University of London

C50
 Enumerative \& Asymptotic Combinatorics

Solutions to Exercises 7

1 Using the Prüfer codes, we see that a tree has this property if and only if the symbol i occurs $a_{i}-1$ times in its code. So to count the trees, we count the $n-2$-tuples containint $a_{i}-1$ occurrences of i for $i=1, \ldots, n$; this is the multinomial coefficient

$$
\binom{n}{a_{1}-1, a_{2}-1, \ldots, a_{n}-1}=\frac{n!}{\left(a_{1}-1\right)!\left(a_{2}-1\right)!\cdots\left(a_{n}-1\right)!}
$$

2 There is one circular structure on n points, with cycle index

$$
\frac{1}{n} \sum_{m \mid n} \phi(m) s_{m}^{n / m}
$$

for $n>1$. So

$$
\begin{aligned}
\mathcal{Z}(\mathcal{C}) & =1+\sum_{n \geq 1} \frac{1}{n} \sum_{m \mid n} \phi(m) s_{m}^{n / m} \\
& =1+\sum_{m \geq 1} \frac{\phi(m)}{m} \sum_{k \geq 1} \frac{1}{k} s_{m}^{k} \\
& =1-\sum_{m \geq 1} \frac{\phi(m)}{m} \log \left(1-s_{m}\right)
\end{aligned}
$$

(We put $n=m k$ and sum over m and k in the second line.)
Using the fact that $Z(S)=\exp \left(\sum_{i \geq 1} \frac{s_{i}}{i}\right)$, we obtain

$$
\begin{aligned}
Z(\mathcal{P}) & =\exp \left(\sum_{i \geq 1} \frac{-\sum_{j \geq 1}(\phi(j) / j) \log \left(1-s_{i j}\right)}{i}\right) \\
& =\prod_{i \geq 1} \prod_{j \geq 1}\left(1-s_{i j}\right)^{\phi(j) / i j} \\
& =\prod_{n \geq 1}\left(1-s_{n}\right)^{-1}
\end{aligned}
$$

In the last line we put $n=i j$ and note that $\sum_{j \mid n} \phi(j)=n$.

For a direct proof of this result we note that the automorphism group of a permutation is its centraliser in the symmetric group, so that

$$
Z(\mathcal{P})=\sum_{n \geq 0} \sum_{g \in S_{n}} \frac{|C(g)|}{n!} \frac{1}{|C(g)|} \sum_{h \in C(g)} z(h)
$$

writing $C(g)$ for the centraliser of g in S_{n}. (The coefficient $|C(g)| / n!$ is because isomorphism classes are the conjugacy classes in S_{n}, not individual elements.) Now we can reverse the order of summation: the coefficient of $z(h)$ will then be the sum of $1 / n$! over all $g \in C(h)$, which is $|C(h)| / n$!, or the reciprocal of the size of the conjugacy class of h. So the final sum is just over conjugacy class representatives. Thus each monomial has coefficient 1 , and we have

$$
\begin{aligned}
Z(\mathcal{P}) & =\sum_{c_{1}, c_{2}, \ldots} \prod_{i} s_{i}^{c_{i}} \\
& =\prod_{i} \sum_{c} s_{i}^{c} \\
& =\prod_{i}\left(1-s_{i}\right)^{-1}
\end{aligned}
$$

as required.
3 Since $c_{n}=1$ for all n, the ordinary generating function for unlabelled structures in \mathcal{C} is

$$
\sum_{n \geq 0} x^{n}=1+\frac{x}{1-x}
$$

We must get the same result by substituting $s_{n} \leftarrow x^{n}$ in the cycle index, giving

$$
1-\sum_{m \geq 1} \frac{\phi(m)}{m} \log \left(1-x^{m}\right)
$$

Equating, cancelling the 1 , and taking the exponential, gives

$$
\prod_{m \geq 1}\left(1-x^{m}\right)^{-\phi(m) / m}=\exp \left(\frac{x}{1-x}\right)
$$

4 The required generating function is

$$
\begin{aligned}
Z(S)\left(s_{n} \leftarrow g\left(x^{n}\right)-1\right) & =\exp \sum_{m \geq 1} \frac{g\left(x^{m}\right)-1}{m} \\
& =\exp \sum_{m \geq 1} \sum_{i \geq 1} \frac{g_{i} x^{i m}}{m} \\
& =\exp \sum_{i \geq 1} g_{i} \sum_{m \geq 1} \frac{x^{i m}}{m} \\
& =\exp \sum_{i \geq 1}-g_{i} \log \left(1-x^{i}\right) \\
& =\prod_{i \geq 1}\left(1-x^{i}\right)^{-g_{i}},
\end{aligned}
$$

as required.
If $\mathcal{G}=\mathcal{S}$ the generating function is $\prod_{i \geq 1}\left(1-x^{i}\right)^{-1}$, which we recpgnise as the generating function $\sum_{n>0} p(n) x^{n}$ for the partition numbers $p(n)$. Now an $\mathcal{S}[\mathcal{S}]$-object is a set with a partition, with no structure on either the individual parts or the set of parts; so the number of unlabelled structures is just $p(n)$, as it should be.

5 No solution given here.
6 If we have a rooted tree with root $n+1$, let i_{1}, \ldots, i_{k} be the neighbours of the root. Deleting the root gives k rooted trees with roots i_{1}, \ldots, i_{k}. Conversely, given collection of rooted trees on n vertices, we recover a tree on $n+1$ vertices by adding a new root $n+1$ joined to all the roots in the given trees.

Thus, if $R(x)$ is the e.g.f. for labelled rooted trees, the number of rooted trees on $n+1$ vertices with root $n+1$ is $R_{n+1} /(n+1)$, and so the probability that a rooted forest on n vertices is connected is

$$
\begin{aligned}
\frac{(n+1) R_{n}}{R_{n+1}} & =\frac{(n+1) n^{n-1}}{(n+1)^{n}} \\
& =\left(1-\frac{1}{n+1}\right)^{n-1} \\
& \rightarrow \frac{1}{\mathrm{e}} \text { as } n \rightarrow \infty .
\end{aligned}
$$

7 A member of the species \mathcal{U} consists of a set with a distinguished subset; its automorphism group consists of all permutations which fix the distinguished subset. Thus \mathcal{U} is equivalent to $\mathcal{S} \times \mathcal{S}$. Its cycle index and generating functions are thus the squares of the corresponding series for \mathcal{S}.

