

## C50 Enumerative & Asymptotic Combinatorics

## **Solutions to Exercises 6**

**Spring 2003** 

The first three questions are not very interesting.

4 k!S(n,k) is equal to the number of surjections from an n-set to a k-set; for, given a partition of  $\{1,\ldots,n\}$  into k parts, we can number the parts  $1,\ldots,k$  in k! ways, and each numbering corresponds to the surjection mapping each element to the number of the part containing it.

There are k - j)<sup>n</sup> functions whose range excludes a given set of j points. Now inclusion-exclusion gives the result.

5 let  $\lambda(x,y)$  be the alternating sum on the right of the proposed equality. Clearly  $\lambda(x,x) = 1$  since there is a unique chain of length 0. We have to prove that

$$\lambda(x,y) = -\sum_{x \le z < y} \lambda(x,z),$$

from which the equation  $\lambda = \mu$  follows by induction. Now any chain of length c with second-last element z contributes  $(-1)^c$  to  $\lambda(x,y)$  and also contributes  $(-1)^{c-1}$  to  $\lambda(x,z)$ . So the equation is true.

6 By Möbius inversion, this is equivalent to proving that

$$d(n) = \sum_{m|n} 1,$$

which is obvious.

7 (a) Note that we are asked to show that  $\mu(E,P)$  is equal to the number of permutations whose cycle decomposition is the partition P, multiplied by the sign of such a permutation.

The proof of the formula is by induction on n. The start of the induction is trivial.

If P has more than one part, then the interval [E, P] is isomorphic to the product of intervals of the form  $[E, X_i]$  for sets  $X_i$  with  $|X_i| = a_i$ , and the result follows from the product formula and the induction hypothesis.

If there is only a single part, use the fact that  $\sum_{g \in S_n} \operatorname{sign}(g) = 0$  for n > 1. Now by the induction hypothesis, the sum of  $\mu(E, Q)$  over all Q < P is equal to the sum of the signs of all permutations having more than one cycle; this is equal to the negative of the sum of signs of

permutations with a single cycle, giving  $\mu(E,P)=(-1)^{n-1}(n-1)!$ , as required. (There are (n-1)! such permutations each with sign  $(-1)^{n-1}$ .)

- (b) Consider the interval [P.Q]. Each part of Q splits into a certain number  $a_i$  of parts of P, and the interval is isomorphic to the product of partition lattices on  $a_i$  points for all relevant i. Thus we obtain the same formula as in (a) for  $\mu(P,Q)$  but with  $a_i$  being the number of parts of P in a given part of Q, rather than the total number of points in such a part.
- **8** The *m*th power of *g* consists of n/d cycles each of length *d*, where  $d = \gcd(m, n)$ . For each *d* dividing *n*, the number of *m* with  $\gcd(m, n) = d$  is  $\phi(n/d)$ : these are all numbers of the form dx, where  $\gcd(x, n/d) = 1$ . So the cycle index is as claimed.
- **9** Immediate from the Cycle Index Theorem.