of an n-dimensional hypercube (where
n = |∆|) whose sides have size |Γ|.

Let G act on Ω. We say that G is non-basic if
it preserves a Cartesian structure on Ω, and basic
otherwise.

A transitive non-basic group is embeddable in
the wreath product of permutation groups on Γ
and ∆ in the power action. However, for primitive
groups, we can make a stronger statement.

O’Nan–Scott I: Non-basic groups

Theorem 7. Let G be a primitive but non-basic per-
mutation group with socle N. Then G is embeddable in
the wreath product G0 Wr K, where G0 is a basic prim-
itive permutation group. Moreover, if K has degree n,
then N = Nn

0 , where N0 is either the socle or a minimal
normal subgroup of G0.

It turns out that the case where G0 has two
minimal normal subgroups, of which N0 is one
(the so-called twisted wreath product case, discov-
ered by Aschbacher) will not concern us. The
smallest twisted wreath product has degree 606 =
46656000000.

Affine groups
Let V be a d-dimensional vector space over the

field Fp, where p is prime, and let H be a group of
linear transformations of V. Then there is a corre-
sponding affine group

G = {x 7→ xh + v : h ∈ H, v ∈ V}

of permutations of V, generated by the transla-
tions (which form a normal subgroup) and ele-
ments of H.

Theorem 8. With the above notation,

• G is always transitive;

• G is primitive if and only if H acts irreducibly on
V (that is, fixes no non-zero proper subspace of V);

• G is basic if and only if H acts primitively on V
(that is, preserves no non-trivial direct sum de-
composition of V).

A primitive group is affine iff its socle (which
is its unique minimal normal subgroup) is an ele-
mentary abelian p-group.

Diagonal groups
Let S be a non-abelian finite simple group. A

diagonal group is one whose socle is Sn, acting on
the cosets of a diagonal subgroup

{(s, s, . . . , s) : s ∈ S}

of Sn.
For n = 2 we have the example of S× S acting

by left and right multiplication we saw earlier.
A diagonal group may also contain

• automorphisms of S, acting in the same way
on all factors;

• permutations of the factors.

If n > 2, we must have at least a transitive group
of permutations of the factors in order for the di-
agonal group to be primitive.

Almost simple groups
A group G is almost simple if its socle is simple.

Such a group is an extension of a simple group by
a subgroup of its automorphism group; in other
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words, there is a simple group S such that S ≤
G ≤ Aut(S).

For example, the symmetric group Sn is almost
simple for n ≥ 5. (It is affine for n ≤ 4.)

The almost simple primitive groups are the
largest and least understood class.

O’Nan–Scott II: Basic groups

Theorem 9. Let G be a basic primitive permutation
group. Then G is affine, or diagonal, or almost simple.

This theorem opened the way to the applica-
tion of the Classification of Finite Simple Groups
to permutation group theory, which has been done
very successfully since the Classification was first
announced in 1980.

2-transitive and 2-set transitive groups
A permutation group G on Ω is 2-transitive if,

given any two ordered pairs of distinct elements
of Ω, there is an element of G which carries the
first pair to the second.

The symmetric group Sn is 2-transitive for any
n ≥ 2.

A permutation group G on Ω is 2-set transitive
if, given any two unordered pairs of distinct ele-
ments of Ω, there is an element of G which carries
the first pair to the second.

Theorem 10. • A 2-transitive group is 2-set tran-
sitive.

• A 2-set transitive group is primitive (and basic).

The first statement is obvious. For the second,
note that if G is 2-set transitive, then there are only
four G-invariant symmetric relations: the empty re-
lation, equality, inequality, and the universal rela-
tion. So the only G-invariant equivalence relations
are equality and the universal relation.

The power structure on Γn can be specified
by a collection of symmetric binary relations
R0, R1, . . . , Rn, where two n-tuples v and w satisfy
(v, w) ∈ Ri if they differ in exactly i coordinates.
So no such structure can be preserved by a 2-set
transitive group.

Neither implication in the previous theorem re-
verses.

Example 11. Let G be the cyclic group of prime or-
der p, in its regular action.

• If p = 2, then G is 2-transitive.

• If p = 3, then G is 2-set transitive but not 2-
transitive.

• If p ≥ 5, then G is primitive (and basic) but
not 2-set transitive.

CFSG
The Classification of Finite Simple Groups, or CFSG

for short, is the major theorem announced in 1980
and now, perhaps, finally proved. It asserts the
following.

Theorem 12. A finite simple group is one of the fol-
lowing:

• a cyclic group of prime order;

• an alternating group An, for n ≥ 5;

• a group of Lie type;

• one of 26 sporadic groups.

The groups of Lie type are essentially matrix
groups, and are divided into classical (special lin-
ear, symplectic, unitary and orthogonal groups)
and exceptional (associated with the exceptional
simple Lie algebras of types G2, F4, E6, E7 and
E8, and with exceptional graph automorphisms of
other Lie algebras.

The sporadic simple groups range from the
Mathieu group M11 (of order 7920) to the Fischer–
Griess Monster M (of order roughly 1054).

Classification of 2-transitive groups
A 2-transitive group is basic, and so must be

affine, diagonal, or almost simple. It is not hard
to show that it cannot be diagonal.

The affine 2-transitive groups (these are just the
ones where the linear group H acts transitively on
non-zero vectors) are all known, thanks to work
of Hering and Liebeck. The almost simple 2-
transitive groups have also been classified, by a
combination of work by many authors.

Hence it is possible to write down a list of all the
2-transitive groups. Such a list can be found in my
book Permutation Groups (Cambridge, 1990).
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Classification of 2-set transitive groups
A permutation group which is 2-set transitive

but not 2-transitive necessarily has odd order. (For
a group of even order contains an element of or-
der 2, which must swap some pair of points; in
a 2-set transitive group, this means every pair
of points can be swapped, and the group is 2-
transitive.)

By the Feit–Thompson Theorem, such a group is
soluble; so its socle is abelian, and it must be an
affine group.

A result proved by several authors classifies
these groups: they are permutation groups of a
field Fq, where q ≡ 3 mod 4, of the form

{x 7→ axσ + c : a ∈ (F×q )2, c ∈ Fq, σ ∈ S},

where S is a subgroup of the automorphism group
of Fq.
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