
Synchronization 1: Introduction

Peter J. Cameron

10-11 June 2010

This is part of an investigation involving, among
others, João Araújo, Michael Brough, Ian Gent,
Cristy Kazanidis, Tom Kelsey, Peter Neumann,
Colva Roney-Dougal, Nik Ruskuc, Jan Saxl, Csaba
Schneider, Pablo Spiga, and Ben Steinberg.

Their order here is not intended to reflect the im-
portance of their contributions to the subject!

Much of the communication was done by email.
Various presentations of the results have been
given, notably a short series by Peter Neumann in
Perth last year.

A small example
This example was suggested to me by Olof

Sisask.

Example 1. A certain calculator has an ‘On’ but-
ton but no ‘Off’ button. To switch it off, you
hold down the ‘Shift’ key and press the ‘On’ but-
ton. The ‘Shift’ key has no effect if the calculator
is switched off. Assuming that you can’t see the
screen, how can you ensure that the calculator is
switched off?

Obviously, pressing the ‘On’ button leaves the
calculator switched on, no matter what its former
state; and then ‘Shift-On’ will switch it off.

Note that if, instead, there is a single ‘On-Off’
button which toggles the states, then the problem
would have no answer.

The dungeon

You are in a dungeon consisting of a number
of rooms. Passages are marked with coloured ar-
rows. Each room contains a special door; in one
room, the door leads to freedom, but in all the oth-
ers, to instant death. You have a schematic map of
the dungeon, but you do not know where you are.

←

←

�
�

�
�

�
�

�
�

�
�

��

↗
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↘

↓

↑
.

..

...

...

..

..

......................................

......................................

..

..

...

...

..

↖
↘

u u

u u1 2

34

You can check that (Blue, Red, Blue, Blue) takes
you to room 3 no matter where you start.

Automata and reset words
A (finite, deterministic) automaton consists of a

finite set Ω of states and a finite set of transitions,
each transition being a function from Ω to itself.

A reset word is a sequence of transitions such that
the composition of the transitions in the sequence,
applied to any starting vertex, brings you to the
same state. An automaton which possesses a reset
word is called synchronizing.

Not every finite automaton has a reset word. For
example, if every transition is a permutation, then
every word in the transitions is a permutation.

1

Combinatorially, an automaton is an edge-
coloured digraph with one edge of each colour out
of each vertex. Vertices are states, colours are tran-
sitions.

Transformation monoids
Let Ω = {1, . . . , n}.
The full transformation monoid Tn is the set of all

functions from Ω to itself. Equipped with the op-
eration of composition, it is a monoid: that is, the
operation is associative, and there is an identity el-
ement (the identity function on Ω).

Algebraically, an automaton is a submonoid of
Tn, with a distinguished set of generators. (The
“distinguished generators” are the transitions of
the automaton. Since we are allowed to compose
these arbitrarily, the allowable transitions are all
words in the distinguished generators.)

An automaton is synchronizing if and only if
(as transformation monoid) it contains a constant
function.
Example 2. Consider the example of the calculator.
As an edge-coloured directed graph (with blue for
‘On’ and red for ‘Shift-On’) it looks like this:

s sOff On.
......................

..................

...............

............
.........
.......

...........
.

...........
....

...........
.......

...........
...........→

→

.
.....................

....................
.................

...................
...............

.................
..............

......

............
.........

.
............

.........

..............
......

.................
...................

.................
....................

.....................

→

←

The generators of the monoid are the the func-
tion mapping everything to ‘On’, and the function
interchanging ‘Off’ and ‘On’. The remaining ele-
ments of the monoid are the function mapping ev-
erything to ‘Off’ (as we saw in the example), and
the identity function. Thus, it is the full transfor-
mation monoid on the set of states.

Exercise: Calculate the monoid generated by the
two transitions in the dungeon example.

The Road-Colouring Conjecture
The underlying digraph of an automaton with

n transitions is a digraph with the property that
every vertex has exactly n edges leaving it.

Conversely, and trivially, given any digraph
with this property, it is clear that it can be edge-
coloured so as to represent an automaton.

The resulting automaton may or may not be
synchronizing. What are necessary and sufficient
conditions for there to be an edge-colouring repre-
senting a synchronizing automaton?

We will assume that the automaton can be syn-
chronized in any given state by a suitable reset
word. A necessary condition for this is that it
is possible to get from any state to any other; in
other words, the digraph must be strongly con-
nected. (And, if an automaton is synchronizing
and strongly connected, then it can be synchro-
nized at any vertex.)

It is also necessary that the greatest common di-
visor of the lengths of cycles in the digraph is 1.
For suppose the g.c.d. of cycle lengths is d. Choose
any vertex v, and let Ωi be the set of vertices reach-
able from v in a number of steps congruent to i
mod d, for i = 0, 1, . . . , d− 1. The sets Ωi are pair-
wise disjoint, and so no automaton based on the
digraph can be synchronizing.

The conjecture that these two necessary con-
ditions are also sufficient was made in 1970 by
Weiss and Adler, and became known as the Road-
Colouring Conjecture. It was proved by Avraham
Trahtman in 2007:

Theorem 3. Let D be a digraph which is strongly con-
nected and has coonstant out-degree, and suppose that
the greatest common divisor of the cycle lengths in D
is 1. Then D can be edge-coloured so as to produce a
synchronizing automaton.

Applications

• Industrial robotics: pieces arrive to be assem-
bled by a robot. The orientation is critical.
You could equip the robot with vision sen-
sors and manipulators so that it can rotate the
pieces into the correct orientation. But it is
much cheaper and less error-prone to regard
the possible orientations of the pieces as states
of an automaton on which transitions can be
performed by simple machinery, and apply
a reset word before the pieces arrive at the
robot.

• Bioinformatics: If a soup of DNA molecules
is to perform some computation, we need the
molecules to be all in a known state first. We

2

can simultaneously apply a reset word to all
of them, where the transitions are induced by
some chemical or biological process.

Let us consider a simplified example of the
robotics application. Suppose that the component
is square, with a projection.

It can sit in a tray on the conveyor belt in any one
of four orientations.

The following transititions are easy to imple-
ment:

• R: rotate through 90◦ in the positive direction;

• B: rotate through 90◦ if the projection points
up, otherwise do nothing.

Here is a diagram of the automaton. Each state
represents the position of the component with the
projection on that side.

u

u
u u

1

2

3

4

�
�

�
��

�
�

�
��

@
@

@
@@

@
@

@
@@

↙

↘ ↗

↖

.
.........................

........................

.......................
......................

......................
.......................

........................
.........................

↙

...
................

...
........
...........
.............
................

.
..

B R R R B R R R B
1 2 3 4 1 2 3 4 1 2
2 2 3 4 1 2 3 4 1 2
3 3 4 1 2 2 3 4 1 2
4 4 1 2 3 3 4 1 2 2

So BRRRBRRRB is a reset word.

The Černý Conjecture
In 1968, Černý made the following conjecture:

Suppose that an automaton with n states
is synchronizing. Then it has a reset word
of length at most (n− 1)2.

This conjecture is still open after more than forty
years!

Note that the conjecture, if true, is best possible.
The example we have just discussed has 4 states,
and it can be shown that the reset word of length
9 that we found is best possible. There is an ob-
vious generalisation, where the square is replaced
by a regular n-gon, which has n states and shortest
reset word of length (n− 1)2.

The calculator example with which we began is
the case n = 1.

An approach via permutation groups
Ben Steinberg and João Araújo suggested an ap-

proach to the Černý conjecture, based on permu-
tation groups, which motivates this course. It has
not led to a proof of the conjecture, but many in-
teresting probems and conjectures have come up.

Recall the algebraic view of an automaton, a
monoid of transformations of a set Ω with a pre-
scribed set of generators. It is synchronizing if it
contains a constant function. Now:

• If all the generators are permutations, then the
whole monoid consists of permutations; that
is, it is a subgroup of the symmetric group Sn of
all permutations of Ω = {1, . . . , n}.

• In this sense, permutations are the worst tran-
sitions for synchronization!

• Moreover, every permutation in the monoid
actually lies in the subgroup generated by
those transitions which are permutations.

The philosophy is: analyse the group generated
by the permutations first!

Let G be a permutation group on Ω, that is, a
subgroup of Sn. With an abuse of terminology, we
say that G is synchronizing if the following is true:

If f is any function from Ω to itself which
is not a permutation, then the monoid

3

〈G, f 〉 generated by G and f is synchro-
nizing (that is, contains a constant func-
tion).

Now the attack on the Černý conjecture goes
like this: assume we are in the fortunate position
that the transitions which are permutations gener-
ate a synchronizing group. Then, given any non-
permutation f , there is a reset word in 〈G, f 〉; we
need to bound

• the number of occurrences of f in a reset
word; and

• the number of generators of G occurring be-
tween successive occurrences.

We can suppose that the reset word starts and
ends with f ; so it has the form f g1 f g2 f · · · f gr−1 f
(with r occurrences of f). Our aim might be

• show that we can arrange that each successive
application of f reduces the size of the image
by at least one (so that r ≤ n− 1);

• show that at most n − 1 generators of G are
required between successive f s (the job of the
gi is to re-position the image of the preceding
part of the word so that the next application
of f really does shrink it).

Both goals are met in the examples we gave
above showing that the Černý bound is sharp.

We will show that the first part of this pro-
gramme can be achieved by assuming a condition
on G which is a strengthening of the synchroniz-
ing property just defined.

The second part is more difficult, but group the-
ory gives us some tools for tackling this kind of
question.

The basic idea is that we know much more about
groups than we do about monoids!

An example
Let us note here that the definition of a syn-

chronizing group requires that adding any non-
permutation generates a reset word.

Example 4. In the earlier example of a 4-state au-
tomaton with shortest reset word of length 9, the
group G is cyclic (generated by the permutation

(1, 2, 3, 4)). But the cyclic group of order 4 is not
a synchronizing group. If we add the function f
which maps 1 and 3 to 1, and 2 and 4 to 2, then the
image of any element of 〈G, f 〉 outside G consists
of two consecutive points of the cycle.

So we should not expect this approach to solve
the Černý conjecture completely!

The road ahead
So let us repeat the definition:

A permutation group G on Ω is synchronizing if,
given any map f : Ω→ Ω which is not a permuta-
tion, the monoid 〈G, f 〉 generated by G and f is a
synchronizing monoid (that is, contains a constant
function).

The goal of these lectures is to understand syn-
chronizing permutation groups and related classes
of groups. So we turn next to the general theory of
permutation groups.

4

