University of London

C50 Enumerative \& Asymptotic Combinatorics

Solutions to Exercises 8

Spring 2003

1 For $S(n, k)$, we can use the formula

$$
S(n, k)=\frac{1}{k!} \sum_{i=0} k-1(-1)^{i}\binom{k}{i}(k-i)^{n}
$$

(count the number of surjective functions from $\{1, \ldots, n\}$ to $\{1, \ldots, k\}$ by inclusion-exclusion, and divide by $k!$). Clearly the term k^{n} is exponentially larger than any other term in the sum (the number of terms and the coefficients depend on k, which is fixed, and $(k-i)^{n}=o\left(k^{n}\right)$ for $i>0)$. So $S(n, k) \sim n^{k} / k!$.

A partition of $\{1, \ldots, n\}$ into $n-k$ parts, with k fixed (say $k<n / 2$) has the property that all but at most k of the parts consist of singletons. First, count partitions in which all parts have size 1 or 2 : there are k parts of size 2 , whose union has $2 k$ points. These points can be chosen in $\binom{n}{2 k} \sim n^{2 k} /(2 k)$! ways, and the set of $2 k$ points can be partitioned into pairs in 1.3. $\cdots(2 k-1)=(2 k)!/ 2^{k} k$! ways. Thus the number of partitions of this kind is asymptotically $n^{2 k} / 2^{k} k$!. The remaining partitions have fewer than $2 k$ points in parts of size bigger than 1 ; the number of them is at most $\binom{n}{2 k-1}(2 k-1)$! which is of smaller order than what we already found.

The argument gives the same estimate for $|s(n, n-k)|$: partitions with parts of size 1 or 2 correspond bijectively with permutations with cycle lengths 1 or 2 , and we overestimated the others in a way that applies to permutations as well.

The asymptotic estimate for $s(n, k)$ is a bit harder. Try the case $k=2$: we have

$$
|s(n, 2)|=\sum_{m=1}^{\lfloor n / 2\rfloor}\binom{n}{m}(m-1)!(n-m-1)!=n!\sum \frac{1}{m(n-m)}
$$

Can you evaluate this sum?
2 The recurrence relation for the Bernoulli numbers shows that $(n+1) B_{n}$ is an integer linear combination of Bernoulli numbers with smaller index. By the induction hypothesis, n ! times the right-hand side is an integer. So $(n+1)!B_{n}$ is an integer.

3 Equation (b) for the Bernoulli polynomials shows that

$$
\frac{1}{k+1}\left(B_{k}(t+1)-B_{k}(t)\right)=t^{k}
$$

Summing these equations for $t=1$, dots, n and using $B_{k}(1)=B_{k}(0)$, gives the result.
4 With $f(x)=1 / x$ we have $f^{(k)}(x)=(-1)^{k} x!x^{-(k+1)}$. Moreover, $\int_{1}^{n} f(t) \mathrm{d} t=\log n$. Substitution gives the required series, apart from an unknown constant which you are not expected to evaluate.

5 Let t_{n} be the number of fixed-point-free involutions on n points. We found earlier that

$$
t_{n}= \begin{cases}0 & \text { if } n \text { is odd } \\ 1 \cdot 3 \cdot 5 \cdots(n-1) & \text { if } n \text { is even }\end{cases}
$$

so that the exponential generating function of $\left(t_{n}\right)$ is $\exp \left(x^{2} / 2\right)$. Now

$$
s_{n}=\sum_{k=0}^{n}\binom{n}{k} t_{n-2 k},
$$

so the e.g.f. of $\left(s_{n}\right)$ is the product of those for (1) and $\left(t_{n}\right)$, that is, $\exp (x) \cdot \exp \left(x^{2} / 2\right)=$ $\exp \left(x+x^{2} / 2\right)$.

The application of Hayman's Theorem is a bit delicate: there is a full discussion in Odlyzko's paper.

